首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Few studies address nutrient cycling during the transition period (e.g., 1–4 years following conversion) from standard to some form of conservation tillage. This study compares the influence of minimum versus standard tillage on changes in soil nitrogen (N) stabilization, nitrous oxide (N2O) emissions, short-term N cycling, and crop N use efficiency 1 year after tillage conversion in conventional (i.e., synthetic fertilizer-N only), low-input (i.e., alternating annual synthetic fertilizer- and cover crop-N), and organic (i.e., manure- and cover crop-N) irrigated, maize–tomato systems in California. To understand the mechanisms governing N cycling in these systems, we traced 15N-labeled fertilizer/cover crop into the maize grain, whole soil, and three soil fractions: macroaggregates (>250 μm), microaggregates (53–250 μm) and silt-and-clay (<53 μm). We found a cropping system effect on soil Nnew (i.e., N derived from 15N-fertilizer or -15N-cover crop), with 173 kg Nnew ha−1 in the conventional system compared to 71.6 and 69.2 kg Nnew ha−1 in the low-input and organic systems, respectively. In the conventional system, more Nnew was found in the microaggregate and silt-and-clay fractions, whereas, the Nnew of the organic and low-input systems resided mainly in the macroaggregates. Even though no effect of tillage was found on soil aggregation, the minimum tillage systems showed greater soil fraction-Nnew than the standard tillage systems, suggesting greater potential for N stabilization under minimum tillage. Grain-Nnew was also higher in the minimum versus standard tillage systems. Nevertheless, minimum tillage led to the greatest N2O emissions (39.5 g N2O–N ha−1 day−1) from the conventional cropping system, where N turnover was already the fastest among the cropping systems. In contrast, minimum tillage combined with the low-input system (which received the least N ha−1) produced intermediate N2O emissions, soil N stabilization, and crop N use efficiency. Although total soil N did not change after 1 year of conversion from standard to minimum tillage, our use of stable isotopes permitted the early detection of interactive effects between tillage regimes and cropping systems that determine the trade-offs among N stabilization, N2O emissions, and N availability.  相似文献   

2.
The effect of reduced tillage (RT) on nitrous oxide (N2O) emissions of soils from fields with root crops under a temperate climate was studied. Three silt loam fields under RT agriculture were compared with their respective conventional tillage (CT) field with comparable crop rotation and manure application. Undisturbed soil samples taken in September 2005 and February 2006 were incubated under laboratory conditions for 10 days. The N2O emission of soils taken in September 2005 varied from 50 to 1,095 μg N kg−1 dry soil. The N2O emissions of soils from the RT fields taken in September 2005 were statistically (P < 0.05) higher or comparable than the N2O emissions from their respective CT soil. The N2O emission of soils taken in February 2006 varied from 0 to 233 μg N kg−1 dry soil. The N2O emissions of soils from the RT fields taken in February 2006 tended to be higher than the N2O emissions from their respective CT soil. A positive and significant Pearson correlation of the N2O–N emissions with nitrate nitrogen (NO3 –N) content in the soil was found (P < 0.01). Leaving the straw on the field, a typical feature of RT, decreased NO3 –N content of the soil and reduced N2O emissions from RT soils.  相似文献   

3.
Nitrogen (N) losses via nitrate (NO3) leaching, ammonia (NH3) volatilization and nitrous oxide (N2O) emissions from grazed pastures in New Zealand are one of the major contributors to environmental degradation. The use of N inhibitors (urease and nitrification inhibitors) may have a role in mitigating these N losses. A one-year field experiment was conducted on a permanent dairy-grazed pasture site at Massey University, Palmerston North, New Zealand to quantify these N losses and to assess the effect of N inhibitors in reducing such losses during May 2005-2006. Cow urine at 600 kg N ha−1 rate with or without urease inhibitor N-(n-butyl) thiophosphoric triamide (nBTPT) or (trade name “Agrotain”) (3 L ha−1), nitrification inhibitor dicyandiamide (DCD) (7 kg ha−1) and the use of double inhibitor (DI) containing a combination of both Agrotain and DCD (3:7) were applied to field plots in autumn, spring and summer. Pasture production, NH3 and N2O fluxes, soil mineral N concentrations, microbial biomass C and N, and soil pH were measured following the application of treatments during each season. All measured parameters, except soil microbial biomass C and N, were influenced by the added inhibitors during the three seasons. Agrotain reduced NH3 emissions over urine alone by 29%, 93% and 31% in autumn, spring and summer respectively but had little effect on N2O emission. DCD reduced N2O emission over urine alone by 52%, 39% and 16% in autumn, spring and summer respectively but increased NH3 emission by 56%, 9% and 17% over urine alone during those three seasons. The double inhibitor reduced NH3 by 14%, 78% and 9% and N2O emissions by 37%, 67% and 28% over urine alone in autumn, spring and summer respectively. The double inhibitor also increased pasture dry matter by 10%, 11% and 8% and N uptake by the 17%, 28% and 10% over urine alone during autumn, spring and summer respectively. Changes in soil mineral N and pH suggested a delay in urine-N hydrolysis with Agrotain, and reduced nitrification with DCD. The combination of Agrotain and DCD was more effective in reducing both NH3 and N2O emissions, improving pasture production, controlling urea hydrolysis and retaining N in NH4+ form. These results suggest that the combination of both urease and nitrification inhibitors may have the most potential to reduce N losses if losses are associated with urine and improve pasture production in intensively grazed systems.  相似文献   

4.
Elevated CO2 stimulates N2O emissions in permanent grassland   总被引:1,自引:1,他引:0  
To evaluate climate forcing under increasing atmospheric CO2 concentrations, feedback effects on greenhouse gases such as nitrous oxide (N2O) with a high global warming potential should be taken into account. This requires long-term N2O flux measurements because responses to elevated CO2 may vary throughout annual courses. Here, we present an almost 9 year long continuous N2O flux data set from a free air carbon dioxide enrichment (FACE) study on an old, N-limited temperate grassland. Prior to the FACE start, N2O emissions were not different between plots that were later under ambient (A) and elevated (E) CO2 treatments, respectively. However, over the entire experimental period (May 1998–December 2006), N2O emissions more than doubled under elevated CO2 (0.90 vs. 2.07 kg N2O-N ha−1 y−1 under A and E, respectively). The strongest stimulation occurred during vegetative growth periods in the summer when soil mineral N concentrations were low. This was surprising because based on literature we had expected the highest stimulation of N2O emissions due to elevated CO2 when mineral N concentrations were above background values (e.g. shortly after N application in spring). N2O emissions under elevated CO2 were moderately stimulated during late autumn–winter, including freeze–thaw cycles which occurred in the 8th winter of the experiment. Averaged over the entire experiment, the additional N2O emissions caused by elevated CO2 equaled 4738 kg CO2-equivalents ha−1, corresponding to more than half a ton (546 kg) of CO2 ha−1 which has to be sequestered annually to balance the CO2-induced N2O emissions. Without a concomitant increase in C sequestration under rising atmospheric CO2 concentrations, temperate grasslands may be converted into greenhouse gas sources by a positive feedback on N2O emissions. Our results underline the need to include continuous N2O flux measurements in ecosystem-scale CO2 enrichment experiments.  相似文献   

5.
The greenhouse gases CO2 and N2O emissions were quantified in a long-term experiment in northern France, in which no-till (NT) and conventional tillage (CT) had been differentiated during 32 years in plots under a maize–wheat rotation. Continuous CO2 and periodical N2O soil emission measurements were performed during two periods: under maize cultivation (April 2003–July 2003) and during the fallow period after wheat harvest (August 2003–March 2004). In order to document the dynamics and importance of these emissions, soil organic C and mineral N, residue decomposition, soil potential for CO2 emission and climatic data were measured. CO2 emissions were significantly larger in NT on 53% and in CT on 6% of the days. From April to July 2003 and from November 2003 to March 2004, the cumulated CO2 emissions did not differ significantly between CT and NT. However, the cumulated CO2 emissions from August to November 2003 were considerably larger for NT than for CT. Over the entire 331 days of measurement, CT and NT emitted 3160 ± 269 and 4064 ± 138 kg CO2-C ha−1, respectively. The differences in CO2 emissions in the two tillage systems resulted from the soil climatic conditions and the amounts and location of crop residues and SOM. A large proportion of the CO2 emissions in NT over the entire measurement period was probably due to the decomposition of old weathered residues. NT tended to emit more N2O than CT over the entire measurement period. However differences were statistically significant in only half of the cases due to important variability. N2O emissions were generally less than 5 g N ha−1 day−1, except for a few dates where emission increased up to 21 g N ha−1 day−1. These N2O fluxes represented 0.80 ± 0.15 and 1.32 ± 0.52 kg N2O-N ha−1 year−1 for CT and NT, respectively. Depending on the periods, a large part of the N2O emissions occurred was probably induced by nitrification, since soil conditions were not favorable for denitrification. Finally, for the period of measurement after 32 years of tillage treatments, the NT system emitted more greenhouses gases (CO2 and N2O) to the atmosphere on an annual basis than the CT system.  相似文献   

6.
The aim of this study was to investigate the effect of crop residues from winter oilseed rape on N2O emissions from a loamy soil and to determine the effect of different tillage practices on N2O fluxes. We therefore conducted a field experiment in which crop residues of winter oilseed rape (Brassica napus L., OSR) were replaced with 15N labelled OSR residues. Nitrous oxide (N2O) emissions and 15N abundance in the N2O were determined for a period of 11 months after harvest of OSR and in the succeeding crop winter wheat (Triticum aestivum L.) cultivated on a Haplic Luvisol in South Germany. Measurements were carried out with the closed chamber method in a treatment with conventional tillage (CT) and in a treatment with reduced soil tillage (RT). In both tillage treatments we also determined N2O fluxes in control plots where we completely removed the crop residues. High N2O fluxes occurred in a short period just after OSR residue replacement in fall and after N‐fertilization to winter wheat in the following spring. Although N2O emissions differed for distinct treatments and sub‐periods, cumulative N2O emissions over the whole investigation period (299 days) ranged between 1.7 kg and 2.4 kg N2O‐N ha?1 with no significant treatment effects. More than half of the cumulative emissions occurred during the first eight weeks after OSR replacement, highlighting the importance of this post‐harvest period for annual N2O budgets of OSR. The contribution of residue N to the N2O emission was low and explained by the high C/N‐ratio fostering immobilization of mineral N. In total only 0.03% of the N2O‐N emitted in the conventional tillage treatment and 0.06% in the reduced tillage treatment stemmed directly from the crop residues. The 15N recovery in the treatments with crop residues was 62.8% (CT) and 75.1% (RT) with more than 97% of the recovered 15N in the top soil. Despite our measurements did not cover an entire year, the low contribution of the OSR residues to the direct N2O emissions shows, that the current IPCC tier 1 approach, which assumes an EF of 1%, strongly overestimated direct emissions from OSR crop residues. Furthermore, we could not observe any relationship between tillage and crop residues on N2O emission, only during the winter period were N2O emissions from reduced tillage significantly higher compared to conventional tillage. Annual N2O emission from RT and CT did not differ.  相似文献   

7.
After implementation of legislative measures for the reduction of environmental hazards from nitrate leaching and ammonia volatilisation when using organic manures and fertilizers in Europe, much attention is now paid to the specific effects of these fertilizers on the dynamics of global warming-relevant trace gases in soil. Particularly nitrogen fertilizers and slurry from animal husbandry are known to play a key role for the CH4 and N2O fluxes from soils. Here we report on a short-term evaluation of trace gas fluxes in grassland as affected by single or combined application of mineral fertilizer and organic manure in early spring. Methane fluxes were characterised by a short methane emission event immediately after application of cattle slurry. Within the same day methane fluxes returned to negative, and on average over the 4-day period after slurry application, only a small but insignificant trend to reduced methane oxidation was found. Nitrous oxide emissions showed a pronounced effect of combined slurry and mineral fertilizer application. In particular fresh cattle slurry combined with calcium ammonium nitrate (CAN) mineral fertilizer induced an increase in mean N2O flux during the first 4 days after application from 10 to 300 μg N2O-N m−2 h−1. 15N analysis of emitted N2O from 15N-labelled fertilizer or manure indicated that easily decomposable slurry C compounds induced a pronounced promotion of N2O-N emission derived from mineral CAN fertilizer. Fluxes after application of either mineral fertilizer or slurry alone showed an increase of less than 5-fold. The NOx sink strength of the soil was in the range of −6 to −10 μg NOx-N m−2 h−1 and after fertilization it showed a tendency to be reduced by no more than 2 μg NOx-N m−2 h−1, which was a result of both, increased NO emission and slightly increased NO2 deposition. Associated determination of the N2O:N2 emission ratio revealed that after mineral N application (CAN) a large proportion (c. 50%) was emitted as N2O, while after application of slurry with easily decomposable C and predominantly -N serving as N-source, the N2O:N2 emission ratio was 1:14, i.e. was changed in favour of N2. Our work provides evidence that particularly the combination of slurry and nitrate-containing N fertilizers gives rise to considerable N2O emissions from mineral fertilizer N pool.  相似文献   

8.
Nitrous oxide (N2O) is a greenhouse gas and agricultural soils are major sources of atmospheric N2O. Its emissions from soils make up the largest part in the global N2O budget. Research was carried out at the experimental fields of the Leibniz-Institute of Agricultural Engineering Potsdam-Bornim (ATB). Different types (mineral and wood ash) and levels (0, 75 and 150 kg N ha−1) of fertilization were applied to annual (rape, rye, triticale and hemp) and perennial (poplar and willow) plants every year. N2O flux measurements were performed 4 times a week by means of gas flux chambers and an automated gas chromatograph between 2003 and 2005. Soil samples were also taken close to the corresponding measuring rings. Soil nitrate and ammonium were measured in soil extracts.N2O emissions had a peak after N fertilization in spring, after plant harvest in summer and during the freezing–thawing periods in winter. Both fertilization and plant types significantly altered N2O emission. The maximum N2O emission rate detected was 1081 μg N2O m−2 h−1 in 2004. The mean annual N2O emissions from the annual plants were more than twofold greater than those of perennial plants (4.3 kg ha−1 vs. 1.9 kg ha−1). During January, N2O fluxes considerably increased in all treatments due to freezing–thawing cycles. Fertilization together with annual cropping doubled the N2O emissions compared to perennial crops indicating that N use efficiency was greater for perennial plants. Fertilizer-derived N2O fluxes constituted about 32% (willow) to 67% (rape/rye) of total soil N2O flux. Concurrent measurements of soil water content, NO3 and NH4 support the conclusion that nitrification is main source of N2O loss from the study soils. The mean soil NO3-N values of soils during the study for fertilized soils were 1.6 and 0.9 mg NO3-N kg−1 for 150 and 75 kg N ha−1 fertilization, respectively. This value reduced to 0.5 mg NO3-N kg−1 for non-fertilized soils.  相似文献   

9.
Mitigation of agricultural N2O emissions via management requires quantitative information about the regulation of the underlying processes. In this laboratory study, short-term evolution of N2O from repacked soil was determined using an arable sandy loam soil adjusted to three water potentials (−15, −30 or −100 hPa) that were reached by adjustment of partly air-dried soil with nutrient solutions or water; a water retention curve of repacked soil had been determined prior to the incubation experiment. The amendments included a control treatment receiving water (CTL), and aqueous solutions of carbon in the form of glucose (C), ammonium sulfate (N), or both (CN). Rates of CO2 and N2O evolution were followed during 14 days. Soil inorganic N and phospholipid fatty acid (PLFA) composition were analyzed by the end of incubation. Across all nutrient treatments, the soil at the lower moisture content (−100 hPa) showed little or no N2O evolution irrespective of nutrient treatment. Adding glucose alone reduced N2O evolution relative to CTL. The addition of N alone had no effect on soil respiration, but significantly increased nitrate accumulation and N2O evolution. The CN treatment resulted in higher respiration than with C amendment alone, but less N2O evolution than with N alone, at least at −15 and −30 hPa. Whole-soil PLFA fingerprints at the end of incubation reflected the complex response of gaseous emissions. At −15 hPa growth of Gram negative bacteria, probably including denitrifiers, in the CN treatment was indicated by low cyclopropane-to-precursor ratios. At −100 hPa differentiation of branched-chain fatty acids was taken as evidence for an effect of C amendment on Gram positive bacteria. The highest potential for N2O evolution was observed at the intermediate soil wetness level; the corresponding gas diffusivities indicated that this parameter may be a better predictor of N2O emissions than water-filled pore space.  相似文献   

10.
基于DNDC模型的东北地区春玉米农田固碳减排措施研究   总被引:6,自引:1,他引:5  
春玉米是我国东北地区主要粮食作物,但由于连年耕作和氮肥的高投入,春玉米农田也可能成为重要的温室气体排放源。因此,通过优化田间管理措施在保证作物产量的同时实现固碳减排,对于春玉米种植系统的可持续发展具有重要意义。过程模型(Denitrification Decomposition, DNDC)是评估固碳减排措施的有效工具,本研究在对DNDC模型进行验证的基础上,应用模型研究不同施氮和秸秆还田措施对东北地区春玉米农田固碳和氧化亚氮(N2O)排放的长期综合影响。模型验证结果表明,DNDC模拟的不同处理下土壤呼吸季节总量、 N2O排放季节总量和春玉米产量与田间观测结果较一致;同时模型也能较好地模拟不同处理下土壤呼吸和N2O排放季节变化动态。这表明DNDC模型能较理想地模拟不同施氮和秸秆还田措施对春玉米农田土壤呼吸、 N2O排放和作物产量的影响。利用模型综合分析不同管理情景对产量和土壤固碳减排的长期影响,结果表明: 1)与当地农民习惯施肥相比,优化施氮措施不会明显影响作物产量,能减少N2O排放,且对土壤固碳影响很小,因而能降低温室气体净排放,但净排放降低幅度有限(8%~13%); 2)在优化施氮措施的同时秸秆还田能在保障供试农田春玉米产量的同时大幅度减少春玉米种植系统温室气体净排放,甚至可能将供试农田由温室气体排放源转变为温室气体吸收汇。本研究结果可为优化管理措施实现春玉米种植系统固碳减排提供科学依据。  相似文献   

11.
Nitrogen (N) fertilizer application and grazing are known to induce nitrous oxide (N2O) emissions from grassland soils. In a field study, general information on rates of N2O emission, the effect of cattle grazing and the type (mineral fertilizer, cattle slurry) and amount of N supply on the flux of N2O from a sandy soil were investigated. N2O emissions from permanent grassland managed as a mixed system (two cuts followed by two grazing cycles) were monitored over 11 months during 2001-2002 in northern Germany using the closed chamber method. The field experiment consisted of four regionally relevant fertilizer combinations, i.e. two mineral N application rates (0 and 100 kg N ha−1 yr−1) and two slurry levels (0 and 74 kg N ha−1 yr−1).Mean cumulative N2O-N loss was 3.0 kg ha−1 yr−1, and the cumulative 15N-labelled N2O emissions varied from 0.03% to 0.19% of the 15N applied. 15N labelling indicated that more N2O was emitted from mineral N than from slurry treated plots, and in all treatments the soil N pool was always clearly the major source of N2O. Regarding the total cumulative N2O losses, differences among treatments were not significant, which was caused by: (i) a high variance in emissions during and after cattle grazing due to the random distribution of excrements and by (ii) high N2 fixation of white clover in the 0 kg N ha−1 treatments, which resulted in similar N status of all treatments. However before grazing started, treatments showed significant differences. After cattle grazing in summer, N2O emission rates were higher than around the time of spring fertilizer application, or in winter. Grazing resulted in N2O flux rates up to 489 μg N2O-N m−2 h−1 and the grazing period contributed 31-57% to the cumulative N2O emission. During freeze-thaw cycles in winter (December-February) N2O emission rates of up to 147 μg N2O-N m−2 h−1 were measured, which contributed up to 26% to the annual N2O flux. The results suggest that N fertilizer application and grazing caused only short-term increases of N2O flux rates whereas the major share of annual N2O emission emitted from the soil N pool. The significantly increased N2O fluxes during freeze-thaw cycles show the importance of emission events in winter which need to be covered by measurements for obtaining reliable estimates of annual N2O emissions.  相似文献   

12.
Denitrification rates are often greater in no-till than in tilled soils and net soil-surface greenhouse gas emissions could be increased by enhanced soil N2O emissions following adoption of no-till. The objective of this study was to summarize published experimental results to assess whether the response of soil N2O fluxes to the adoption of no-till is influenced by soil aeration. A total of 25 field studies presenting direct comparisons between conventional tillage and no-till (approximately 45 site-years of data) were reviewed and grouped according to soil aeration status estimated using drainage class and precipitation during the growing season. The summary showed that no-till generally increased N2O emissions in poorly-aerated soils but was neutral in soils with good and medium aeration. On average, soil N2O emissions under no-till were 0.06 kg N ha−1 lower, 0.12 kg N ha−1 higher and 2.00 kg N ha−1 higher than under tilled soils with good, medium and poor aeration, respectively. Our results therefore suggest that the impact of no-till on N2O emissions is small in well-aerated soils but most often positive in soils where aeration is reduced by conditions or properties restricting drainage. Considering typical soil C gains following adoption of no-till, we conclude that increased N2O losses may result in a negative greenhouse gas balance for many poorly-drained fine-textured agricultural soils under no-till located in regions with a humid climate.  相似文献   

13.
依托紫色土施肥方式与养分循环长期试验平台(2002年—),采用静态箱-气相色谱法开展紫色土冬小麦-夏玉米轮作周期(2013年10月至2014年10月)农田生态系统N_2O和NO排放的野外原位观测试验。长期施肥方式包括单施氮肥(N)、传统猪厩肥(OM)、常规氮磷钾肥(NPK)、猪厩肥配施氮磷钾肥(OMNPK)和秸秆还田配施氮磷钾肥(RSDNPK)等5种,氮肥用量相同[小麦季130 kg(N)×hm~(-2),玉米季150 kg(N)×hm~(-2)],不施肥对照(CK)用于计算排放系数,对比不同施肥方式对紫色土典型农田生态系统土壤N_2O和NO排放的影响,以期探寻紫色土农田生态系统N_2O和NO协同减排的施肥方式。结果表明,所有施肥方式下紫色土N_2O和NO排放速率波动幅度大,且均在施肥初期出现峰值;强降雨激发N_2O排放,但对NO排放无明显影响。在整个小麦-玉米轮作周期,N、OM、NPK、OMNPK和RSDNPK处理的N_2O年累积排放量分别为1.40 kg(N)×hm~(-2)、4.60 kg(N)×hm~(-2)、0.95 kg(N)×hm~(-2)、2.16kg(N)×hm~(-2)和1.41 kg(N)×hm~(-2),排放系数分别为0.41%、1.56%、0.25%、0.69%、0.42%;NO累积排放量分别为0.57 kg(N)×hm~(-2)、0.40 kg(N)×hm~(-2)、0.39 kg(N)×hm~(-2)、0.46 kg(N)×hm~(-2)和0.17 kg(N)×hm~(-2),排放系数分别为0.21%、0.15%、0.15%、0.17%、0.07%。施肥方式对紫色土N_2O和NO累积排放量具有显著影响(P0.05),与NPK处理比较,OM和OMNPK处理的N_2O排放分别增加384%和127%,同时NO排放分别增加3%和18%;RSDNPK处理的NO排放减少56%。表明长期施用猪厩肥显著增加N_2O和NO排放,而秸秆还田有效减少NO排放。研究表明,土壤温度和水分条件均显著影响小麦季N_2O和NO排放(P0.01),对玉米季N_2O和NO排放没有显著影响(P0.05),土壤无机氮含量则是在小麦-玉米轮作期N_2O和NO排放的主要限制因子(P0.01)。全量秸秆还田与化肥配合施用是紫色土农田生态系统N_2O和NO协同减排的优化施肥方式。  相似文献   

14.
施肥方式对冬小麦季紫色土N2O排放特征的影响   总被引:6,自引:2,他引:6  
利用紫色土养分循环长期定位施肥试验平台,通过静态箱-气相色谱法,于2012年11月至2013年5月,研究了单施氮肥(N)、猪厩肥(OM)、常规氮磷钾肥(NPK)、猪厩肥配施氮磷钾肥(OMNPK)、秸秆还田配施氮磷钾肥(CRNPK)及对照不施肥(NF)6种施肥方式下,紫色土冬小麦季土壤N2O的排放特征。结果表明,在相同施氮水平[130 kg(N)·hm-2]下,施肥方式对N2O排放量有显著影响(P0.05)。N、OM、NPK、OMNPK和CRNPK处理下,土壤N2O排放量[kg(N)·hm-2]分别为0.38、0.36、0.29、0.33和0.19,N2O排放系数分别为0.25%、0.23%、0.18%、0.21%和0.10%。NF的土壤N2O排放量为0.06 kg(N)·hm-2。土壤无机氮含量(NO3--N和NH4+-N)是N2O排放的主要影响因子,降雨能有效激发N2O排放。基于小麦产量评价不同施肥方式下的N2O排放,结果表明,N、OM、NPK、OMNPK和CRNPK单位小麦产量N2O的GWP值[yield-scaled GWP,kg(CO2 eq)·t-1]分别为132.57、45.70、49.07、48.92和26.41。CRNPK的小麦产量与6种施肥方式中获得最大产量的OM间没有显著差异,但显著高于其他处理。而且,CRNPK的yield-scaled GWP比紫色土地区冬小麦种植中常规施肥方式(NPK)显著减少46%,并显著低于其他4种施肥方式。可见,秸秆还田配施氮磷钾肥在保证小麦产量的同时,能有效减少因施肥引发的N2O排放,可作为紫色土地区推荐的最佳施肥措施。  相似文献   

15.
Reduction of nitrous oxide (N2O) to dinitrogen (N2) by denitrification in soils is of outstanding ecological significance since it is the prevailing natural process converting reactive nitrogen back into inert molecular dinitrogen. Furthermore, the extent to which N2O is reduced to N2 via denitrification is a major regulating factor affecting the magnitude of N2O emission from soils. However, due to methodological problems in the past, extremely little information is available on N2 emission and the N2:N2O emission ratio for soils of terrestrial ecosystems. In this study, we simultaneously determined N2 and N2O emissions from intact soil cores taken from a mountainous beech forest ecosystem. The soil cores were taken from plots with distinct differences in microclimate (warm-dry versus cool-moist) and silvicultural treatment (untreated control versus heavy thinning). Due to different microclimates, the plots showed pronounced differences in pH values (range: 6.3–7.3). N2O emission from the soil cores was generally very low (2.0 ± 0.5–6.3 ± 3.8 μg N m−2 h−1 at the warm-dry site and 7.1 ± 3.1–57.4 ± 28.5 μg N m−2 h−1 at the cool-moist site), thus confirming results from field measurements. However, N2 emission exceeded N2O emission by a factor of 21 ± 6–220 ± 122 at the investigated plots. This illustrates that the dominant end product of denitrification at our plots and under the given environmental conditions is N2 rather than N2O. N2 emission showed a huge variability (range: 161 ± 64–1070 ± 499 μg N m−2 h−1), so that potential effects of microclimate or silvicultural treatment on N2 emission could not be identified with certainty. However, there was a significant effect of microclimate on the magnitude of N2O emission as well as on the mean N2:N2O emission ratio. N2:N2O emission ratios were higher and N2O emissions were lower for soil cores taken from the plots with warm-dry microclimate as compared to soil cores taken from the cool-moist microclimate plots. We hypothesize that the increase in the N2:N2O emission ratio at the warm-dry site was due to higher N2O reductase activity provoked by the higher soil pH value of this site. Overall, the results of this study show that the N2:N2O emission ratio is crucial for understanding the regulation of N2O fluxes of the investigated soil and that reliable estimates of N2 emissions are an indispensable prerequisite for accurately calculating total N gas budgets for the investigated ecosystem and very likely for many other terrestrial upland ecosystems as well.  相似文献   

16.
为了解陕西黄土高原南部旱地冬小麦季N2O排放规律,探索旱地N2O减排方法,采用密闭式静态箱法,以不同施氮处理[CK:对照,不施氮;CON:当地农民习惯施氮,施氮量220 kg·hm-2;OPT:优化施氮加秸秆还田,施氮量150 kg·hm-2;OPT+DCD:优化施氮加秸秆还田,同时施用施氮量5%的硝化抑制剂DCD;OPT(SR):优化施氮(所用肥料为包膜型缓控释肥)加秸秆还田]为基础,研究黄土高原南部旱地冬小麦农田N2O季节排放特征和减排措施。结果表明:黄土高原南部旱地冬小麦季N2O排放具有首月持续、大量排放,末月雨后瞬间排放,中期低排放的特点。各处理中,OPT+DCD和OPT(SR)在播种—返青期能显著减少N2O排放水平,而返青—成熟期,各优化处理差异不显著。从整个小麦季N2O排放总量来看,各优化处理能够减少N2O排放量,提高作物产量,降低单位产量N2O排放量。具体表现为:1与CON处理的N2O排放量相比,OPT、OPT+DCD和OPT(SR)处理分别减排29.2%(P0.01)、38.7%(P0.01)和39.3%(P0.01),但3个优化处理间差异不显著;2与CON处理的产量相比,OPT、OPT+DCD和OPT(SR)处理分别增产3.8%(P0.05)、15.2%(P0.05)和9.5%(P0.05);3与CON处理的单位产量N2O排放量相比,OPT处理单位产量N2O排放量减少31.7%(P0.05);而相对于OPT处理,OPT+DCD处理和OPT(SR)处理分别减少了单位产量排放量的22.1%(P0.05)和18.9%(P0.05)。本研究表明,减少施氮量至150 kg·hm-2,并施用秸秆是减少N2O排放的重要手段,而施用缓控释肥或一定量的DCD可提升作物产量。  相似文献   

17.
Mixed responses of soil nitrous oxide (N2O) fluxes to reduced tillage/no-till are widely reported across soil types and regions. In a field experiment on a Danish sandy loam soil we compared N2O emissions during winter barley growth following five years of direct drilling (DD), reduced tillage (RT) or conventional tillage (CT). Each of these tillage treatments further varied in respect to whether the resulting plot crop residues were retained (+Res) or removed (−Res). Sampling took place from autumn 2007 to the end of spring 2008. Overall N2O emissions were 27 and 26% lower in DD and RT, respectively, relative to N2O emissions from CT plots (P < 0.05). We observed that in residue removal scenarios N2O emissions were similar for all tillage treatments, but in residue retention scenarios N2O emissions were significantly higher in CT than in either DD or RT (P < 0.05). Irrespective of residue management, N2O emissions from DD and RT plots never exceeded emissions from CT plots. Retention of residue was estimated to reduce emissions from DD plots by 39% and in RT plots by 9%, but to increase N2O emissions from the CT plots by 35%. Relative soil gas diffusivity (Rdiff), soil NO3-N, soil temperature, tillage and residue were important driving factors for N2O emission (P < 0.05). A multiple linear regression model using Rdiff to represent the water factor explained N2O emissions better than a water-filled pore space (WFPS) based model, suggesting a need for review of the current use of WFPS in N2O prediction models. We conclude that on light textured soils, no-till has the potential for reducing N2O emissions when crop residues are returned to the soil.  相似文献   

18.
不同耕作措施对雨养冬小麦碳足迹的影响   总被引:2,自引:1,他引:2  
为了解不同耕作管理措施对我国北方旱作农田作物生产生命周期内生产资料及生产过程碳排放足迹的影响,在山西省临汾市尧都区连续15年保护性耕作长期定位试验基地,利用静态箱-气相色谱法连续两年测定了不同秸秆管理和耕作措施(秸秆不还田旋耕、秸秆还田旋耕、秸秆覆盖免耕)下,旱作冬小麦田N_2O周年排放通量,并对不同耕作管理措施的生产资料和生产过程中的碳排放进行全面分析与计算,以估算不同耕作措施的碳足迹。结果表明:1)秸秆覆盖免耕和秸秆不还田旋耕条件下旱作冬小麦田N_2O年度累积排放量较秸秆还田旋耕分别平均减少19.2%和18.9%;2)旱作冬小麦在秸秆覆盖免耕条件下产量最高;3)旱作农田碳足迹中氮肥生产、农田N_2O直接排放和柴油消耗排放占到总排放足迹的90%以上;4)秸秆覆盖免耕较其他耕作方式的碳足迹低,两年试验期间,较秸秆还田旋耕处理碳足迹分别低11.0%和6.9%,较秸秆不还田旋耕处理碳足迹分别低7.9%和8.3%。5)在半干旱地区,秸秆覆盖免耕处理单位产量碳足迹最低,是本研究中低碳低排的推荐措施。本研究结果可为旱作农田以低碳减排为目标的可持续发展提供科学依据。  相似文献   

19.
Concerns about sustainability of agroecosystems management options in developed and developing countries warrant improved understanding of N cycling. The Integrated Soil Fertility Management paradigm recognizes the possible interactive benefits of combining organic residues with mineral fertilizer inputs on agroecosystem functioning. However, these beneficial effects may be controlled by residue quality. This study examines the controls of inputs on N cycling across a gradient of (1) input, (2) residue quality, and (3) texture. We hypothesized that combining organic residue and mineral fertilizers would enhance potential N availability relative to either input alone. Residue and fertilizer inputs labeled with 15N (40–60 atom% 15N) were incubated with 200 g soil for 545 d in a microcosm experiment. Input treatments consisted of a no-input control, organic residues (3.65 g C kg−1 soil, equivalent to 4 Mg C ha−1), mineral N fertilizer (100 mg N kg−1 soil, equivalent to 120 kg N ha−1), and a combination of both with either the residue or fertilizer 15N-labeled. Zea mays stover inputs were added to four differently textured soils (sand, sandy loam, clay loam, and clay). Additionally, inputs of three residue quality classes (class I: Tithonia diversifolia, class II: Calliandra calothyrsus, class III: Z. mays stover) were applied to the clay soil. Available N and N2O emissions were measured as indicators for potential plant N uptake and N losses. Combining residue and fertilizer inputs resulted in a significant (P < 0.05) negative interactive effect on total extractable mineral N in all soils. This interactive effect decreased the mineral N pool, due to an immobilization of fertilizer-derived N and was observed up to 181 d, but generally became non-significant after 545 d. The initial reduction in mineral N might lead to less N2O losses. However, a texture effect on N2O fluxes was observed, with a significant interactive effect of combining residue and fertilizer inputs decreasing N2O losses in the coarse textured soils, but increasing N2O losses in the fine textured soils. The interactive effect on mineral N of combining fertilizer with residue changed from negative to positive with increasing residue quality. Our results indicate that combining fertilizer with medium quality residue has the potential to change N transformations through a negative interactive effect on mineral N. We conclude that capitalizing on interactions between fertilizer and organic residues allows for the development of sustainable nutrient management practices.  相似文献   

20.
N2O是一种重要的温室气体, 具有很强的温室效应。当前全球变化条件下, 人类活动和农业生产行为产生的N2O排放增加是当前倍受关注的问题。本研究于2008年11月-2009年10月, 利用静态箱 气相色谱技术对亚热带地区紫穗槐(Amorpha fruticosa L.)绿篱枝叶还田条件下冬小麦 夏玉米轮作田土壤N2O排放通量进行原位监测, 观测紫穗槐枝叶移出(AR)、翻施(AI)、表施(AC)及作物单作(CK)4种处理下整个生长季土壤N2O的排放量, 对等高绿篱 坡地农业复合生态系统土壤N2O排放通量变化及其影响机制进行研究。结果表明, 整个冬小麦 夏玉米轮作期, 4个处理土壤N2O排放通量呈现出相似的季节变化特征, AR、AI、AC、CK处理全生长季的排放总量为127.62 mg·m-2、209.66 mg·m-2、208.73 mg·m-2、77.52 mg·m-2。作物不同生育阶段N2O日均排放通量在冬小麦季表现为: 开花-成熟期>拔节-开花期>出苗-拔节期; 在夏玉米季表现为: 拔节-抽雄期>播种-拔节期>抽雄-成熟期。本试验综合评估了等高绿篱 坡地农业复合生态系统土壤N2O排放通量变化及其影响机制。研究显示, 土壤N2O排放通量在冬小麦季与土壤温度相关性显著, 在夏玉米季与土壤水分相关性显著。在复合生态系统中紫穗槐复合种植及枝叶还田显著促进土壤N2O排放, 翻施处理产生的N2O量大于表施处理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号