首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The chemical composition and quantity of plant inputs to soil are primary factors controlling the size and structure of the soil microbial community. Little is known about how changes in the composition of the soil microbial community affect decomposition rates and other ecosystem functions. This study examined the degradation of universally 13C-labeled glucose, glutamate, oxalate, and phenol in soil from an old-growth Douglas-fir (Pseudotsuga menziesii)—western hemlock (Tsuga heterophylla) forest in the Oregon Cascades that has experienced 7 y of chronic C input manipulation. The soils used in this experiment were part of a larger Detritus Input and Removal Treatment experiment and have received normal C inputs (control), doubled wood inputs, or root and litter input exclusion (no inputs). Soil from the doubled wood treatment had a higher fungal:bacterial ratio, and soil from the no inputs treatment had a lower fungal:bacterial ratio, than the control soil. Differences in the utilization of the compounds added to the field-manipulated soils were assessed by following the 13C tracer into microbial biomass and respiration. In addition, 13C-phospholipid fatty acids (PLFA) analysis was used to examine differential microbial utilization of the added substrates. Glucose and glutamate were metabolized similarly in soils of all three litter treatments. In contrast, the microbial community in the double wood soil respired more added phenol and oxalate, whereas microbes in the no inputs soil respired less added phenol and oxalate, than the control soil. Phenol was incorporated primarily into fungal PLFA, especially in soil of the double wood treatment. The addition of all four substrates led to enhanced degradation of soil organic matter (priming) in soils of all three litter treatments, and was greater following the addition of phenol and oxalate as compared to glucose and glutamate. Priming was greater in the no inputs soil as compared to the control or doubled wood soils. These results demonstrate that altering plant inputs to soil can lead to changes in microbial utilization of C compounds. It appears that many of these changes are the result of alteration in the size and composition of the microbial community.  相似文献   

2.
土壤微生物群落结构对凋落物组成变化的响应   总被引:9,自引:0,他引:9  
凋落物分解是陆地生态系统养分循环的关键过程,明确凋落物多样性如何影响土壤微生物群落构成和多度,继而潜在地改变凋落物分解的微生物学机制有助于认识生物多样性和森林生态系统功能的关系。通过小盆模拟试验,应用磷脂脂肪酸谱图的方法研究了我国南方红壤丘陵区典型物种马尾松和湿地松的凋落物分别与白栎和青冈的凋落物混合,与单一针叶凋落物分解时相比,针阔混合凋落物分解过程中土壤微生物群落结构的变化,结果显示:(1)针阔混合凋落物分解时土壤微生物群落磷脂脂肪酸(Phospholipidfatty acids,PLFA)总量低于单一针叶处理,细菌和放线菌的相对多度高于单一针叶处理,真菌则相反,群落真菌/细菌低于单一针叶处理,土壤微生物生物量的差异主要来自于真菌;(2)主成分分析表明:针阔混合凋落物分解与单一针叶凋落物分解的土壤微生物群落结构差异显著,两个时期(分解9个月和18个月)主成分一分别可以解释65.74%和89.63%的变异,第一主成分主要包括18∶2ω6,9、18∶1ω9c、17∶0和10Me18∶0等磷脂脂肪酸;(3)土壤微生物群落结构受凋落物初始C/N和木质素/N调控,土壤微生物群落细菌的相对多度与凋落物初始C/N和木质素/N显著负相关,真菌则与凋落物初始C/N和木质素/N显著正相关,群落真菌/细菌与凋落物初始C/N和木质素/N显著正相关。针阔凋落物混合分解通过改变凋落物C/N和木质素/N,提供了对分解者更为有利的微环境。  相似文献   

3.
The productivity of temperate forests is often limited by soil N availability, suggesting that elevated atmospheric N deposition could increase ecosystem C storage. However, the magnitude of this increase is dependent on rates of soil organic matter formation as well as rates of plant production. Nonetheless, we have a limited understanding of the potential for atmospheric N deposition to alter microbial activity in soil, and hence rates of soil organic matter formation. Because high levels of inorganic N suppress lignin oxidation by white rot basidiomycetes and generally enhance cellulose hydrolysis, we hypothesized that atmospheric N deposition would alter microbial decomposition in a manner that was consistent with changes in enzyme activity and shift decomposition from fungi to less efficient bacteria. To test our idea, we experimentally manipulated atmospheric N deposition (0, 30 and 80 kg NO3-N) in three northern temperate forests (black oak/white oak (BOWO), sugar maple/red oak (SMRO), and sugar maple/basswood (SMBW)). After one year, we measured the activity of ligninolytic and cellulolytic soil enzymes, and traced the fate of lignin and cellulose breakdown products (13C-vanillin, catechol and cellobiose).In the BOWO ecosystem, the highest level of N deposition tended to reduce phenol oxidase activity (131±13 versus 104±5 μmol h−1 g−1) and peroxidase activity (210±26 versus 190±21 μmol h−1 g−1) and it reduced 13C-vanillin and 13C-catechol degradation and the incorporation of 13C into fungal phospholipids (p<0.05). Conversely, in the SMRO and SMBW ecosystems, N deposition tended to increase phenol oxidase and peroxidase activities and increased vanillin and catechol degradation and the incorporation of isotope into fungal phospholipids (p<0.05). We observed no effect of experimental N deposition on the degradation of 13C-cellulose, although cellulase activity showed a small and marginally significant increase (p<0.10). The ecosystem-specific response of microbial activity and soil C cycling to experimental N addition indicates that accurate prediction of soil C storage requires a better understanding of the physiological response of microbial communities to atmospheric N deposition.  相似文献   

4.
As saline soils dry, the salt in the remaining solution phase is concentrated and the microbes are subjected to both water and osmotic stress. However, little is known about the interactive effect of matric potential (MP) and osmotic potential (OP) on microbial activity and community structure. We conducted an experiment in which two non-saline soils, a sand and a sandy loam, were pre-incubated at optimal water content (for microbial activity) but different osmotic potentials achieved by adding NaCl. The EC of the saturated paste (ECe) ranged between 1.6 and 11.6 dS m−1 in the sand and between 0.6 and 17.7 dS m−1 in the sandy loam. After the 14-day pre-incubation, the soils were dried to different water contents: 25-35 g kg−1 in the sand and 95-200 g kg−1 in the sandy loam. Water potential (WP, the sum of osmotic + matric potential) ranged from −0.7 to −6.8 MPa in the sand and from −0.1 to −4.4 MPa in the sandy loam. After addition of ground pea straw to increase the concentration of readily available substrate, respiration was measured over 14 days and microbial community composition was assessed by phospholipid fatty acid analysis (PLFA) at the end of the experiment. In both soils, cumulative respiration at a given soil water content (WC) decreased with decreasing osmotic potential, but the effect of decreasing water content differed between the two soils. In the sand, cumulative respiration at the two lowest water contents (WC25 and WC28) was always significantly lower than that at the highest water content (WC35). In the sandy loam, cumulative respiration was significantly lower at the lowest water content (WC95) compared to the highest water content (WC200) only in treatments with added salt. The reduction of cumulative respiration at a given WP was similar in the two soils with a 50% reduction compared to the control (optimal water content, no salt added) at WP −3 MPa. In the sand at WP <−2 MPa, the reduction in fungal fatty acids was greater than that of bacterial fatty acids whereas in the sandy loam, the response of bacteria and fungi to decreasing WP was similar. In both soils, microbial biomass decreased by 35-50% as WP decreased to about −2 MPa but then remained stable with further decreases of WP. Microbial community composition changed with WP in both soils. Our results suggest that there are two strategies by which microbes respond to water potential. A decrease in WP up to −2 MPa kills a proportion of the microbial community, but the remaining microbes adapt and maintain their activity per unit biomass. At lower WP however, the adaptation mechanisms are not sufficient and although the microbes survive, their activity per unit biomass is reduced.  相似文献   

5.
长期氮肥施用对农田黑土NLFA与PLFA特性的影响   总被引:3,自引:0,他引:3  
以不施肥与休闲处理为对照,通过对土壤微生物磷脂脂肪酸(PLFA)、中性磷脂脂肪酸(NLFA)、NLFA/PLFA比值及各菌群特定PLFA比值的测定,研究不同氮肥处理条件下东北黑土微生物群落变化规律.PLFA测定结果表明,氮磷配施能促进土壤微生物生长;氮磷钾配施未表现出促进土壤微生物生长的作用;单施氮肥处理因有效磷等养分过度消耗而抑制真菌生长.不同菌群之间PLFA比值表明,真菌较细菌更能适应养分贫瘠条件,而氮肥与磷肥的施入则能促进细菌生物量增加.不同氮肥处理NLFA含量及个别NLFA/PLFA比值存在较大差异,可用来说明土壤微生物生理状态和土壤养分水平.  相似文献   

6.
Phospholipid fatty acid (PLFA) profiles were measured in soils from 14 sites in eastern China representing typical geographic zones of varying latitude from north (47.4°N) to south (21.4°N). Amounts of soil microbial biomass, measured as total amounts of PLFAs, showed no regular trend with latitude, but were positively correlated with soil organic carbon content, the concentration of humic acid and amorphous iron oxide. Soil microbial community structure showed some biogeographical distribution trends and was separated into three groups in a cluster analysis and principal coordinate analysis of log transformed PLFA concentrations (mol%). Soils in the first group came from northern China with medium mean annual temperature (1.2–15.7 °C) and rainfall (550–1021 mm). Soils in the second group originated from southern China with a relatively higher mean annual temperature (15.7–21.2 °C) and rainfall (1021–1690 mm). Soils clustered in the third group originated from the most southerly region. The northern soils contained relatively more bacteria and Gram-negative PLFAs, while the southern soils had more fungi and pressure indexed PLFAs. These differences in soil microbial community structure were largely explained by soil pH, while other site and soil characteristics were less important.  相似文献   

7.
Most climate change scenarios predict that the variability of weather conditions will increase in coming decades. Hence, the frequency and intensity of freeze-thaw cycles in high-latitude regions are likely to increase, with concomitant effect on soil carbon biogeochemistry and associated microbial processes. To address this issue we sampled riparian soil from a Swedish boreal forest and applied treatments with variations in four factors related to soil freezing (temperature, treatment duration, soil water content and frequency of freeze-thaw cycles), at three levels in a laboratory experiment, using a Central Composite Face-centred (CCF) experimental design. We then measured bacterial (leucine incorporation) and fungal (acetate in ergosterol incorporation) growth, basal respiration, soil microbial phospholipid fatty acid (PLFA) composition, and concentration of dissolved organic carbon (DOC). Fungal growth was higher in soil exposed to freeze-thawing perturbations and freezing temperatures of −6 °C and −12 °C, than under more constant conditions (steady 0 °C). The opposite pattern was found for bacteria, resulting in an increasing fungal-to-bacterial growth ratio following more intensive winter conditions. Soil respiration increased with water content, decreased with treatment duration and appeared to mainly be driven by treatment-induced changes in the DOC concentration. There was a clear shift in the PLFA composition at 0 °C, compared with the two lower temperatures, with PLFA markers associated with fungi as well as a number of unsaturated PLFAs being relatively more common at 0 °C. Shifts in the PLFA pattern were consistent with those expected for phenotypic plasticity of the cell membrane to low temperatures. There were small declines in PLFA concentrations after freeze-thawing and with longer durations. However, the number of freeze-thaw events had no effect on the microbiological variables. The findings suggest that the higher frequency of freeze-thaw events predicted to follow the global warming will likely have a limited impact on soil microorganisms.  相似文献   

8.
Repeated fertilizer applications to cultivated soils may alter the composition and activities of microbial communities in terrestrial agro-ecosystems. In this study, we investigated the effects of different long term fertilization practices (control (CK), three levels of mineral fertilizer (N1P1K1, N2P2K2, and N3P3K3), and organic manure (OM)) on soil environmental variables and microbial communities by using phospholipid fatty acid (PLFA) biomarkers analysis in subtropical China. Study showed that OM treatment led to increases in soil organic carbon (SOC), total nitrogen (TN) and total phosphorus (TP) contents, while the mineral fertilizer treatment led to increases in dissolved organic carbon (DOC) content. Changes in soil microbial communities (eg. bacteria, actinomycetes) were more noticeable in soils subjected to organic manure applications than in the control soils or those treated with mineral fertilizer applications. Fungal PLFA biomarkers responded differently from the other PLFA groups, the numerical values of fungal PLFA biomarkers were similar for all the OM and mineral fertilizer treatments. PCA analysis showed that the relative abundance of most PLFA biomarkers increased in response to OM treatment, and that increased application rates of the mineral fertilizer changed the composition of one small fungal PLFA biomarker group (namely 18:3ω6c and 16:1ω5c). Further, from the range of soil environmental factors that we examined, SOC, TN and TP were the key determinants affecting soil microbial community. Our results suggest that organic manure should be recommended to improve soil microbial activity in subtropical agricultural ecosystems, while increasing mineral fertilizer applications alone will not increase microbial growth in paddy soils.  相似文献   

9.
The influence of individual trees in monocrop forests on soil microbial communities is poorly understood. We measured basal respiration, substrate-induced respiration and phospholipid fatty acids (PLFA), bacterial growth rate with the 3H-thymidine incorporation technique and fungal growth rate as 14C-acetate incorporation into ergosterol to investigate whether slow- and fast-growing 12-year-old Norway spruce (Picea abies) clones have affected differently on their associated soil microbial communities. Understorey vegetation, soil chemical properties and elemental concentrations of needles were also determined. The slow- and fast-growing spruce clones differed in PLFA profiles, understorey vegetation and elemental concentrations in needles suggesting that spruce clones have directly or indirectly affected soil microbes.  相似文献   

10.
Rhizodeposit-carbon provides a major energy source for microbial growth in the rhizosphere of grassland soils. However, little is known about the microbial communities that mediate the rhizosphere carbon dynamics, especially how their activity is influenced by changes in soil management. We combined a 13CO2 pulse-labeling experiment with phospholipid fatty acid (PLFA) analysis in differently managed Belgian grasslands to identify the active rhizodeposit-C assimilating microbial communities in these grasslands and to evaluate their response to management practices. Experimental treatments consisted of three mineral N fertilization levels (0, 225 and 450 kg N ha−1 y−1) and two mowing frequencies (3 and 5 times y−1). Phospholipid fatty acids were extracted from surface (0-5 cm) bulk (BU) and root-adhering (RA) soil samples prior to and 24 h after pulse-labeling and were analyzed by gas chromatography-combustion-isotope ratio mass spectrometry (GC-c-IRMS). Soil habitats significantly differed in microbial community structure (as revealed by multivariate analysis of mol% biomarker PLFAs) as well as in gram-positive bacterial rhizodeposit-C uptake (as revealed by greater 13C-PLFA enrichment following pulse-labeling in RA compared to BU soil in the 450N/5M treatment). Mowing frequency did not significantly alter the relative abundance (mol%) or activity (13C enrichment) of microbial communities. In the non-fertilized treatment, the greatest 13C enrichment was seen in all fungal biomarker PLFAs (C16:1ω5, C18:1ω9, C18:2ω6,9 and C18:3ω3,6,9), which demonstrates a prominent contribution of fungi in the processing of new photosynthate-C in non-fertilized grassland soils. In all treatments, the lowest 13C enrichment was found in gram-positive bacterial and actinomycetes biomarker PLFAs. Fungal biomarker PLFAs had significantly lower 13C enrichment in the fertilized compared to non-fertilized treatments in BU soil (C16:1ω5, C18:1ω9) as well as RA soil (all fungal biomarkers). While these observations clearly indicated a negative effect of N fertilization on fungal assimilation of plant-derived C, the effect of N fertilization on fungal abundance could only be detected for the arbuscular mycorrhizal fungal (AMF) PLFA (C16:1ω5). On the other hand, increases in the relative abundance of gram-positive bacterial PLFAs with N fertilization were found without concomitant increases in 13C enrichment following pulse-labeling. We conclude that in situ13C pulse-labeling of PLFAs is an effective tool to detect functional changes of those microbial communities that are dominantly involved in the immediate processing of new rhizosphere-C.  相似文献   

11.
发酵床养猪是一种新型的养殖技术,可有效缓解养猪的环境污染问题,微生物在其中起关键作用。为明确养猪发酵床发酵过程微生物群落的变化规律,为发酵床的科学管理提供依据,本研究采用磷脂脂肪酸生物标记(phospholipid fatty acids,PLFA)法分析养猪发酵床不同发酵等级垫料的微生物群落结构特征。采用色差法将垫料分为3个发酵程度等级:1级、2级和3级,采集不同发酵等级表层(0~15 cm)和里层(30~45 cm)垫料样本,测定各样本的PLFA。结果表明,共检测到61种PLFA,发酵2级垫料的PLFA种类最多,发酵3级垫料的PLFA种类最少。在各垫料中,PLFA分布量均表现为细菌 > 真菌 > 放线菌。指示细菌、真菌、放线菌、革兰氏阳性细菌(G+)、革兰氏阴性细菌(G-)的PLFA及总PLFA在各发酵等级表层垫料的分布量均显著大于其在里层垫料的分布量,最大值出现在发酵1级表层垫料中。与对照(未发酵垫料)相比,发酵垫料总PLFA含量均显著增加(P<0.05)。发酵3级表层垫料的真菌/细菌值最大,发酵2级表层垫料的G+/G-值最大。多样性分析表明,Shannon指数和Pielou指数最大值出现在发酵2级垫料中,而Simpson指数最大值出现在发酵3级表层垫料中。聚类分析表明,当欧氏距离为233.15时,可将不同发酵等级垫料聚为3个类群,同一发酵级别的垫料聚在相同类群中;主成分分析表明,发酵1级表层和里层垫料单独归一类群,其他发酵等级垫料和对照垫料归另一类群中。综上,不同发酵等级垫料的微生物种群结构不同,发酵1级表层垫料微生物分布量最大,发酵2级垫料的微生物种类最多,相同发酵级别表层和里层垫料微生物群落结构相似。  相似文献   

12.
Microbial colonization of soil-incorporated, 13C-labeled, crimson clover and ryegrass straw residues was followed under western Oregon field conditions from late summer (September) to the following early summer (mid-June) by measuring the 13C content of phospholipid fatty acid (PLFA) extracted from residues recovered from soil. Residue type influenced the rate of appearance of specific PLFA during early decomposition, with branch chain bacterial PLFA (i15:0, a15:0, i16:0) appearing on clover and ryegrass residues in October and November, respectively. By April, additional PLFA (16:1ω5, 16:1ω7, cy17:0, 18:0, 18:1ω9) had appeared on both residues. Between April and June, microbial community structure shifted again with significant increases (cy17:0, 18:0, 18:1ω9), and decreases (18:1ω7+10Me18:0) detected in the quantities of specific PLFA on both residue types. In the case of clover, the PLFA-C was derived primarily from residue C (85-100%), whereas in the case of ryegrass, both residue C (57-66%), and soil C contributed substantially to the PLFA-C.  相似文献   

13.
Restoration of forests poses a major challenge globally,particularly in the tropics,as the forests in these regions are more vulnerable to land-use change.We studied land-use change from natural forest (NF) to degraded forest (DF),and subsequently to either Jatropha curcas plantation (JP) or agroecosystem (AG),in the dry tropics of Uttar Pradesh,India,with respect to its impacts on soil microbial community composition as indicated by phospholipid fatty acid (PLFA) biomarkers and soil organic carbon (SOC) content.The trend of bacterial PLFAs across all land-use types was in the order:NF > JP > DF> AG.In NF,there was dominance of gram-negative bacterial (G-) PLFAs over the corresponding gram-positive bacterial (G+) PLFAs.The levels of G-PLFAs in AG and JP differed significantly from those in DF,whereas those of G+ PLFAs were relatively similar in these three land-use types.Fungal PLFAs,however,followed a different trend:NF > JP > DF =AG.Total PLFAs,fungal/bacterial (F/B) PLFA ratio,and SOC content followed trends similar to that of bacterial PLFAs.Across all land-use types,there were strong positive relationships between SOC content and G-,bacterial,fungal,and total microbial PLFAs and F/B PLFA ratio.Compared with bacterial PLFAs,fungal PLFAs appeared to be more responsive to land-use change.The F/B PLFA ratio,fungal PLFAs,and bacterial PLFAs explained 91%,94%,and 73% of the variability in SOC content,respectively.The higher F/B PLFA ratio in JP favored more soil C storage,leading to faster ecosystem recovery compared to either AG or DF.The F/B PLFA ratio could be used as an early indicator of ecosystem recovery in response to disturbance,particularly in relation to land-use change.  相似文献   

14.
The relationship between microbial diagenesis of Sphagnum peat (SP) and reed-sedge peat (RSP) and the spatial organization of peat bacterial communities was studied. Peats were aerobically incubated at 18-22 °C for 4 months. Changes in molecular composition of peat organic matter were monitored with solid-state 13C NMR, and the respective amount of functional groups was determined by integration of corresponding peaks. No abiotic peat transformation was detected. SP diagenesis caused about a 4% loss of parent materials with a similar yield of ketones, phenols, aromatic, and carbonyl compounds; whereas about 20% of RSP carbohydrates, along with ketones and methoxyl compounds were gradually transformed into carbonyl and aliphatic compounds. SP and RSP substantially varied in bacterial composition. To address spatial community structure, bacterial populations were dissected by a differential elution technique into three fractions based on the degree of their attachment to peat. Community composition was surveyed with T-RFLP (HhaI, MspI, and RsaI). The fragments were further attributed to freely-dispersed (FD), particle-associated (PA), or omnipresent (OMN) bacterial fractions. In both peats, bacterial communities have gradually shifted with the progress of diagenesis. In SP, numbers of exclusively FD or PA bacteria slightly decreased while in RSP their numbers more than doubled after 4-month incubation, and the number of OMN bacteria respectively decreased. The substantially greater changes in the spatial structure of RSP bacterial community compared to SP were consistent with the chemical transformations detected in these peats suggesting the diagenesis-driven divergence of RSP bacterial community into FD and PA sub-communities.  相似文献   

15.
We conducted a laboratory incubation of forest (Scots pine (Pinus sylvestris) or beech (Fagus sylvatica)), grassland (Trifolium repens/Lolium perenne) and arable (organic and conventional) soils at 5 and 25 °C. We aimed to clarify the mechanisms of short-term (2-weeks) nitrogen (N) cycling processes and microbial community composition in relation to dissolved organic carbon (DOC) and N (DON) availability and selected soil properties. N cycling was measured by 15N pool dilution and microbial community composition by denaturing gradient gel electrophoresis (DGGE), phospholipid fatty acid (PLFA) and community level physiological profiles (CLPP). Soil DOC increased in the order of arable<grassland<forest soil while DON and gross N fluxes increased in the order of forest<arable<grassland soil; land use had no affect on respiration rate. Soil DOC was lower, while respiration, DON and gross N fluxes were higher at 25 than 5 °C. Gross N fluxes, respiration and bacterial biomass were all positively correlated with each other. Gross N fluxes were positively correlated with pH and DON, and negatively correlated with organic matter, fungal biomass, DOC and DOC/DON ratio. Respiration rate was positively correlated with bacterial biomass, DON and DOC/DON ratio. Multiple linear modelling indicated that soil pH, organic matter, bacterial biomass, DON and DOC/DON ratio were important in predicting gross N mineralization. Incubation temperature, pH and total-C were important in predicting gross nitrification, while gross N mineralization, gross nitrification and pH were important in predicting gross N immobilization. Permutation multivariate analysis of variance indicated that DGGE, CLPP and PLFA profiles were all significantly (P<0.05) affected by land use and incubation temperature. Multivariate regressions indicated that incubation temperature, pH and organic matter content were important in predicting DGGE, CLPP and PLFA profiles. PLFA and CLPP were also related to DON, DOC, ammonium and nitrate contents. Canonical correlation analysis showed that PLFA and CLPP were related to differences in the rates of gross N mineralization, gross nitrification and soil respiration. Our study indicates that vegetation type and/or management practices which control soil pH and mediate dissolved organic matter availability were important predictors of gross N fluxes and microbial composition in this short-term experiment.  相似文献   

16.
Microbial communities in soil A horizons derive their carbon from several potential sources: organic carbon (C) transported down from overlying litter and organic horizons, root-derived C, or soil organic matter. We took advantage of a multi-year experiment that manipulated the 14C isotope signature of surface leaf litter inputs in a temperate forest at the Oak Ridge Reservation, Tennessee, USA, to quantify the contribution of recent leaf litter C to microbial respiration and biomarkers in the underlying mineral soil. We observed no measurable difference (<∼40‰ given our current analytical methods) in the radiocarbon signatures of microbial phospholipid fatty acids (PLFA) isolated from the top 10 cm of mineral soil in plots that experienced 3 years of litterfall that differed in each year by ∼750‰ between high-14C and low-14C treatments. Assuming any difference in 14C between the high- and low-14C plots would reflect C derived from these manipulated litter additions, we estimate that <∼6% of the microbial C after 4 years was derived from the added 1-4-year-old surface litter. Large contributions of C from litter < 1 year (or >4 years) old (which fell after (or prior to) the manipulation and therefore did not differ between plots) are not supported because the 14C signatures of the PLFA compounds (averaging 200-220‰) is much higher that of the 2004-5 leaf litter (115‰) or pre-2000 litter. A mesocosm experiment further demonstrated that C leached from 14C-enriched surface litter or the O horizon was not a detectable C source in underlying mineral soil microbes during the first eight months after litter addition. Instead a decline in the 14C of PLFA over the mesocosm experiment likely reflected the loss of a pre-existing substrate not associated with added leaf litter. Measured PLFA Δ14C signatures were higher than those measured in bulk mineral soil organic matter in our experiments, but fell within the range of 14C values measured in mineral soil roots. Together, our experiments suggest that root-derived C is the major (>60%) source of C for microbes in these temperate deciduous forest soils.  相似文献   

17.
Forest soils contain about 30% of terrestrial carbon (C) and so knowledge of the influence of forest management on stability of soil C pools is important for understanding the global C cycle. Here we present the changes of soil C pools in the 0-5 cm layer in two second-rotation Pinus radiata (D.Don) plantations which were subjected to three contrasting harvest residue management treatments in New Zealand. These treatments included whole-tree harvest plus forest floor removal (defined as forest floor removal hereafter), whole-tree, and stem-only harvest. Soil samples were collected 5, 10 and 15 years after tree planting at Kinleith Forest (on sandy loam soils) and 4, 12 and 20 years after tree planting at Woodhill Forest (on sandy soils). These soils were then physically divided into light (labile) and heavy (stable) pools based on density fractionation (1.70 g cm−3). At Woodhill, soil C mass in the heavy fraction was significantly greater in the whole-tree and stem-only harvest plots than the forest floor removal plots in all sampling years. At Kinleith, the soil C mass in the heavy fraction was also greater in the stem-only harvest plots than the forest floor removal plots at year 15. The larger stable soil C pools with increased residue return was supported by analyses of the chemical composition and plant biomarkers in the soil organic matter (SOM) heavy fractions using NMR and GC/MS. At Woodhill, alkyl C, cutin-, suberin- and lignin-derived C contents in the SOM heavy fraction were significantly greater in the whole-tree and stem-only harvest plots than in the forest floor removal plots in all sampling years. At Kinleith, alkyl C (year 15), cutin-derived C (year 5 and 15) and lignin-derived C (Year 5 and 10) contents in the SOM heavy fraction were significantly greater in stem-only harvest plots than in plots where the forest floor was removed. The analyses of plant C biomarkers and soil δ13C in the light and heavy fractions of SOM indicate that the increased stable soil C in the heavy fraction with increased residue return might be derived from a greater input of recalcitrant C in the residue substrate.  相似文献   

18.
The extent of degradation of the fungal biomass in forest soil during laboratory incubation was investigated as a measure of ectomycorrhizal (EM) biomass. The method simulates the disappearance of fungal mycelium after root trenching, where the EM fungi, deprived of its energy source (the tree), will start to die off. Incubating a forest humus soil at 25 °C resulted in a decrease in the relative proportion (mol%) of the phospholipid fatty acid 18:2ω6,9 (a fungal marker molecule) within 3-6 months, indicating that fungal biomass was disappearing. Incubation at 5 °C resulted in essentially no change in the amount of 18:2ω6,9. The measurement of ergosterol, another fungal marker molecule, gave similar results. Incubation of different forest soils (pine, spruce and spruce/oak), and assuming that the disappearance of fungal biomass during this period of time was entirely due to EM fungi, resulted in an estimation of EM biomass of between 47 and 84% of the total fungal biomass in these soils. The humus layer had more EM biomass than deeper mineral layers.  相似文献   

19.
While dissolved organic matter (DOM) in soil solution is a small but reactive fraction of soil organic matter, its source and dynamics are unclear. A laboratory incubation experiment was set up with an agricultural topsoil amended with 13C labelled maize straw. The dissolved organic carbon (DOC) concentration in soil solution increased sharply from 25 to 186 mg C L−1 4 h after maize amendment, but rapidly decreased to 42 mg C L−1 and reached control values at and beyond 2 months. About 65% of DOM was straw derived after 4 h, decreasing to 29% after one day and only 1.3% after 240 days. A significant priming effect of the straw on the release of autochthonous DOM was found. The DOM fractionation with DAX-8 resin revealed that 98% of the straw derived DOM was hydrophilic in the initial pulse while this hydrophilic fraction was 20-30% in control samples. This was in line with the specific UV absorbance of the DOM which was significantly lower in the samples amended with maize residues than in the control samples. The δ13C of the respired CO2 matched that of DOC in the first day after amendment but exceeded it in following days. The straw derived C fractions in respired CO2 and in microbial biomass were similar between 57 and 240 days after amendment but were 3-10 fold above those in the DOM. This suggests that the solubilisation of C from the straw is in steady state with the DOM degradation or that part of the straw is directly mineralised without going into solution. This study shows that residue application releases a pulse of hydrophilic DOM that temporarily (<3 days) dominates the soil DOM pool and the degradable C. However, beyond that pulse the majority of DOM is derived from soil organic matter and its isotope signature differs from microbial biomass and respired C, casting doubt that the DOM pool in the soil solution is the major bioaccessible C pool in soil.  相似文献   

20.
With the growing interest in silvicultural techniques that more closely emulate natural disturbance regimes, there is a need to better understand how partial harvesting affects the soil microbial community in stands with varying ecological characteristics, e.g., tree species composition. Four and a half and 5.5 years post-harvest, we used phospholipid fatty acid (PLFA) and substrate-induced respiration (SIR) analyses to compare the microbial biomass and microbial community structure of forest floors from stands dominated by white spruce (Picea glauca; SPRUCE) or by trembling aspen (Populus tremuloides; ASPEN) and from mixed-species (MIXED) stands in northern Alberta, Canada, that had been clearcut, partial-cut with 20% retention, partial-cut with 50% retention or left uncut (controls). PLFA and SIR analyses revealed that ASPEN forest floors supported a larger microbial biomass with a very different community structure than MIXED or SPRUCE forest floors. The microbial community structure of these soils appeared to be strongly affected by the presence of white spruce and the composition of the understory vegetation. There were no effects of timber harvesting detected within or across stand types on any of the variables measured, with the exception of the PLFA 16:1ω5, which was relatively more abundant in the clearcuts and 50% retention treatments than in the uncut controls, perhaps in response to an increased forest floor pH and grass cover in the disturbed areas. The resilience to timber harvesting of the forest floors from these stands may be the result of efforts to minimize soil disturbance during harvesting and to allow vegetation to regenerate naturally. From the perspective of the forest floor microbial community, partial harvesting does not appear to have any benefit over clearcut harvesting at these boreal forest sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号