首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soil microbial communities were examined in a chronosequence of four different land-use treatments at the Konza Prairie Biological Station, Kansas. The time series comprised a conventionally tilled cropland (CTC) developed on former prairie soils, two restored grasslands that were initiated on former agricultural soils in 1998 (RG98) and 1978 (RG78), and an annually burned native tallgrass prairie (BNP), all on similar soil types. In addition, an unburned native tallgrass prairie (UNP) and another grassland restored in 2000 (RG00) on a different soil type were studied to examine the effect of long-term fire exclusion vs. annual burning in native prairie and the influence of soil type on soil microbial communities in restored grasslands. Both 16S rRNA gene clone libraries and phospholipid fatty acid analyses indicated that the structure and composition of bacterial communities in the CTC soil were significantly different from those in prairie soils. Within the time series, soil physicochemical characteristics changed monotonically. However, changes in the microbial communities were not monotonic, and a transitional bacterial community formed during restoration that differed from communities in either the highly disturbed cropland or the undisturbed original prairie. The microbial communities of RG98 and RG00 grasslands were also significantly different even though they were restored at approximately the same time and were managed similarly; a result attributable to the differences in soil type and associated soil chemistry such as pH and Ca. Burning and seasonal effects on soil microbial communities were small. Similarly, changing plot size from 300 m2 to 150 m2 in area caused small differences in the estimates of microbial community structure. In conclusion, microbial community structure and biochemical properties of soil from the tallgrass prairie were strongly impacted by cultivation, and the microbial community was not fully restored even after 30 years.  相似文献   

2.
This study investigates microbial communities in soil from sites under different land use in Kenya. We sampled natural forest, forest plantations, agricultural fields of agroforestry farms, agricultural fields with traditional farming and eroded soil on the slopes of Mount Elgon, Kenya. We hypothesised that microbial decomposition capacity, biomass and diversity (1) decreases with intensified cultivation; and (2) can be restored by soil and land management in agroforestry. Functional capacity of soil microbial communities was estimated by degradation of 31 substrates on Biolog EcoPlates™. Microbial community composition and biomass were characterised by phospholipid fatty acid (PLFA) and microbial C and N analyses. All 31 substrates were metabolised in all studied soil types, i.e. functional diversity did not differ. However, both the substrate utilisation rates and the microbial biomass decreased with intensification of land use, and the biomass was positively correlated with organic matter content. Multivariate analysis of PLFA and Biolog EcoPlate™ data showed clear differences between land uses, also indicated by different relative abundance of PLFA markers for certain microorganism groups. In conclusion, our results show that vegetation and land use control the substrate utilisation capacity and microbial community composition and that functional capacity of depleted soils can be restored by active soil management, e.g. forest plantation. However, although 20–30 years of agroforestry farming practises did result in improved soil microbiological and chemical conditions of agricultural soil as compared to traditional agricultural fields, the change was not statistically significant.  相似文献   

3.
Phospholipid ester-linked fatty acid (PLFA) profiles were used to evaluate soil microbial community composition for 9 land use types in two coastal valleys in California. These included irrigated and non-irrigated agricultural sites, non-native annual grasslands and relict, never-tilled or old field perennial grasslands. All 42 sites were on loams or sandy loams of similar soil taxa derived from granitic and alluvial material. We hypothesized that land use history and its associated management inputs and practices may produce a unique soil environment, for which microbes with specific environmental requirements may be selected and supported. We investigated the relationship between soil physical and chemical characteristics, management factors, and vegetation type with microbial community composition. Higher values of total soil C, N, and microbial biomass (total PLFA) and lower values of soil pH occurred in the grassland than cultivated soils. The correspondence analysis (CA) of the PLFA profiles and the canonical correspondence analysis (CCA) of PLFA profiles, soil characteristics, and site and management factors showed distinct groupings for land use types. A given land use type could thus be identified by soil microbial community composition as well as similar soil characteristics and management factors. Differences in soil microbial community composition were highly associated with total PLFA, a measure of soil microbial biomass, suggesting that labile soil organic matter affects microbial composition. Management inputs, such as fertilizer, herbicide, and irrigation, also were associated with the distinctive microbial community composition of the different cultivated land use types.  相似文献   

4.
5.
Soil microbial communities mediate the decomposition of soil organic matter (SOM). The amount of carbon (C) that is respired leaves the soil as CO2 (soil respiration) and causes one of the greatest fluxes in the global carbon cycle. How soil microbial communities will respond to global warming, however, is not well understood. To elucidate the effect of warming on the microbial community we analyzed soil from the soil warming experiment Achenkirch, Austria. Soil of a mature spruce forest was warmed by 4 °C during snow-free seasons since 2004. Repeated soil sampling from control and warmed plots took place from 2008 until 2010. We monitored microbial biomass C and nitrogen (N). Microbial community composition was assessed by phospholipid fatty acid analysis (PLFA) and by quantitative real time polymerase chain reaction (qPCR) of ribosomal RNA genes. Microbial metabolic activity was estimated by soil respiration to biomass ratios and RNA to DNA ratios. Soil warming did not affect microbial biomass, nor did warming affect the abundances of most microbial groups. Warming significantly enhanced microbial metabolic activity in terms of soil respiration per amount of microbial biomass C. Microbial stress biomarkers were elevated in warmed plots. In summary, the 4 °C increase in soil temperature during the snow-free season had no influence on microbial community composition and biomass but strongly increased microbial metabolic activity and hence reduced carbon use efficiency.  相似文献   

6.
7.
Most climate change scenarios predict that the variability of weather conditions will increase in coming decades. Hence, the frequency and intensity of freeze-thaw cycles in high-latitude regions are likely to increase, with concomitant effect on soil carbon biogeochemistry and associated microbial processes. To address this issue we sampled riparian soil from a Swedish boreal forest and applied treatments with variations in four factors related to soil freezing (temperature, treatment duration, soil water content and frequency of freeze-thaw cycles), at three levels in a laboratory experiment, using a Central Composite Face-centred (CCF) experimental design. We then measured bacterial (leucine incorporation) and fungal (acetate in ergosterol incorporation) growth, basal respiration, soil microbial phospholipid fatty acid (PLFA) composition, and concentration of dissolved organic carbon (DOC). Fungal growth was higher in soil exposed to freeze-thawing perturbations and freezing temperatures of −6 °C and −12 °C, than under more constant conditions (steady 0 °C). The opposite pattern was found for bacteria, resulting in an increasing fungal-to-bacterial growth ratio following more intensive winter conditions. Soil respiration increased with water content, decreased with treatment duration and appeared to mainly be driven by treatment-induced changes in the DOC concentration. There was a clear shift in the PLFA composition at 0 °C, compared with the two lower temperatures, with PLFA markers associated with fungi as well as a number of unsaturated PLFAs being relatively more common at 0 °C. Shifts in the PLFA pattern were consistent with those expected for phenotypic plasticity of the cell membrane to low temperatures. There were small declines in PLFA concentrations after freeze-thawing and with longer durations. However, the number of freeze-thaw events had no effect on the microbiological variables. The findings suggest that the higher frequency of freeze-thaw events predicted to follow the global warming will likely have a limited impact on soil microorganisms.  相似文献   

8.
Background, aim, and scope  Forest plantations, widely grown for wood production, involve the selective promotion of single-tree species or replacement of natural species by exotic tree species. Slash pine (Pinus elliottii) has been chosen for reforestation of infertile sandy soils in southeast Queensland, Australia. These exotic pine plantations minimize soil and water losses and are important scientific study sites. The soil environment of these plantations, though devoid of sufficient nutrients, organic carbon and other factors, harbors innumerable bacteria that may play a crucial role in maintaining soil quality and ecosystem functions. These soil microorganisms also have the potential for use as sensitive biological indicators to reflect environmental changes. It is therefore essential to understand the interrelationships among bacterial communities and their environment by assessing their structural and functional diversity and their responses to disturbances. The main aim of our investigation was to determine the diversity of bacterial communities in forest litters and soil during the forest leaf litter decomposition using culture-dependent and culture-independent techniques. Materials and methods  A 25-cm (diameter) × 40-cm core sample was collected and fractionated into three subsamples designated E1 (L leaf litter layer), E2 (F leaf litter layer), and E5 (0–10 cm soil layer). Both culture-dependent and culture-independent methods were applied in this study. In the culture-independent study, a strategy of whole-community DNA extraction, polymerase chain reaction (PCR) amplification followed by cloning and 16S rDNA sequence analysis was used; for culture-dependent study, the strategy included sample plating and bacteria isolating, DNA extraction, PCR amplification, and 16S rDNA sequence analysis. The diversity similarities between two bacterial communities and two methods are quantified using Jensen–Shannon divergence. Results  From culture-dependent study, 336 colonies in total were isolated and grouped from the three subsamples, and the 16S rRNA sequence analysis from a representative isolate from each morphogroup (21 isolates) indicated that they belonged to the phyla Actinobacteria, Firmicutes, and Proteobacteria. Culture-independent assessment based on 16S rRNA gene library comprising 194 clones revealed that members of the phylum Actinobacteria were absent in the culture-independent studies. Clones in libraries from E1 consisted exclusively of members of the Firmicutes. The majority of clones from E2 were related to Firmicutes (79%) and Proteobacteria (21%). Clones derived from E5 were mostly affiliated with Acidobacterium (42%), followed by unclassified bacteria (27%), Verrucomicrobiales (12%), Proteobacteria (11%), and Planctomycetes (8%). Discussion  This study showed that bacterial culturabilities in different fractions of leaf litters were similar, and both of them were higher than the bacterial culturability in the soil. Unculturable bacterial diversity in the soil, however, was much higher than the leaf litter bacterial diversity. The bacterial diversity on the top layer of leaf litters was slightly less than that on the bottom layer of leaf litters. This might indicate that forest soils are a more complex environment than leaf litters are and also that they might inhabit more unculturable microorganisms in the forest soils, which would need to be further investigated. The leaf litter layer samples also demonstrate the significant difference between the bacterial community diversity discovered by these two methods in this study. The information provided by assessing the different fractions of leaf litters and forest soil has improved our understanding of the bacterial community distributions within the forest soil and the above-leaf litters in an exotic pine plantation of subtropical Australia. Conclusions  This study represents the first attempt to examine the bacterial community in the different fractions of forest leaf litters and soil in subtropical Australia. The data from this study show that the 16S rDNA clone libraries provided more comprehensive phylogenetic diversity in the soil and leaf litter samples than the culture collections provided, and both the culture-dependent and culture-independent studies revealed that the bacterial diversity present in the leaf litters was very different to that present in the soil. The comparative analysis of bacterial communities in different fractions of leaf litters and soil samples has also provided important baseline information about the bacterial diversity and composition in the exotic pine forest plantations. Recommendations and perspectives  The experimental data provided important information on the bacterial diversity in forest leaf litter and soil samples, though additional surveys and comparisons at different locations would be needed to further characterize. In addition, combined methods that can provide different parts of information on bacterial diversity are encouraged to be used in bacterial community study. The established libraries of diverse 16S rRNA gene fragments from slash pine leaf litters and forest soil can be used to construct specific DNA primers and probes to target bacterial groups of interest. It may then be possible to study the ecology of these bacterial communities and the role of specific bacterial groups that contribute to the many interesting properties of these environments.  相似文献   

9.
Here, we examine soil-borne microbial biogeography as a function of the features that define an American Viticultural Area (AVA), a geographically delimited American wine grape-growing region, defined for its distinguishing features of climate, geology, soils, physical features (topography and water), and elevation. In doing so, we lay a foundation upon which to link the terroir of wine back to the soil-borne microbial communities. The objective of this study is to elucidate the hierarchy of drivers of soil bacterial community structure in wine grape vineyards in Napa Valley, California. We measured differences in the soil bacterial and archaeal community composition and diversity by sequencing the fourth variable region of the small subunit ribosomal RNA gene (16S V4 rDNA). Soil bacterial communities were structured with respect to soil properties and AVA, demonstrating the complexity of soil microbial biogeography at the landscape scale and within the single land-use type. Location and edaphic variables that distinguish AVAs were the strongest explanatory factors for soil microbial community structure. Notably, the relationship with TC and TN of the <53 μm and 53–250 μm soil fractions offers support for the role of bacterial community structure rather than individual taxa on fine soil organic matter content. We reason that AVA, climate, and topography each affect soil microbial communities through their suite of impacts on soil properties. The identification of distinctive soil microbial communities associated with a given AVA lends support to the idea that soil microbial communities form a key in linking wine terroir back to the biotic components of the soil environment, suggesting that the relationship between soil microbial communities and wine terroir should be examined further.  相似文献   

10.
The composition of microbial communities and the level of enzymatic activity in the soil are both important indicators of soil quality, but the mechanisms by which a soil bacterial community is generated and maintained are not yet fully understood. Two soil samples were collected from the same location, but each had been subjected to a different long-term fertilization treatment and was characterized by different microbial diversity, biomass and physicochemical properties. These samples were γ-sterilized and swap inoculated. Non-sterilized soil samples along with sterilized and inoculated soil samples were incubated for eight months before their nutrient content, microbial biomass, enzymatic activity and bacterial composition were analyzed. Total phosphorus, and potassium concentrations along with the overall organic matter content of the non-sterilized soil were all equal to those of the same soil that had been sterilized and self/swap inoculated. Additionally, the microbial biomass carbon concentration was not affected by the specific inoculum and varied only by soil type. The activities of catalase, invertase, urease, protease, acid phosphatase and phytase were smaller in the sterilized soils that had been inoculated with organisms from chemical fertilizer amended soil (NPK) when compared to sterilized soil inoculated with organisms from manure and chemical fertilizer amended soil (NPKM) and non-sterilized soil samples. Bacterial 16S rRNA examined by 454-pyrosequencing revealed that the composition of bacterial community reconstructed by immigrant microbial inoculum in the soil was mainly influenced by its physicochemical properties, although the microbial inoculum contained different abundances of bacterial taxa. For example, the pH of the soil was the dominant factor in reconstructing a new bacterial community. Taken together, these results demonstrated that both soil microbial composition and functionality were primarily determined by soil properties rather than the microbial inoculum, which contributed to our understanding of how soil microbial communities are generated and maintained.  相似文献   

11.
Composting and thermal drying are amongst the most commonly used post-digestion processes for allowing sanitation and biological stabilization of sewage sludge from municipal treatment plants, and making it suitable as soil conditioner for use in agriculture. To assess the impact of sludge-derived materials on soil microbial properties, fresh (LAF), composted (LAC) and thermally dried (LAT) sludge fractions, each resulting from a different post-treatment process of a same aerobically digested sewage sludge, were added at 1% (w/w) application rate on two contrasting (a loam and a loamy sand) soils and incubated under laboratory conditions for 28 days. Soil respiration, microbial ATP content, hydrolytic activities and arginine ammonification rate were monitored throughout the incubation period. Results showed that soil biochemical variables, including the metabolic quotient (qCO2), were markedly stimulated after sludge application, and the magnitude of this stimulatory effect was dependent on sludge type (precisely LAT > LAF > LAC), but not on soil type. This effect was related to the content of stable organic matter, which was lower in LAT. Genetic fingerprinting by PCR–DGGE revealed that compositional shifts of soil bacterial and, at greater extent, actinobacterial communities were responsive to the amendment with a differing sludge fraction. The observed time-dependent changes in the DGGE profiles of amended soils reflected the microbial turnover dependent on the sludge nutrient input, whereas no indications of adverse effects of sludge-borne contaminants were noted. Our findings indicate that composting rather thermal drying can represent a more appropriate post-digestion process to make sewage sludge suitable for use as soil conditioner in agriculture.  相似文献   

12.
受枸杞道地产区土地资源等因素限制,连作障碍已成为影响枸杞产业发展的重要原因之一,导致严重的经济损失.研究连作条件下枸杞农田土壤生态系统微生物群落的演替规律对枸杞产业的可持续发展具有重要的理论意义.以宁夏银川市南梁农场连作多年的枸杞地为研究对象,利用Illumina MiSeq测序技术分析了连作对再植枸杞根际/非根际细菌群落的影响.结果表明,连作地显著抑制再植枸杞苗地径的增加,且其土壤pH较对照样地显著降低(p<0.05).测序结果证实,与对照样地相比,连作地再植枸杞根际土壤细菌物种数显著降低(p<0.05),细菌群落α多样性下降(p>0.05).主坐标分析表明,连作和对照样地间枸杞非根际细菌群落结构无明显差异,但连作显著改变再植枸杞根际细菌的群落结构.对细菌群落丰度的统计分析发现,连作地枸杞根际浮霉菌门、非根际假单胞菌门的相对丰度较对照样地显著降低(p<0.05).此外,冗余分析结果表明:枸杞园土壤pH和有效磷含量是影响枸杞非根际土壤细菌群落结构变化的主要因素,分别解释了41.8%和35.4%的群落结构变化(p<0.05),其他土壤因子无统计学意义,但土壤理化因子对再植枸杞根际细菌群落结构变化的影响均未达显著水平.这些结果证实连作能够显著抑制再植枸杞生长、影响再植枸杞根际细菌群落结构和多样性,干扰枸杞与土壤细菌群落间的互作关系.这些研究结果将为解析枸杞连作障碍机制提供理论基础.  相似文献   

13.
The increasing frequency and severity of wildfires has led to growing attention to the effects of fire disturbance on soil microbial communities and biogeochemical cycling. While many studies have examined fire impacts on plant communities, and a growing body of research is detailing the effects of fire on soil microbial communities, little attention has been paid to the interaction between plant recolonization and shifts in soil properties and microbial community structure and function. In this study, we examined the effect of a common post-fire colonizer plant species, Corydalis aurea, on soil chemistry, microbial biomass, soil enzyme activity and bacterial community structure one year after a major forest wildfire in Colorado, USA, in severely burned and lightly burned soils. Consistent with past research, we find significant differences in soil edaphic and biotic properties between severe and light burn soils. Further, our work suggests an important interaction between fire severity and plant effects by demonstrating that the recolonization of soils by C. aurea plants only has a significant effect on soil bacterial communities and biogeochemistry in severely burned soils, resulting in increases in percent nitrogen, extractable organic carbon, microbial biomass, β-glucosidase enzyme activity and shifts in bacterial community diversity. This work propounds the important role of plant colonization in succession by demonstrating a clear connection between plant colonization and bacterial community structure as well as the cycling of carbon in a post-fire landscape. This study conveys how the strength of plant–microbe interactions in secondary succession may shift based on an abiotic context, where plant effects are accentuated in harsher abiotic conditions of severe burn soils, with implications for bacterial community structure and enzyme activity.  相似文献   

14.
Simultaneously assessing shifts in microbial community composition along landscape and depth gradients allows us to decouple correlations among environmental variables, thus revealing underlying controls on microbial community composition. We examined how soil microbial community composition changed with depth and along a successional gradient of native prairie restoration. We predicted that carbon would be the primary control on both microbial biomass and community composition, and that deeper, low-carbon soils would be more similar to low-carbon agricultural soils than to high carbon remnant prairie soils. Soil microbial community composition was characterized using phospholipid fatty acid (PLFA) analysis, and explicitly linked to environmental data using structural equations modeling (SEM). We found that total microbial biomass declined strongly with depth, and increased with restoration age, and that changes in microbial biomass were largely attributable to changes in soil C and/or N concentrations, together with both direct and indirect impacts of root biomass and magnesium. Community composition also shifted with depth and age: the relative abundance of sulfate-reducing bacteria increased with both depth and restoration age, while gram-negative bacteria declined with depth and age. In contrast to prediction, deeper, low-C soils were more similar to high-C remnant prairie soils than to low-C agricultural soils, suggesting that carbon is not the primary control on soil microbial community composition. Instead, the effects of depth and restoration age on microbial community composition were mediated via changes in available phosphorus, exchangeable calcium, and soil water, together with a large undetermined effect of depth. Only by examining soil microbial community composition shifts across sites and down the soil column simultaneously were we able to tease apart the impact of these correlates environmental variables.  相似文献   

15.
Approximately 0.6% of the total UK land surface is occupied by golf courses, but little investigation into the biological properties of the soil under this type of amenity turf has been reported. The soil microbiota has a significant role within the majority of nutrient cycles. In order to analyse how golf course management affects the soil microbial community, an investigation of the phenotypic microbial community structure using phospholipid fatty acid (PLFA) analysis was carried out. Principal component analysis of PLFA biomarkers indicated that there were consistent relationships between the tees, fairways and greens and the soil microbial community structure. No conclusive mechanism could be demonstrated in one-way analysis with corresponding physical parameters (P>0.05 in all cases). Cannonical correlation analysis (CCA) using 28 PLFA biomarkers concurrently with 9 physicochemical parameters showed a highly significant relationship on different playing surfaces at all of the golf courses surveyed (P<0.01). The construction and maintenance of specific areas of a golf course, irrespective of geographical location, closely reflect the physicochemical status of the soil microbial habitat.  相似文献   

16.
17.
Huang  Xingran  Liu  Yanfei  Li  Yiyong  Guo  Pingping  Fang  Xiong  Yi  Zhigang 《Journal of Soils and Sediments》2019,19(1):221-231
Purpose

Many studies have shown the simulated effects of nitrogen (N) deposition on soil microbial community composition by adding N directly to the forest floor but have ignored the N retention process by the canopy. This study was conducted to compare the responses of soil microbial biomass and community composition between soil application of N (SAN) and foliage application of N (FAN).

Materials and methods

A pot experiment was designed with (1) two N application methods (SAN and FAN), (2) three N application levels (5.6, 15.6 and 20.6 g N m?2 year?1), and (3) two tree species (Schima superba Gardn. et Champ. and Pinus massoniana Lamb.) following a nested factorial design. Soil microbial biomass and community composition were determined using phospholipid fatty acids (PLFAs) techniques after 1 and 1.5 years of treatments.

Results and discussion

Nitrogen addition increased (P?<?0.05) soil NH4+-N content and soil NO3?-N content and decreased (P?<?0.05) soil pH and soil microbial (bacterial, fungal, and actinomycete) biomass for both N application methods. Compared with the SAN treatment, the FAN treatment had higher (P?<?0.05) pH and lower (P?<?0.05) contents of soil NH4+-N and soil NO3?-N. Soil microbial biomass and community composition were significantly different between the different N addition levels under the SAN treatment, but they showed no significant difference (P?<?0.05) between the different N addition levels under the FAN treatment. The soil microbial biomass in the S. superba soil was higher (P?<?0.05) than that in the P. massoniana soil for the FAN treatment, with the opposite trend observed under the SAN treatment. Moreover, redundancy analysis showed that soil microorganisms were significantly correlated with soil pH, soil water content, NH4+-N, and NO3?-N.

Conclusions

The results showed that N addition affected soil properties, microbial biomass, and the composition of microbial communities; however, the FAN treatment had less influence on soil properties and soil microorganisms than did the SAN treatment over short time scales, and the extent of this effect was different between coniferous and broadleaf trees.

  相似文献   

18.
The effects of soil structure and microbial community composition on microbial resistance and resilience to stress were found to be interrelated in a series of experiments. The initial ability of Pseudomonas fluorescens to decompose added plant residues immediately after a copper or heat stress (resistance) depended significantly on which of 26 sterile soils it was inoculated into. Subsequent studies showed that both the resistance and subsequent recovery in the ability of P. fluorescens to decompose added plant residues over 28 days after stress (resilience) varied significantly between a sandy and a clay-loam soil. Sterile, sandy and clay-loam soil was then inoculated with a complex microbial community extracted from either of the soils. The resulting microbial community structure depended on soil type rather than the source of inoculum, whilst the resistance and resilience of decomposition was similarly governed by the soil and not the inoculum source. Resilience of the clay-loam soil to heat stress did not depend on the water content of the soil at the time of stress, although the physical condition of the soil when decomposition was measured did affect the outcome. We propose that soil functional resilience is governed by the physico-chemical structure of the soil through its effect on microbial community composition and microbial physiology.  相似文献   

19.
We assessed the effects of chronic heavy metal (HM) contamination on soil microbial communities in a newly established forest ecosystem. We hypothesized that HM would affect community function and alter the microbial community structure over time and that the effects are more pronounced in combination with acid rain (AR). These hypotheses were tested in a model forest ecosystem consisting of several tree species (Norway spruce, birch, willow, and poplar) maintained in open top chambers. HMs were added to the topsoil as filter dust from a secondary metal smelter and two types of irrigation water acidity (ambient rain vs. acidified rain) were applied during four vegetation periods. HM contamination strongly impacted the microbial biomass (measured with both fumigation-extraction and quantitative lipid biomarker analyses) and community function (measured as basal respiration and soil hydrolase activities) of the soil microbial communities. The most drastic effect was found in the combined treatment of HM and AR, although soil pH and bioavailable HM contents were comparable to those of treatments with HM alone. Analyses of phospholipid fatty acids (PLFAs) and terminal restriction fragment length polymorphisms (T-RFLPs) of PCR-amplified 16S ribosomal DNA showed that HM treatment affected the structure of bacterial communities during the 4-year experimental period. Very likely, this is due to the still large bioavailable HM contents in the HM contaminated topsoils at the end of the experiment.  相似文献   

20.
Toxic compounds in soils threaten groundwater quality in two ways: as potential contaminants themselves, and by retarding the microbial degradation of other organic compounds, thus enhancing their deep penetration. Benzotriazole (BTA) is a chemical with versatile industrial applications, used in large quantities worldwide, and represents a potential threat to the environment due to its apparent toxicity and recalcitrance. When used as an additive in aircraft deicing/antiicing fluid on airports, substantial spills of these mixtures and jet fuel will inevitably reach the soil. We have investigated the subsoil (1-2 m depth) microbial degradation and growth on four relevant organic substrates found in airport run-off (acetate, formate, glycol and toluene) in the presence of concentrations of BTA which can be found in airport run-off. Monitoring CO2 evolution showed growth-dependent degradation rates for all substrates (sigmoid CO2 accumulation curves), which were significantly affected by BTA. The mineralization of acetate was only moderately retarded and only by the highest BTA concentration used (400 mg l−1 in soil solution); formate and glycol mineralization was substantially retarded at 200 mg l−1, and toluene mineralization already at 10 mg l−1 BTA. Mass balances (fraction of added C recovered as CO2) suggested that the microbial growth yield (g biomass-C formed per g substrate C) was severely reduced with increasing concentrations of BTA. The analysis of phospholipid fatty acids (PLFA) demonstrated that Gram-negative bacteria were dominating among the organisms growing on all four substrates. The total amount of PLFA increased with approximately 1000 pmol PLFA g−1 soil in response to a dose of 0.93 μmol glycol-C g−1 soil, but this increase was gradually reduced with increasing BTA concentrations. This was in agreement with C mass balances based on CO2 measurements, verifying that BTA severely reduced the growth yields. The response of individual PLFA's to BTA and substrates demonstrated that non-growing organisms were largely unaffected (i.e. the PLFA's of which the absolute amounts did not increase in response to substrates were not affected by BTA), whereas those which were growing on the added substrates were uniformly reduced by BTA (all the PLFA's which increased in response to the substrates were negatively affected by BTA). The results suggest that BTA functions as an uncoupler, i.e. a substance that reduces the yield of ATP per mole of substrate used, or that the defence mechanisms represent a large energy burden to all microbial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号