首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
The aim of this study was to investigate temporal and spatial patterns of denitrification enzyme activity (DEA) and nitrous oxide (N2O) fluxes in three adjacent riparian sites (mixed vegetation, forest and grass). The highest DEA was found in the surface (0–30 cm) soil and varied between 0.7±0.1 mg N kg–1 day–1 at 5°C and 5.9±0.4 mg N kg–1 day–1 at 15°C. There was no significant difference (P >0.05) between the DEA in the uppermost (0–30 cm and 60–90 cm) soil depths under different vegetation covers. In the two deepest (120–150 cm and 180–210 cm) soil depths the DEA varied between 0.0±0.0 mg N kg–1 day–1 at 5°C and 4.4±0.9 mg N kg–1 day–1 at 15°C and was clearly associated with the accumulation of buried organic carbon (OC). Two threshold values of OC were observed before DEA started to increase significantly, namely 5 and 25 g OC kg–1 soil at 10–15°C and 5°C, respectively. In the three riparian sites N2O fluxes varied between a net N2O uptake of –0.6±0.4 mg N2O-N m–2 day–1 and a net N2O emission of 2.5±0.3 mg N2O-N m–2 day–1. The observed N2O emission did not lead to an important pollution swapping (from water pollution to greenhouse gas emission). Especially in the mixed vegetation and forest riparian site highest N2O fluxes were observed upslope of the riparian site. The N2O fluxes showed no clear temporal trend.  相似文献   

2.
Spatial variability in carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) emissions from soil is related to the distribution of microsites where these gases are produced. Porous soil aggregates may possess aerobic and anaerobic microsites, depending on the water content of pores. The purpose of this study was to determine how production of CO2, N2O and CH4 was affected by aggregate size and soil water content. An air-dry sandy loam soil was sieved to generate three aggregate fractions (<0.25 mm, 0.25–2 mm and 2–6 mm) and bulk soil (<2 mm). Aggregate fractions and bulk soil were moistened (60% water-filled pore space, WFPS) and pre-incubated to restore microbial activity, then gradually dried or moistened to 20%, 40%, 60% or 80% WFPS and incubated at 25 °C for 48 h. Soil respiration peaked at 40% WFPS, presumably because this was the optimum level for heterotrophic microorganisms, and at 80% WFPS, which corresponded to the peak N2O production. More CO2 was produced by microaggregates (<0.25 mm) than macroaggregate (>0.25 mm) fractions. Incubation of aggregate fractions and soil at 80% WFPS with acetylene (10 Pa and 10 kPa) and without acetylene showed that denitrification was responsible for 95% of N2O production from microaggregates, while nitrification accounted for 97–99% of the N2O produced by macroaggregates and bulk soil. This suggests that oxygen (O2) diffusion into and around microaggregates was constrained, whereas macroaggregates remained aerobic at 80% WFPS. Methane consumption and production were measured in aggregates, reaching 1.1–6.4 ng CH4–C kg−1 soil h−1 as aggregate fractions and soil became wetter. For the sandy-loam soil studied, we conclude that nitrification in aerobic microsites contributed importantly to total N2O production, even when the soil water content permitted denitrification and CH4 production in anaerobic microsites. The relevance of these findings to microbial processes controlling N2O production at the field scale remains to be confirmed.  相似文献   

3.
 The experiment, carried out on a forest and arable light-textured soil, was designed to study the temperature response of autotrophic and heterotrophic N2O production and investigate how the N2O flux relates to soil respiration and O2 consumption. Although N2O production seemed to be stimulated by a temperature increase in both soils, the relationship between production rate and temperature was different in the two soils. This seemed to depend on the different contribution of nitrification and denitrification to the overall N2O flux. In the forest soil, almost all N2O was derived from nitrification, and its production rate rose linearly from 2  °C to 40  °C. A stronger effect of temperature on N2O production was observed in the arable soil, apparently as a result of an incremental contribution of denitrification to the overall N2O flux with rising temperature. The soil respiration rate increased exponentially with temperature and was significantly correlated with N2O production. O2 consumption stimulated denitrification in both soils. In the arable soil, N2O and N2 production increased exponentially with decreasing O2 concentration, though N2O was the main gas produced at any temperature. In the forest soil, only the N2 flux was related exponentially to O2 consumption and it outweighed the rate of N2O production only at >34  °C. Thus, it appears that in the forest soil, where nitrification was the main source of N2O, temperature affected the N2O flux less dramatically than in the arable soil, where a temperature increase strongly stimulated N2O production by enhancing favourable conditions for denitrification. Received: 26 August 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号