首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
To quantify the contribution of denitrification and autotrophic and heterotrophic nitrification to N2O production in Andosols with a relatively high organic matter content, we first examined the effect of C2H2 concentrations on N2O production and on changes in mineral N contents. The optimum C2H2 concentration for inhibiting autotrophic nitrification was 10 Pa. Secondly, and Andosol taken from an arable field was incubated for 32 days at 30°C at 60, 80, and 100% water-holding capacity with or without the addition of NH 4 + or NO inf3 sup- (200 mg N kg-1), and subsamples collected every 4–8 days were further incubated for 24 h with or without C2H2 (10 Pa). At 60 and 80% water-holding capacity with NH 4 + added, 87–92% of N2O produced (200–250 g N2O–N kg-1) was derived from autotrophic nitrification. In contrast, at 100% water-holding capacity with or without added NO inf3 sup- , enormous amounts of N2O (29–90 mg N2O–N kg-1) were produced rapidly, mostly by denitrification (96–98% of total production). Thirdly, to examine N2O production by heterotrophic nitrification, the Andosol was amended with peptone or NH 4 + (both 1000 mg N kg-1)+citric acid (20 g C kg-1) and with or without dicyandiamide (200 mg N kg-1). Treatment with citric acid alone or with citric acid+dicyandiamide suppressed N2O production. In contrast, peptone increased N2O production (5.66 mg N2O–N kg-1) mainly by denitrification (80% of total production). However, dicyandiamide reduced N2O production to 1.1 mg N2O–N kg-1. These results indicate that autotrophic nitrification was the main process for N2O production except at 100% water-holding capacity where denitrification became dominant and that heterotrophic nitrification had a lesser importance in the soils examine.Dedicated to Professor J. C. G. Ottow on the occasion of his 60th birthday  相似文献   

2.
Summary The effect of soil water content [60%–100% water-holding capacity (WHC)] on N2O production during autotrophic nitrification and denitrification in a loam soil was studied in a laboratory experiment by selectively inhibiting nitrification with a low C2H2 concentration (2.1 Pa). Nitrifiers usually produced more N2O than denitrifiers. During an initial experimental period of 0–6 days the nitrifiers produced more N2O than the denitrifiers by a factor ranging from 1.4 to 16.5, depending on the water content and length of incubation. The highest N2O production rate by nitrifiers was observed at 90% WHC, when the soil had become partly anaerobic, as indicated by the high denitrification rate. At 100% WHC there were large gaseous losses from denitrification, while nitrification losses were smaller except for the first period of measurement, when there was still some O2 remaining in the soil. The use of 10 kPa C2H2 to inhibit reduction of N2O to N2 stimulated the denitrification process during prolonged incubation over several days; thus the method is unsuitable for long-term studies.  相似文献   

3.
土壤是产生N2O的最主要来源之一。硝化和反硝化反应是产生N2O的主要机理,由于硝化和反硝化微生物同时存在于土壤中,因而硝化和反硝化作用能同时产生N2O。N2O的来源可通过使用选择性抑制剂,杀菌剂以及加入的标记底物确定。通过对生成N2O反应的每一步分析,主要从抑制反应发生的催化酶和细菌着手,总结了测量区分硝化、反硝化和DNRA反应对N2O产生的贡献方法。并对15N标记底物法,乙炔抑制法和环境因子抑制法作了详细介绍。  相似文献   

4.
According to Broadbent and Clark (3), there are numerous data indicating that denitrification leads to the emission of N2O together with N2, whereby loss of N is developed from soils. Nitrous oxide is also released from soils to the atmosphere during the nitrification of ammonium and ammonium-producing fertilizers under aerobic conditions (1). Relatively few attempts have been made to directly measure N2O evolution under field conditions (6, 7, 10–12), although a number of laboratory studies have been reported. These studies are essential for determining the N balance between additions and losses of soil N.  相似文献   

5.
Soils are the major source of the greenhouse gas nitrous oxide (N2O) to our atmosphere. A thorough understanding of terrestrial N2O production is therefore essential. N2O can be produced by nitrifiers, denitrifiers, and by nitrifiers paradoxically denitrifying. The latter pathway, though well-known in pure culture, has only recently been demonstrated in soils. Moreover, nitrifier denitrification appeared to be much less important than classical nitrate-driven denitrification. Here we studied a poor sandy soil, and show that when moisture conditions are sub-optimal for denitrification, nitrifier denitrification can be a major contributor to N2O emission from this soil. We conclude that the relative importance of classical and nitrifier denitrification in N2O emitted from soil is a function of the soil moisture content, and likely of other environmental conditions as well. Accordingly, we suggest that nitrifier denitrification should be routinely considered as a major source of N2O from soil.  相似文献   

6.
Coated CaC2 is a newly developed product which can supply nitrification-inhibiting quantities of C2H2 (1–10 Pa) to the soil, throughout a cropping season. This method of applying C2H2 to the soil maintains C2H2 in the soil continuously for several months. It is not know whether these low C2H2 concentrations alter soil microbial processes. A field study was initiated to determine the effect of supplying C2H2 to a clay soil, using coated CaC2, on soil respiration, denitrification, nitrification, and C2H2 consumption. The C2H2 consumption rate increased with length of soil exposure to C2H2 (r 2=0.59). The rates of CO2 production (r 2=0.88) and denitrification (r 2=0.86) were both highly correlated with the C2H2 consumption rates. The nitrifier potential decreased to a minimum of 21% of the control after 3 months of C2H2 treatment. After this time, nitrifier activity increased to 41% of the control after 11 months of treatment. This increase was due to increased C2H2 consumption in the soil. After 3 months of continuous application of C2H2 to the soil, the C2H2 concentrations were generally below that necessary to inhibit nitrification. No adaptation to the C2H2 by nitrifiers was found. Repeating these measurements 1 year later showed that soils previously exposed to C2H2 retained their enhanced C2H2 oxidation capacity and the capacity to use C2H2 to increase denitrification. Nitrification potentials remained about 50% lower in soils exposed to C2H2 a year earlier compared to soils not previously exposed to C2H2.  相似文献   

7.
Abstract

Nitrous oxide (N2O) emissions from agricultural soils, mainly caused by chemical nitrogen (N) fertilizer inputs, are major sources of N2O in Chinese terrestrial ecosystems. Thus, attempts to reduce N2O emissions from agricultural soils by optimizing N applications are receiving increasing attention. Further, organic fertilizers are being increasingly used in China to improve crop production/quality and prevent or reduce soil degradation. However, organic and chemical fertilizers are often both applied in spring in northeast China, which promotes N2O emissions and may be sub-optimal. Therefore, we hypothesized that reducing applications of chemical fertilizer N and applying manure in autumn could be an effective strategy for mitigating N2O emissions from cropped soils in the region. To test this hypothesis, we established a field trial to investigate the effects of different combinations of chemical N fertilizer applications and animal manure in autumn on both N2O emissions and maize (Zea mays L.) grain yields in northeast China. The treatments, expressed as NxMy (where Nx and My denote the total amounts of chemical fertilizer nitrogen (N) and manure (M) applied in kg N ha?1 and m3 M ha?1, respectively), were N0M0, N230M0, N270M12, N230M15, N320M18 in 2010 and N0M0, N230M0, N200M12, N200M15, N280M18 in 2011. Measurements of the resulting N2O emissions showed that pulse fluxes occurred after each chemical N fertilizer application, but not after manure inputs in autumn or during soil-thawing periods in the following spring. Emission factors for the chemical fertilizer N were on average 1.07% (1.00?1.10%) and 1.14% (0.49?1.83%) in 2010 and 2011, respectively. Furthermore, by comparing the nine pairs of fertilization treatments, the relative increase in cumulative nitrous oxide-nitrogen (N2O-N) emissions was found to be proportional to the relative increase in urea application, but independent of the amount of autumn-applied manure. These findings imply that N2O emissions from fertilized agricultural soils in northeast China could be mitigated by supplying manure in the autumn and reducing the total amount of chemical N fertilizer applied in the following year. Although no significant difference in maize grain yield was found among the fertilization treatments, the grain yield-scaled N2O emissions for the treatments with a lower chemical N application (e.g., N230M15 and N200M15 treatments) were significantly lower than those with a higher chemical N application (e.g., N320M18 and N280M18 treatments). Meanwhile, under the condition of the same application amount of chemical fertilizer N, the grain yield-scaled N2O emission decreased with the increase of manure application rate. Thus, the results support the hypothesis that combining reductions in chemical N fertilizer and applying manure in autumn could be an effective strategy for mitigating N2O emissions from N-fertilized soils in northeast China.  相似文献   

8.
Summary A sandy soil amended with different forms and amounts of fertilizer nitrogen (urea, ammonium sulphate and potassium nitrate) was investigated in model experiments for N2O emission, which may be evolved during both oxidation of ammonia to nitrate and anaerobic respiration of nitrate. Since C2H2 inhibits both nitrification and the reduction of N2O to N2 during denitrification, the amount of N2O evolved in the presence and absence of C2H2 represents the nitrogen released through nitrification and denitrification.Results show that amounts of N2O-N lost from soils incubated anaerobically with 0.1% C2H2 and treated with potassium nitrate (23.1 µg N-NO 3 /g dry soil) exceeded those from soils incubated in the presence of 20% oxygen and treated with even larger amounts of nitrogen as urea and ammonium sulphate. This indicates that nitrogen losses by denitrification may potentially be higher than those occurring through nitrification.  相似文献   

9.
Summary The effect of increasing oxygen concentrations (0, 5, 10 and 20 Vol% O2) on total denitrification and N20 release was studied in model experiments using a neutral pH loamy soil relatively rich in easily decomposable organic matter and supplied with nitrate (300 g nitrate N/g dry soil). The sterilized soil was inoculated with three different denitrifying bacteria (Bacillus licheniformis,Aeromonas denitrificans andAzospirillum lipoferum) and incubated (80% WHC, 30°C). The gas volume was analysed for O2, CO2, N2O, NO and N2 by gas chromatography and the soil investigated for changes in ammonium, nitrite, nitrate, pH, total N and C as well as water-extractable C. WithB. licheniformis andAeromonas denitrificans total denitrification increased remarkably with increasing pO2 as the result of intensified mineralization.Azospirillum lipoferum, however, showed the highest activity at 5 vol% O2. WithB. licheniformis N2O was released only in anaerobic conditions and at 5 Vol% O2 (maximum) or 10 Vol% 02, but not at 20 Vol%, whereasAeromonas denitrificans produced N2O only in the presence of He gas (maximum) or at 5 Vol% O2. In contrast to these bacteria, N2O production withAzospirillum lipoferum was restricted to 10 Vol% O2 (maximum) and to 20 Vol% 02, with some traces at 5 vol% O2. With a certain set of conditions, total denitrification and N2O formation seem to be governed by the mineralization rate of the organisms in question. The increased demand for electron acceptors by a high turnover rate rather than the presence of anaerobic conditions seems to have determined the rate of denitrification.  相似文献   

10.
Nitrous oxide (N2O) is a greenhouse gas and agricultural soils are major sources of atmospheric N2O. Its emissions from soils make up the largest part in the global N2O budget. Research was carried out at the experimental fields of the Leibniz-Institute of Agricultural Engineering Potsdam-Bornim (ATB). Different types (mineral and wood ash) and levels (0, 75 and 150 kg N ha−1) of fertilization were applied to annual (rape, rye, triticale and hemp) and perennial (poplar and willow) plants every year. N2O flux measurements were performed 4 times a week by means of gas flux chambers and an automated gas chromatograph between 2003 and 2005. Soil samples were also taken close to the corresponding measuring rings. Soil nitrate and ammonium were measured in soil extracts.N2O emissions had a peak after N fertilization in spring, after plant harvest in summer and during the freezing–thawing periods in winter. Both fertilization and plant types significantly altered N2O emission. The maximum N2O emission rate detected was 1081 μg N2O m−2 h−1 in 2004. The mean annual N2O emissions from the annual plants were more than twofold greater than those of perennial plants (4.3 kg ha−1 vs. 1.9 kg ha−1). During January, N2O fluxes considerably increased in all treatments due to freezing–thawing cycles. Fertilization together with annual cropping doubled the N2O emissions compared to perennial crops indicating that N use efficiency was greater for perennial plants. Fertilizer-derived N2O fluxes constituted about 32% (willow) to 67% (rape/rye) of total soil N2O flux. Concurrent measurements of soil water content, NO3 and NH4 support the conclusion that nitrification is main source of N2O loss from the study soils. The mean soil NO3-N values of soils during the study for fertilized soils were 1.6 and 0.9 mg NO3-N kg−1 for 150 and 75 kg N ha−1 fertilization, respectively. This value reduced to 0.5 mg NO3-N kg−1 for non-fertilized soils.  相似文献   

11.
12.
Few studies address nutrient cycling during the transition period (e.g., 1–4 years following conversion) from standard to some form of conservation tillage. This study compares the influence of minimum versus standard tillage on changes in soil nitrogen (N) stabilization, nitrous oxide (N2O) emissions, short-term N cycling, and crop N use efficiency 1 year after tillage conversion in conventional (i.e., synthetic fertilizer-N only), low-input (i.e., alternating annual synthetic fertilizer- and cover crop-N), and organic (i.e., manure- and cover crop-N) irrigated, maize–tomato systems in California. To understand the mechanisms governing N cycling in these systems, we traced 15N-labeled fertilizer/cover crop into the maize grain, whole soil, and three soil fractions: macroaggregates (>250 μm), microaggregates (53–250 μm) and silt-and-clay (<53 μm). We found a cropping system effect on soil Nnew (i.e., N derived from 15N-fertilizer or -15N-cover crop), with 173 kg Nnew ha−1 in the conventional system compared to 71.6 and 69.2 kg Nnew ha−1 in the low-input and organic systems, respectively. In the conventional system, more Nnew was found in the microaggregate and silt-and-clay fractions, whereas, the Nnew of the organic and low-input systems resided mainly in the macroaggregates. Even though no effect of tillage was found on soil aggregation, the minimum tillage systems showed greater soil fraction-Nnew than the standard tillage systems, suggesting greater potential for N stabilization under minimum tillage. Grain-Nnew was also higher in the minimum versus standard tillage systems. Nevertheless, minimum tillage led to the greatest N2O emissions (39.5 g N2O–N ha−1 day−1) from the conventional cropping system, where N turnover was already the fastest among the cropping systems. In contrast, minimum tillage combined with the low-input system (which received the least N ha−1) produced intermediate N2O emissions, soil N stabilization, and crop N use efficiency. Although total soil N did not change after 1 year of conversion from standard to minimum tillage, our use of stable isotopes permitted the early detection of interactive effects between tillage regimes and cropping systems that determine the trade-offs among N stabilization, N2O emissions, and N availability.  相似文献   

13.
土壤是产生N2O的最主要来源之一。硝化和反硝化反应是产生N2O的主要机理,由于硝化和反硝化微生物同时存在于土壤中,因而硝化和反硝化作用能同时产生N2O。N2O的来源可通过使用选择性抑制剂,杀菌剂以及加入的标记底物确定。通过对生成N2O反应的每一步分析,主要从抑制反应发生的催化酶和细菌着手,总结了测量区分硝化、反硝化和DNRA反应对N2O产生的贡献方法。并对15N标记底物法,乙炔抑制法和环境因子抑制法作了详细介绍。  相似文献   

14.
Summary Field studies to determine the effect of different rates of fertilization on emission of nitrous oxide (N2O) from soil fertilized with anhydrous ammonia showed that the fertilizer-induced emission of N2O-N in 116 days increased from 1.22 to 4.09 kg ha–1 as the rate of anhydrous ammonia N application was increased from 75 to 450 kg ha–1. When expressed as a percentage of the N applied, the fertilizer-induced emission of N2O-N in 116 days decreased from 1.6% to 0.9% as the rate of fertilizer N application was increased from 75 to 450 kg N ha–1. The data obtained showed that a 100% increase in the rate of application of anhydrous ammonia led to about a 60% increase in the fertilizer-induced emission of N2O.Field studies to determine the effect of depth of fertilizer injection on emission of N2O from soil fertilized with anhydrous ammonia showed that the emission of N2O-N in 156 days induced by injection of 112 kg anhydrous ammonia N ha–1 at a depth of 30 cm was 107% and 21 % greater than those induced by injection of the same amount of N at depths of 10 cm and 20 cm, respectively. The effect of depth of application of anhydrous ammonia on emission of N2O was less when this fertilizer was applied at a rate of 225 kg N ha–1.  相似文献   

15.
Agricultural soils are a primary source of anthropogenic trace gas emissions, and the subtropics contribute greatly, particularly since 51% of world soils are in these climate zones. A field experiment was carried out in an ephemeral wetland in central Zimbabwe in order to determine the effect of cattle manure (1.36% N) and mineral N fertilizer (ammonium nitrate, 34.5% N) application on N2O fluxes from soil. Combined applications of 0 kg N fertilizer + 0 Mg cattle manure ha?1 (control), 100 kg N fertilizer + 15 Mg manure ha?1 and 200 kg N fertilizer + 30 Mg manure ha?1 constituted the three treatments arranged in a randomized complete block design with four replications. Tomato and rape crops were grown in rotation over a period of two seasons. Emissions of N2O were sampled using the static chamber technique. Increasing N fertilizer and manure application rates from low to high rates increased the N2O fluxes by 37–106%. When low and high rates were applied to the tomato and rape crops, 0.51%, 0.40%, and 0.93%, 0.64% of applied N was lost as N2O, respectively. This implies that rape production has a greater N2O emitting potential than the production of tomatoes in wetlands.  相似文献   

16.
A simple method for characterizing soil microbial community composition relevant to N2O production and consumption was proposed. Ten-fold series soil dilution was prepared. Nitrate or N2O was provided as the sole electron acceptor. Nitrous oxide concentration in the headspace gas across the serially diluted soil suspensions was measured against controls. Results showed that the patterns of N2O production and consumption across the soil suspensions provided useful information on the microbial community composition relevant to N2O production and consumption in these soils. An independent method, to that proposed here, was also employed to characterize denitrifier community compositions of the same soils. Data indicated that information on the soil microbial community composition characterized by both methods were compatible or mutually supporting and apparently related to in situ N2O emissions. Soil samples from manure (applied with animal manure plus chemical fertilizer) plots had higher denitrification rates than the samples from normal fertilizer (applied with chemical fertilizer only) plots. It was concluded that functional characteristics of soil microbial communities relevant to N2O production and consumption could be characterized at ecological levels and may potentially affect N2O emissions.  相似文献   

17.
Summary Containers filled with soil mixed with potassium nitrate highly enriched in 15N were planted with corn (Zea mays L.) and kept in a phytotron under controlled conditions for 79 days. Soil water content was normally maintained at exactly 60% water-holding capacity (–33 kPa), but it was increased several times to 85% (–5 kPa) for short periods to favour denitrification. The soil headspace was sealed from the phytotron atmosphere and aerated by a continuous stream of air. Nitrous oxide emission was measured by estimating the N2O concentration differences in the air entering and leaving the containers. Emission of N2 was estimated by mass spectroscopy from changes in the N2 composition in the temporarily enclosed soil headspace. Both methods were carefully checked for accuracy by different tests. At specific times during the experiment the distribution of 15N between plants and soil was determined and a 15N balance established. Emission of N gases peaked at times of increased water content and reached maxima of 149 and 142 g N pot–1 day–1 for N2O and N2, respectively. While N losses of 5% ± 2% were indicated by the 15N balance, only 1.1% ± 0.3% loss from 2.7 g applied N was estimated from the N2O and N2 measurements after 79 days. Possible reasons for these differences are discussed.  相似文献   

18.
典型菜地土壤剖面N2O、CH4与CO2分布特征研究   总被引:2,自引:0,他引:2  
为探究菜地土壤剖面N2O、CH4与CO2时空分布特征,利用地下气体原位采集系统与气相色谱法,周年动态监测3种典型菜地,即休闲裸地、轮作地Ⅰ(芹菜?空心菜?小白菜?苋菜)以及轮作地Ⅱ(菜心?芹菜?空心菜?大青菜)7 cm、15 cm、30 cm与50 cm土层N2O、CH4与CO2浓度变化。结果表明,0~50 cm土层范围内,N2O、CH4与CO2 3种气体浓度周年变异性较大,变幅分别为0.63~1 657.0μL(N2O)?L?1、0.8~72.5μL(CH4)?L?1和0.41~36.6 m L(CO2)?L?1。轮作地Ⅰ与轮作地Ⅱ的N2O平均浓度随土壤深度增加而增加,休闲裸地则呈现先增加(0~30 cm)后降低(30~50 cm)的变化趋势。两种轮作菜地4个土层N2O平均浓度均显著高于休闲裸地,二者氮肥施用量不同并未造成相同土层间N2O平均浓度的显著差异。3种菜地CH4与CO2平均浓度均呈现50 cm30 cm15 cm7 cm的梯度特征。轮作地Ⅰ与轮作地Ⅱ0~15 cm土层CH4平均浓度均大于休闲裸地,而在15~50 cm土层则分别大于和小于休闲裸地。CO2浓度呈现明显的季节性变化,除轮作地Ⅰ50 cm土层外,两种轮作菜地其他土层CO2平均浓度均小于休闲裸地对应土层。可见,蔬菜地高氮肥施用、多频次耕作等复杂管理使得N2O、CH4与CO2表现出较大的时空变异特征,其中氮肥施用对N2O的影响大于CH4与CO2,CH4受施肥与耕作的影响均较小,CO2显著受土壤温度与耕作措施的影响,在此基础上需进一步探究N2O、CH4与CO2的其他影响因素。  相似文献   

19.
Nitrous oxide (N2O) emissions from the soil surface of five different forest types in Thailand were measured using the closed chamber method. Soil samples were also taken to study the N2O production pathways. The monthly average emissions (±SD, n?=?12) of N2O from dry evergreen forest (DEF), hill evergreen forest (HEF), moist evergreen forest (MEF), mixed deciduous forest (MDF) and acacia reforestation (ARF) were 13.0?±?8.2, 5.7?±?7.1, 1.2?±?12.1, 7.3?±?8.5 and 16.7?±?9.2?µg N m?2 h?1, respectively. Large seasonal variations in fluxes were observed. Emission was relatively higher during the wet season than during the dry season, indicating that soil moisture and denitrification were probably the main controlling factors. Net N2O uptake was also observed occasionally. Laboratory studies were conducted to further investigate the influence of moisture and the N2O production pathways. Production rates at 30% water holding capacity (WHC) were 3.9?±?0.2, 0.5?±?0.06 and 0.87?±?0.01?ng N2O-nitrogen (N) g-dw?1day?1 in DEF, HEF and MEF respectively. At 60% WHC, N2O production rates in DEF, HEF and MEF soils increased by factors of 68, 9 and 502, respectively. Denitrification was found to be the main N2O production pathway in these soils except in MEF.  相似文献   

20.
The effects of soil properties and cropland age on atmospheric nitrous oxide (N2O) emissions following the conversion of grassland to cropland in temperate grassland ecosystems are uncertain. In this study, N2O emissions were compared among grassland and cropland soils in the agro-pastoral ecotone of Inner Mongolia over three growing seasons. Four adjacent sites with different land-use histories were selected, including grassland and croplands cultivated for 5, 10, and 50 years after conversion. N2O flux measurements were obtained using a closed-chamber method and were performed continuously during vegetation periods. After the conversion of grassland to cropland, N2O emission initially decreased and thereafter increased in the study sites. The cumulative N2O emissions of the cropland soils 5 and 10 years in age were 10–50% less than those of the grassland, and the N2O emissions from the cropland soil 50 years in age were 10–30% greater than the grassland. When the seasonal emissions were correlated against single soil parameter, the key soil parameter that affected N2O emissions over the entire growing season was the soil moisture content. When the interactions among soil parameters were considered, the amount of N2O emissions could be quantitatively described by a linear combination of two soil variables, the soil ammonium nitrogen (NH4+-N) and moisture concentrations. This study demonstrates how the time of land use conversion from grassland to cropland can positively or negatively affect N2O emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号