首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Historic alterations in land use from forest to grassland and cropland to forest were used to determine impacts on carbon (C) stocks and distribution and soil organic matter (SOM) characteristics on adjacent Cambisols in Eastern Germany. We investigated a continuous Norway spruce forest (F-F), a former cropland afforested in 1930 (C-F), and a grassland deforested in 1953 (F-G). For C and N stocks, we sampled the A and B horizons of nine soil pits per site. Additionally, we separated SOM fractions of A and B horizons by physical means from one central soil pit per pedon. To unravel differences of SOM composition, we analyzed SOM fractions by 13C-CPMAS NMR spectroscopy and radiocarbon analysis. For the mineral soils, differences in total C stocks between the sites were low (F-F = 8.3 kg m−2; C-F = 7.3 kg m−2; F-G = 8.2 kg m−2). Larger total C stocks (+25%) were found under continuous forest compared with grassland, due to the C stored within the organic horizons. Due to a faster turnover, the contents of free particulate organic matter (POM) were lower under grassland. High alkyl C/O/N-alkyl C ratios of free POM fractions indicated higher decomposition stages under forest (1.16) in relation to former cropland (0.48) and grassland (0.33). Historic management, such as burning of tree residues, was still identifiable in the subsoils by the composition and 14C activity of occluded POM fractions. The high potential of longer lasting C sequestration within fractions of slower turnover was indicated by the larger amounts of claybound C per square meter found under continuous forest in contrast to grassland.  相似文献   

2.
The location of soil organic matter (SOM) within the soil matrix is considered a major factor determining its turnover, but quantitative information about the effects of land cover and land use on the distribution of SOM at the soil aggregate level is rare. We analyzed the effect of land cover/land use (spruce forest, grassland, wheat and maize) on the distribution of free particulate organic matter (POM) with a density <1.6 g cm−3 (free POM<1.6), occluded particulate organic matter with densities <1.6 g cm−3 (occluded POM<1.6) and 1.6-2.0 g cm−3 (occluded POM1.6-2.0) and mineral-associated SOM (>2.0 g cm−3) in size classes of slaking-resistant aggregates (53-250, 250-1000, 1000-2000, >2000 μm) and in the sieve fraction <53 μm from silty soils by applying a combined aggregate size and density fractionation procedure. We also determined the turnover time of soil organic carbon (SOC) fractions at the aggregate level in the soil of the maize site using the 13C/12C isotope ratio. SOM contents were higher in the grassland soil aggregates than in those of the arable soils mainly because of greater contents of mineral-associated SOM. The contribution of occluded POM to total SOC in the A horizon aggregates was greater in the spruce soil (23-44%) than in the grassland (11%) and arable soils (19%). The mass and carbon content of both the free and occluded POM fractions were greater in the forest soil than in the grassland and arable soils. In all soils, the C/N ratios of soil fractions within each aggregate size class decreased in the following order: free POM<1.6>occluded POM<1.6-2.0>mineral-associated SOM. The mean age of SOC associated with the <53 μm mineral fraction of water-stable aggregates in the Ap horizon of the maize site varied between 63 and 69 yr in aggregates >250 μm, 76 yr in the 53-250 μm aggregate class, and 102 yr in the sieve fraction <53 μm. The mean age of SOC in the occluded POM increased with decreasing aggregate size from 20 to 30 yr in aggregates >1000 μm to 66 yr in aggregates <53 μm. Free POM had the most rapid rates of C-turnover, with residence times ranging from 10 yr in the fraction >2000 μm to 42 yr in the fraction 53-250 μm. Results indicated that SOM in slaking-resistant aggregates was not a homogeneous pool, but consisted of size/density fractions exhibiting different composition and stability. The properties of these fractions were influenced by the aggregate size. Land cover/land use were important factors controlling the amount and composition of SOM fractions at the aggregate level.  相似文献   

3.
We examined whether grass species and soil nitrogen (N) availability could enhance Carbon (C) and N turnover during root litter decay in grassland. Three species with increasing competitiveness (Festuca ovina, Dactylis glomerata and Lolium perenne) were grown at two N fertiliser levels in an undisturbed grassland soil, in which soil organic fractions derived for the last 9 years from Lolium root litter which was 13C-depleted. During the subsequent experimental year, the C turnover was calculated using the respective δ13C values of the old and new C in the root phytomass, in two Particulate Organic Matter (POM) fractions above 200 μm and in the lightest part of the aggregated soil fraction between 50 and 200 μm. Soil N availability was monitored during the regrowth periods with ion exchange resins (IER). The C decay rates of each particle size fraction were calculated with a simple mechanistic model of C dynamics. The N mineralisation immobilisation turnover (MIT) was characterised by dilution of 15N-labelled fertiliser in the N harvestThe C:N ratio and the residence time of C in the fractions decreased with particle size. The presence of a grass rhizosphere increased the decay rate of old C. Accumulation of new C in particle size fractions increased with species competitiveness and with N supply. Species competitiveness increased C turnover in the aggregated fraction, as a result of greater accumulation of new C and faster decay of old C. Fertiliser N increased N turnover and C mineralisation in the SOM. Species competitiveness decreased soil -N exchanged with the IER and increased dissolved organic C (DOC) content. The nature of the current rhizosphere is thus an important factor driving C and N transformations of the old root litter, in relation with grass species strategy. Plant competitiveness may stimulate the C and N turnover in the more evolved SOM fractions in a similar way to the mineral N supply.  相似文献   

4.
The possible effects of excreta of the Great Cormorant Phalacrocorax carbo on decomposition processes and dynamics of nutrients (N, P, Ca, K, Mg) and organic chemical components (lignin, total carbohydrates) were investigated in a temperate evergreen coniferous forest near Lake Biwa in central Japan. Two-year decomposition processes of needles and twigs of Chamaecyparis obtusa were examined at two sites, control site never colonized by the cormorants (site C) and colonizing site (site 2). Mass loss was faster in needles than in twigs. Mass loss of these litter types was faster at site C than at site 2, which was ascribed to the decreased mass loss rate of acid-insoluble ‘lignin’ at site 2. Net immobilization of N, P, and Ca occurred in needles and twigs at site 2; whereas at site C, mass of these elements decreased without immobilization during decomposition. Duration of immobilization phase of these nutrients at site 2 was estimated to be 1.6 to 2.5 years in needles and 19.6 to 23.5 years in twigs. Immobilization potential (maximum amount of exogenous nutrient immobilized per gram initial material) was similar between needles and twigs for N and Ca but was about 10 times higher in twigs than in needles for P. δ13C in needles was relatively constant during the first year and then increased during the second year, whereas δ13C in twigs was variable during decomposition. Acid-insoluble fraction was depleted in 13C compared to whole needles (1.6-2.1‰) and twigs (2.0-2.5‰). δ15N of needles and twigs and their acid-insoluble fractions approached to δ15N of excreta during decomposition at site 2. This result demonstrated the immobilization of excreta-derived N into litter due to the formation of acid-insoluble lignin-like substances complexed with excreta-derived N. No immobilization occurred in K and Mg and their mass decreased during decomposition at both sites. Based on these results of nutrient immobilization during decomposition and on the data of litter fall and excreta amount at site 2, we tentatively calculated stand-level immobilization potential of litter fall and its contribution to total amount of N and P deposited as excreta. Thus, the potential maximum amount immobilized into litter fall (needles and twigs) was estimated to account for 5-7% of total excreta-derived N and P.  相似文献   

5.
Bt (Bacillus thuringiensis) corn is reported to produce lignin-rich residues, compared to non-Bt (NBt) corn, suggesting it is more resistant to decomposition. As the Bt gene is expressed selectively in stem and leaf tissue, it could affect lignin distribution in corn, which naturally has greater lignin content in roots than in stems and leaves. Our objective was to evaluate the effects of corn plant components, the Bt gene and elevated-lignin inputs on decomposition. Roots, stems and leaves from Bt corn and NBt corn isolines enriched with 13C and 15N were finely ground and mixed separately with soil, then incubated at 20 °C for 36 weeks. The effect of elevated lignin on decomposition was tested by adding a commercial lignin source (indulin lignin) to half of the samples. In addition to weekly CO2 analysis and regular measurement of N mineralization, the degree of lignin degradation was evaluated at 1 and 36 weeks from the acid to aldehyde ratio (Ad/Al) of vanillyl and syringyl lignin-derived phenols. The CO2 production and N mineralization was lower in root-amended soils than stem- and leaf-amended soils. The Bt genetic modification increased CO2 production from stem-amended soils (P < 0.05) and decreased N mineralization in root-amended soils. The 13C and 15N results also showed more residue-C and -N retained in soils mixed with NBt stem residues. After 36 weeks leaf- and stem-amended soils with indulin lignin had a lower Ad/Al ratio and were less degraded than soils without exogenous lignin. In conclusion, plant lignin and nitrogen contents were good predictors of CO2 production and N mineralization potential. Corn roots decomposed more slowly than aboveground components emphasizing the importance of recalcitrant root residues in sustaining the organic matter content of soil.  相似文献   

6.
Forest soils contain a variable amount of organic N roughly repartitioned among particles of different size, microbial biomass and associated with mineral compounds. All pools are alimented by annual litter fall as main input of organic N to the forest floor. Litter N is further subject to mineralization/stabilization recognized as the crucial process for the turnover of litter N. Although it is well documented that different soil types have different soil N stocks, it is presently unknown how different soil types affect the turnover of recent litter N. Here, we compared the potential mineralization of the total soil organic N with that of recent litter-released N in three beech forests varying in their soil properties. Highly 15N-labelled beech litter was applied to stands located at Aubure, Ebrach, Collelongo, which differ in humus type, soil type and soil chemistry. After 4-5 years of litter decomposition, the upper 3 cm of the organo-mineral A horizon was sampled and the net N mineralization was measured over 112 days under controlled conditions. The origin of mineralized N (litter N versus soil organic N) was calculated using 15N labeling. In addition, soils were fractionated according to their particle size (>2000 μm, 200-2000 μm, 50-200 μm, <50 μm) and particulate organic matter (POM) was separated from the mineral fraction in size classes, except the <50 μm fraction. Between 41 and 69% of soil organic N was recovered as POM. Litter-released 15N was mainly to be found in the coarse POM fractions >200 μm. On a soil mass basis, N mineralization was two-fold higher at Aubure and Collelongo than at Ebrach, but, on a soil N basis, N mineralization was the lowest at Collelongo and the highest at Ebrach. On a soil N (or 15N) basis, mineralization of litter 15N was two to four-fold higher than mineralization of the average soil N. Furthermore, the δ15N of the mineral N produced was closer to that of POM than to that of the mineral-bound fraction (<50 μm). Highest rates of 15N mineralization happened in the soil with the lowest N content, and we found a negative relationship between accumulations of N in the upper A horizon and the mineralization of 15N from the litter. Our results show that mineral N is preferentially mineralized from POM in the upper organo-mineral soil irrespective of the soil chemistry and that the turnover rate of litter N is faster in soils with a low N content.  相似文献   

7.
Agroforestry can increase the sequestration of carbon (C) in soils of tropical agroecosystems through increased litter and tree pruning inputs. Decomposition of these inputs is a key process in the formation of soil organic matter and in nutrient cycling. Our objectives were to study decay of tree pruning mulch and effects on soil C and N in a shaded coffee agroecosystem in Hawaii. Chipped tree pruning residues (mulch) were added to coffee plots shaded with the Leucaena hybrid KX2 over three years. We measured mulch decomposition and nitrogen loss over one year and changes in soil carbon and nitrogen (N) over two years. Mass loss of mulch was 80% over one year and followed first-order decay dynamics. There was significant loss from all major biochemical components. Net N loss from the mulch was positive throughout the entire period. The C:N and lignin:N ratios of the mulch declined significantly over the decomposition period. Mulch additions significantly increased soil C and N in the top 20 cm by 10.8 and 2.12 Mg ha−1, respectively. In the no-mulch treatment, there was no significant change in soil C or N concentration, but a decline in soil bulk density led to a significant decline in total soil C. Leucaena mulch can provide an important source of organic C and N to coffee agroecosystems and can help sequester C lost as plant biomass during shade tree management.  相似文献   

8.
In the grassland/forest ecotone of North America, many areas are experiencing afforestation and subsequent shifts in ecosystem carbon (C) stocks. Ecosystem scientists commonly employ a suite of techniques to examine how such land use changes can impact soil organic matter (SOM) forms and dynamics. This study employs four such techniques to compare SOM in grassland (Bromus inermis) and recently forested (∼35 year, Ulmus spp. and Quercus spp.) sites with similar soil types and long-term histories in Kansas, USA. The work examines C and nitrogen (N) parameters in labile and recalcitrant SOM fractions isolated via size and density fractionation, acid hydrolysis, and long-term incubations. Size fractionation highlighted differences between grassland and forested areas. N concentration of forested soils’ 63-212 μm fraction was higher than corresponding grassland soils’ values (3.0±0.3 vs. 2.3±0.3 mg gfraction−1, P<0.05), and N concentration of grassland soils’ 212-2000 μm fraction was higher than forested soils (3.0±0.4 vs. 2.3±0.2 mg gfraction−1, P<0.05). Similar trends were observed for these same fractions for C concentration; forested soils exhibited 1.3 times the C concentration in the 63-212 μm fraction compared to this fraction in grassland soils. Fractions separated via density separation and acid hydrolysis exhibited no differences in [C], [N], δ15N, or δ13C when compared across land use types. Plant litterfall from forested sites possessed significantly greater N concentrations than that from grassland sites (12.41±0.10 vs. 11.62±0.19 mg glitter−1). Long-term incubations revealed no differences in C or N dynamics between grassland and forested soils. δ13C and δ15N values of the smallest size and the heavier density fractions, likely representing older and more recalcitrant SOM, were enriched compared to younger and more labile SOM fractions; δ15N of forested soils’ 212-2000 μm fraction were higher than corresponding grassland soils (1.7±0.3‰ vs. 0.5±0.4‰). δ13C values of acid hydrolysis fractions likely reflect preferential losses of 13C-depleted compounds during hydrolysis. Though C and N data from size fractions were most effective at exhibiting differences between grassland and forested soils, no technique conclusively indicates consistent changes in SOM dynamics with forest growth on these soils. The study also highlights some of the challenges associated with describing SOM parameters, particularly δ13C, in SOM fractions isolated by acid hydrolysis.  相似文献   

9.
The impact of rising atmospheric carbon dioxide (CO2) may be mitigated, in part, by enhanced rates of net primary production and greater C storage in plant biomass and soil organic matter (SOM). However, C sequestration in forest soils may be offset by other environmental changes such as increasing tropospheric ozone (O3) or vary based on species-specific growth responses to elevated CO2. To understand how projected increases in atmospheric CO2 and O3 alter SOM formation, we used physical fractionation to characterize soil C and N at the Rhinelander Free Air CO2-O3 Enrichment (FACE) experiment. Tracer amounts of 15NH4+ were applied to the forest floor of Populus tremuloides, P. tremuloides-Betula papyrifera and P. tremuloides-Acer saccharum communities exposed to factorial CO2 and O3 treatments. The 15N tracer and strongly depleted 13C-CO2 were traced into SOM fractions over four years. Over time, C and N increased in coarse particulate organic matter (cPOM) and decreased in mineral-associated organic matter (MAOM) under elevated CO2 relative to ambient CO2. As main effects, neither CO2 nor O3 significantly altered 15N recovery in SOM. Elevated CO2 significantly increased new C in all SOM fractions, and significantly decreased old C in fine POM (fPOM) and MAOM over the duration of our study. Overall, our observations indicate that elevated CO2 has altered SOM cycling at this site to favor C and N accumulation in less stable pools, with more rapid turnover. Elevated O3 had the opposite effect, significantly reducing cPOM N by 15% and significantly increasing the C:N ratio by 7%. Our results demonstrate that CO2 can enhance SOM turnover, potentially limiting long-term C sequestration in terrestrial ecosystems; plant community composition is an important determinant of the magnitude of this response.  相似文献   

10.
Increasing evidence suggests that accretion of microbial turnover products is an important driver for isotopic carbon (C) and nitrogen (N) enrichment of soil organic matter (SOM). However, the exact contribution of arbuscular mycorrhizal fungi (AMF) to soil isotopic patterns remains unknown. In this study, we compared 13C and 15N patterns of glomalin-related soil protein (GRSP), which includes a main fraction derived from AMF, litter, and bulk soil in four temperate rainforests. GRSP was an abundant C and N pool in these forest soils, showing significant 13C and 15N enrichment relative to litter and bulk soil. Hence, cumulative accumulation of recalcitrant AMF turnover products in the soil profile likely contributes to 13C and 15N enrichment in forest soils. Further research on the relationship between GRSP and AMF should clarify the exact extent of this process.  相似文献   

11.
Sustainable agriculture requires the formation of new humus from the crops. We utilized 13C and 15N signatures of soil organic matter to assess how rapidly wheat/maize cropping contributed to the humus formation in coarse-textured savanna soils of the South African Highveld. Composite samples were taken from the top 20 cm of soils (Plinthustalfs) cropped for lengths of time varying from 0 to 98 years, after conversion from native grassland savanna (C4). We performed natural 13C and 15N abundance measurements on bulk and particle-size fractions. The bulk soil δ13C values steadily decreased from −14.6 in (C4 dominated) grassland to −16.5‰ after 90 years of arable cropping. This δ13C shift was attributable to increasing replacement of savanna-derived C by wheat crop (C3) C which dominated over maize (C4) inputs. After calculating the annual C input from the crop yields and the output from literature data, by using a stepwise C replacement model, we were able to correct the soil δ13C data for the irregular maize inputs for a period of about one century. Within 90 years of cropping 41-89% of the remaining soil organic matter was crop-derived in the three studied agroecosystems. The surface soil C stocks after 90 years of the wheat/maize crop rotation could accurately be described with the Rothamsted Carbon Model, but modelled C inputs to the soil were very low. The coarse sand fraction reflected temporal fluctuations in 13C of the last C3 or C4 cropping and the silt fraction evidenced selective erosion loss of old savanna-derived C. Bulk soil 15N did not change with increasing cropping length. Decreasing δ15N values caused by fertilizer N inputs with prolonged arable cropping were only detected for the coarse sand fraction. This indicated that the present N fertilization was not retained in stable soil C pool. Clearly, conventional cropping practices on the South African highlands neither contribute to the preservation of old savanna C and N, nor the effective humus reformation by the crops.  相似文献   

12.
N-rich (C:N=27) and N-poor (C:N=130) wheat straw, labelled with 14C and 15N, was incubated for 2 yr in two major ecosystems of the upper elevation belt of cultivation in the high Andes: the moist Paramo (precipitation=1329 mm, altitude=3400 m asl, Andes of Merida, Venezuela) and the dry Puna (precipitation=370 mm, altitude=3800 m asl, Central Altiplano, Bolivia). The experiment was installed in young (2 yr) and old (7 yr) fallow plots. The following soil analyses were performed at nine sampling occasions: soil moisture, total-14C and -15N, and Microbial Biomass (MB)-14C and -15N. The measured data were fitted by the MOMOS-6 model (a process based model, with five compartments: labile and stable plant material, MB, and labile (HL) and stable humus (HS)) coupled with the SAHEL model (soil moisture prediction) using daily measured and/or predicted meteorological data. The aim was to understand how (1) the climatic conditions, (2) the quality of plant material, (3) the fallow age and (4) the soil properties affect the cycling of C and N within the soil organic matter system.The fallow age (2 and 7 yr) did not affect the measured data or the model predictions, indicating that in these systems the decomposition potential is not affected by fallow length. During the short initial active decomposition phase, the labile plant material was quickly exhausted, enabling a build up of MB and of HL. During the low activity phase, that covered 4/5 of the time of exposure, the MB size decreased slowly and the HL pool was progressively exhausted as it was reused by the MB as substrate. The HL compartment was directly or indirectly the major source for the inorganic 15N production. If the C:N ratio of the added plant material increased, the model predicted (1) a reduction of the decomposition rates of the plant material (essentially the stable plant material) and (2) an increased mortality of the MB which increased the production of HL (microbial cadavers and metabolites). Thus the essential effect of the slower decomposition due to the N-poor plant material was a higher accumulation of C and N in the HL and its slower recycling by the MB during the low activity phase. The labelling experiment allows to understand the higher soil native organic matter content in Paramo soils compared to Puna. The large sequestration of organic matter generally observed in the Paramo soils can be explained by two abiotic factors: the unfavourable soil microstructure and the accumulation of free aluminium linked to the climatic and acid soil conditions, inhibiting the microbial activity physically and chemically.  相似文献   

13.
The aims of this study were to determine the degree of lignin degradation and to investigate changes in the chemical composition of the organic matter in the forest floor in an N fertilized Norway spruce forest soil. Needle litter and mor humus were collected from the field experiment at Skogaby in southern Sweden (56°33′N; 13°13′E). The spruce stand had been fertilized for 11 years with 100 kg N ha−1 yr−1 as (NH4)2SO4. The degree of lignin degradation was determined with alkaline CuO oxidation followed by HPLC analysis. The chemical composition of the organic matter was characterized by CPMAS 13C NMR. Tannin was specifically analyzed using dipolar dephasing CPMAS 13C NMR and the N distribution was studied by CPMAS 15N NMR.The C-to-N ratios in the fertilized Oi and Oe layers were significantly lower than in the unfertilized layers (24 compared to 34 and 23 compared to 27, respectively). Neither the sum of the CuO oxidation products (Vanillyls+Syringyls+Cinnamyls expressed as VSC) nor the acid-to-aldehyde ratio ((Ac/Al)V) showed any significant treatment effects. The content of aromatic C (including phenolic C) was significantly lower in the unfertilized than in the fertilized Oi layer (18 versus 21%). In the unfertilized soil, VSC was positively correlated (r=+0.63, p<0.05) with the C-to-N ratio, whereas the phenolic C content was negatively correlated (r=−0.61, p<0.05). The tannin index showed a tendency of increasing from Oi to Oe layers in both treatments. Most of the organic N was found as amide-N, whereas no heterocyclic N was detected. We have not been able to show any major C structural changes due to N fertilization. We suggest that the significantly higher content of aromatic and phenolic C in the fertilized Oi layer is due to an initial stimulation of the microbial community.  相似文献   

14.
Lignin transformation and decomposition products are generally considered a major source of stable soil organic matter (SOM). Nevertheless this process remains poorly understood in part because lignin is a heterogeneous biopolymer composed of several types of phenol monomers, which potentially display specific and contrasting decomposition kinetics in soils. Here, we compared the specific in situ turnover kinetics of individual lignin monomers in a Paris-basin loamy soil through natural 13C labeling of SOM generated in a series of 1-9-year chronosequences of maize monoculture (C4, δ13C −12‰) replacing wheat (C3, −27‰). Lignin monomers were released by CuO oxidation, quantified by gas chromatography (GC)/flame ionization detection (FID) and their 13C content was determined by GC coupled via a combustion interface to isotope ratio mass spectrometry (GC/C-IRMS). We calculated the proportion of C4-derived OC in lignin monomer pools by applying the isotopic mass balance equation to each lignin monomer.Individual C4-derived phenols displayed contrasting accumulation rates in soils over time, confirming the monomer-specific nature of their transformation kinetics. In proportion to total lignin phenols in soils, syringyl (S) and cinnamyl (C) phenols from maize accumulated faster than their vanillyl (V) counterparts. Consequently, the turnover kinetics of lignin-derived V-moieties may be slower than those of S and C ones. Incorporation of maize-derived carbon was faster in the aldehyde than in the acid pool for V-type units, while the opposite was observed for S-units. These in situ trends for phenol monomers and V-, S- and C-moieties were remarkably similar to the trends described in the literature with laboratory incubation or litterbag studies.None of the observed kinetics had a linear shape. Using only the extreme points of the chronosequence to calculate the kinetic parameters would result, for all the lignin monomers, in underestimating the turnover kinetics at the beginning of the kinetics and overestimating it for longer times. This observation underlines the importance of comprehensive 13C time-sequence labelling experiments such as provided at the Closeaux site, to accurately compute the kinetic parameters of SOM for the 1st years after the vegetation change.  相似文献   

15.
Earthworms are important processors of soil organic matter (SOM) and nutrient turnover in terrestrial ecosystems. In agroecosystems, they are often seen as beneficial organisms to crop growth and are actively promoted by farmers and extension agents, yet their contribution to agroecosystem services is uncertain and depends largely on management. The Quesungual slash-and-mulch agroforestry system (QSMAS) of western Honduras has been proposed as a viable alternative to traditional slash-and-burn (SB) practices and has been shown to increase earthworm populations, yet the effect of earthworms on soil fertility and SOM in QSMAS is poorly understood. This study examined the role of Pontoscolex corethrurus in QSMAS by comparing their influence on aggregate-associated SOM and fertilizer dynamics with their effects under SB and secondary forest in a replicated field trial. Both the fertilized QSMAS and SB treatments had plots receiving additions of inorganic 15N and P, as well as plots with no inorganic N additions. Earthworm populations were manipulated in field microcosms at the beginning of the rainy season within each management treatment via additions of P. corethrurus or complete removal of existing earthworm populations. Microcosms were destructively sampled at harvest of Zea mays and soils were wet-sieved (using 53, 250 and 2000 μm mesh sizes) to isolate different aggregate size fractions, which were analyzed for total C, N and 15N. The effects of management system were smaller than expected, likely due to disturbance associated with the microcosm installation. Contrary to our hypothesis that earthworms would stabilize organic matter in soil aggregates, P. corethrurus decreased total soil C by 3% in the surface layer (0-15 cm), predominantly through a decrease in the C concentration of macroaggregates (>250 μm) and a corresponding depletion of C in coarse particulate organic matter occluded within macroaggregates. Earthworms also decreased bulk density by over 4%, but had no effect on aggregate size distribution. Within the two fertilized treatments, the QSMAS appeared to retain slightly more fertilizer derived N in smaller aggregate fractions (<250 μm) than did SB, while earthworms greatly reduced the recovery of fertilizer N (34% decrease) in both systems. Although management system did not appear to influence the impact of P. corethrurus on SOM or nutrient dynamics, we suggest the lack of differences may be due to artificially low inputs of fresh residue C to microcosms within all management treatments. Our findings highlight the potential for P. corethrurus to have deleterious impacts on soil C and fertilizer N dynamics, and emphasize the need to fully consider the activities of soil fauna when evaluating agroecosystem management options.  相似文献   

16.
Decomposing needles from a Norway spruce forest in southern Sweden were studied for 559 days under laboratory conditions. Falling needles were collected in control (Co) plots and plots that had received 100 kg N ha−1 yr−1 as (NH4)2SO4 for 9 years under field conditions. One of the aims was to determine whether the previously documented low decomposition rate of the N fertilized (NS) needles could be explained by a lower degradation degree of lignin. The lignin content was studied using the alkaline CuO oxidation method, the Klason lignin method and CPMAS 13C NMR spectroscopy. The amounts of cellulose and hemicellulose were also determined.The fertilized needle litters initially decomposed faster than the unfertilized, but later this reaction reversed, so that at the end the mass loss was 45% initial C in the control and 35% initial C in NS. Klason lignin decreased with time in both treatments and overall, the change of Klason lignin mirrored the litter mass loss. No major difference as regards the decomposition of hemicellulose occurred between the treatments, whereas significantly lower concentrations of cellulose were found in NS needles throughout the incubation. The CuO derived compounds (VSC) were somewhat lower in NS needles throughout the decomposition time. Initially, VSC increased slightly in both treatments, which contradicts the Klason lignin data. There was a weak positive relationship (p>0.05) between VSC and Klason lignin. Both vanillyls compounds (V) and cinnamyl compounds (Ci) increased slightly during decomposition, whereas syringyl compounds (S) vanished entirely. The lignin degradation degree, i.e. the acid-to-aldehyde ratio of the vanillyl compounds expressed as (Ac/Al)v, showed no significant effect of treatment. The 13C NMR analyses of the combined samples showed increased content of aromatic C with increasing decomposition time. The carbohydrate content (O-alkyl C) was lower in the fertilized needle litter throughout the incubation time. The alkyl C content tended to increase with decomposition time and N fertilization. The alkyl C/O-alkyl C ratios increased in both treatments during the incubation. The NMR results were not tested statistically.In conclusion, no major difference concerning lignin degradation could be found between the unfertilized and N fertilized needle litter. Thus, the study contradicts the hypothesis that higher amounts of N reduce lignin degradation. The reduced biological activity is probably due to direct N effects on the microorganisms and their decomposing ability.  相似文献   

17.
Elevated atmospheric carbon dioxide (CO2) levels generally stimulate carbon (C) uptake by plants, but the fate of this additional C largely remains unknown. This uncertainty is due in part to the difficulty in detecting small changes in soil carbon pools. We conducted a series of long-term (170-330 days) laboratory incubation experiments to examine changes in soil organic matter pool sizes and turnover rates in soil collected from an open-top chamber (OTC) elevated CO2 study in Colorado shortgrass steppe. We measured concentration and isotopic composition of respired CO2 and applied a two-pool exponential decay model to estimate pool sizes and turnover rates of active and slow C pools. The active and slow C pools of surface soils (5-10 cm depth) were increased by elevated CO2, but turnover rates of these pools were not consistently altered. These findings indicate a potential for C accumulation in near-surface soil C pools under elevated CO2. Stable isotopes provided evidence that elevated CO2 did not alter the decomposition rate of new C inputs. Temporal variations in measured δ13C of respired CO2 during incubation probably resulted mainly from the decomposition of changing mixtures of fresh residue and older organic matter. Lignin decomposition may have contributed to declining δ13C values late in the experiments. Isotopic dynamics during decomposition should be taken into account when interpreting δ13C measurements of soil respiration. Our study provides new understanding of soil C dynamics under elevated CO2 through the use of stable C isotope measurements during microbial organic matter mineralization.  相似文献   

18.
Microbial biomass, β-glucosidase and β-glucosaminidase activities, and availability, storage, and age of soil organic C were investigated after 26 years of conversion from sugarcane (Saccharum officinarum) to forest (Eucaliptus robusta or Leucaena leucocephala), pasture (mixture of tropical grasses), and to vegetable cropping (agriculture) in a vertisol in Puerto Rico. Soil organic C (SOC) at 0–100 cm was similar under Leucaena (22.8 kg C/m2), Eucalyptus (18.6 kg C/m2), and pasture (17.2 kg C/m2), which were higher than under agriculture (13.0 kg C/m2). Soil organic N (SON) at 0–100 cm was similar under the land uses evaluated which ranged from 1.70 (under agriculture) to 2.28 kg N/m2 (under Leucaena forest). Microbial biomass C (MBC) and N (MBN) of the 0–15-cm soil layer could be ranked as: pasture > Leucaena = Eucalyptus > agriculture. The percentages of SOC and SON present as MBC and MBN, respectively, were nearly 1% in pasture and less than 0.50% in forest under Leucaena or Eucalyptus and agricultural soil. The activity of β-glucosidase of the 0–15-cm soil layer could be ranked as: Leucaena = Eucalyptus > pasture > agriculture; while β-glucosaminidase activity was ranked as: Eucalyptus > Leucaena = pasture > agriculture. The soil δ 13C changed from 1996 to 2006 in forest under Eucalyptus (18.7‰ to 21.2‰), but not under Leucaena (20.7‰ to 20.8‰). The soil under Leucaena preserved a greater proportion of old C compared to the forest under Eucalyptus; the former had an increased soil mineralizable C from the current vegetation inputs. The soil under agriculture had the lowest enzyme activities associated with C cycling, lowest percentage of SOC as MBC, highest percentage of SOC present as mineralizable C, and highest percentage of MBC present as mineralizable C compared to the other land uses.  相似文献   

19.
The influence of exogenous organic inputs on soil microbial biomass dynamics and crop root biomass was studied through two annual cycles in rice-barley rotation in a tropical dryland agroecosystem. The treatments involved addition of equivalent amount of N (80 kg N ha−1) through chemical fertilizer and three organic inputs at the beginning of each annual cycle: Sesbania shoot (high-quality resource, C:N 16, lignin:N 3.2, polyphenol+lignin:N 4.2), wheat straw (low-quality resource, C:N 82, lignin:N 34.8, polyphenol+lignin:N 36.8) and Sesbania+wheat straw (high-and low-quality resources combined), besides control. The decomposition rates of various inputs and crop roots were determined in field conditions by mass loss method. Sesbania (decay constant, k=0.028) decomposed much faster than wheat straw (k=0.0025); decomposition rate of Sesbania+wheat straw was twice as fast compared to wheat straw. On average, soil microbial biomass levels were: rice period, Sesbania?Sesbania+wheat straw>wheat straw?fertilizer; barley period, Sesbania+wheat straw>Sesbania?wheat straw?fertilizer; summer fallow, Sesbania+wheat straw>Sesbania>wheat straw?fertilizer. Soil microbial biomass increased through rice and barley crop periods to summer fallow; however, in Sesbania shoot application a strong peak was obtained during rice crop period. In both crops soil microbial biomass C and N decreased distinctly from seedling to grain-forming stages, and then increased to the maximum at crop maturity. Crop roots, however, showed reverse trend through the cropping period, suggesting strong competition between microbial biomass and crop roots for available nutrients. It is concluded that both resource quality and crop roots had distinct effect on soil microbial biomass and combined application of Sesbania shoot and wheat straw was most effective in sustained build up of microbial biomass through the annual cycle.  相似文献   

20.
On sites where C4-plants have replaced C3-plants, changes in soil δ13C allow the turnover of C3- and C4-derived C to be separated. Studies of decadal scale turnover of soil C following conversion to C4-plants generally lack δ13C values for previous C4-residue inputs and assume that estimates of C4-derived soil C to be based on a fixed δ13C value. Further assumptions are that changes in the initial (time-zero) soil δ13C values are insignificant following conversion to C4-plants. We tested these assumptions by measuring: 1) the δ13C of annual samples of silage maize biomass (C4-plant) and winter wheat grains (C3-plant) grown during 1988 to 2006, and 2) the δ13C of soil kept under bare fallow during 1956 to 1983. The δ13C of plants was related to climate variables, and the impact of maize δ13C was based on estimates of maize-derived soil C using different approaches to establish the δ13C in maize inputs. The δ13C of both maize and wheat decreased with time, but the rate of change and annual variations were considerably larger for wheat than for maize. Maize as well as wheat δ13C was best related to year (probably reflecting a decrease in atmospheric δ13C) and the water balance during the active growth period. Using the smallest (−12.44‰) and the largest (−11.26‰) δ13C measured during 1988 and 2006, estimates of maize-derived C in soil after 18 years ranged from 13.2% to 14.2% of the soil total C. Despite a loss of 31% of the soil C pool under bare fallow, the increase in soil δ13C was significant only at P < 0.10. We conclude that annual variations in maize δ13C values and changes in the δ13C of the soil C fraction derived from the pre-conversion C3-vegetation have only little impact on estimates of maize-derived soil C that cover a few decades. For estimates covering several decades to centuries, the subtle but consistent changes in plant and soil δ13C need to be accounted for. The variability in δ13C in wheat grains suggest that the use of any fixed δ13C value for C3-residues in estimates of C turnover in soils on which C4-plants have been replaced by C3-plants can be associated with considerable uncertainty.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号