首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The growth and mineral nutrition of Gmelina arborea Roxb. seedlings were investigated in response to four nitrogen-based fertilizers applied at 0, 2.5, 5.0 or 7.5 g N per plant. Nitrogen sources included NH(4)-N as ammonium sulfate, NO(3)-N as potassium nitrate, NH(4)NO(3)-N as calcium ammonium nitrate, and urea-N as urea. Seedlings fertilized with NH(4)NO(3)-N or urea-N had greater height, collar diameter, dry weight, net assimilation rate, and relative growth rate than seedlings fertilized with NH(4)-N or NO(3)-N. For all sources of nitrogen, increasing the amount of exogenously supplied N per plant promoted shoot growth more than root development, hence the root to shoot ratios of all fertilized seedlings were smaller than those of the unfertilized controls. Applications of NO(3)-N increased the nitrogen, potassium, and phosphorus concentrations of fertilized seedlings. Regardless of source, a nitrogen application of 2.5 g N per plant was apparently optimal for the growth of Gmelina seedlings on a latosolic soil.  相似文献   

2.
Effects of nitrogen (N) source and concentration on root system architecture and receptivity to mycorrhizal infection were studied in seedlings of Atlas cedar (Cedrus atlantica Manetti) grown in root observation boxes in a controlled-environment chamber. Nitrogen was supplied in a solution containing either NO3-; or NH4+ at a concentration of either 0.25 or 5.0 mM. Root extension was recorded twice weekly by tracing the roots growing in contact with the transparent face of the root observation box. Among treatments, lateral root production and branching density were greatest with 5.0 mM NO3-. Inoculation with mycelium of Tricholoma cedrorum Malencon was carried out 3 months after the start of the N treatments. The highest percentage of mycorrhizal roots, and the greatest amounts of living mycelium (estimated by the ergosterol assay) were observed in the NO3- treatments. Differences in root branching density among the N treatments were insufficient to explain the observed differences among treatments in the extent of mycorrhizal infection of seedlings.  相似文献   

3.
Jack pine (Pinus banksiana Lamb.) seedlings were grown in a shaded or unshaded light regime with either NO(3) (-)- or NH(4) (+)-N as the sole N source. After three months, seedlings grown with NH(4) (+)-N were larger than seedlings grown with NO(3) (-)-N. Irradiance had a greater effect on growth of ammonium-fed seedlings than on growth of nitrate-fed seedlings.At all times from 6 to 24 h following incorporation of (15)N, soluble, insoluble, and total (15)N contents of shoots and roots were higher in ammonium-fed seedlings than in nitrate-fed seedlings. The pattern of (15)N accumulation in shoots was similar to that in roots. After 6 and 24 h of (15)N incorporation, unshaded, ammonium-fed seedlings had 8.8 and 2.8 times greater total (15)N contents, respectively, than unshaded, nitrate-fed seedlings. In response to shading, ammonium-fed seedlings increased their total uptake of (15)N per unit root weight, whereas nitrate-fed seedlings did not. No nitrate or (15)NO(3) (-) was detected in any plant tissue. Nitrate-fed plants had higher NH(4) (+), Asp, and Gln concentrations in needles and higher gamma-aminobutyric acid and Arg concentrations in stems. Accumulation of (15)N in roots was not affected by the pH of the (15)N solution or by the N source fed to the seedlings before the period of (15)N incorporation. Thus NO(3) (-) transport into roots, rather than its reduction or transport within the plant, seems to be the factor limiting the growth of jack pine supplied with NO(3) (-)-N as the sole N source.  相似文献   

4.
Bauer GA  Berntson GM 《Tree physiology》2001,21(2-3):137-144
We examined changes in root system architecture and physiology and whole-plant patterns of nitrate reductase (NR) activity in response to atmospheric CO2 enrichment and N source to determine how changes in the form of N supplied to plants interact with rising CO2 concentration ([CO2]). Seedlings of Betula alleghaniensis Britt. and Pinus strobus L., which differ in growth rate, root architecture, and the partitioning of NR activity between leaves (Betula) and roots (Pinus), were grown in ambient (400 microl l(-1)) and elevated (800 microl l(-1)) [CO2] and supplied with either nitrate (NO3-) or ammonium (NH4+) as their sole N source. After 15 weeks of growth, plants were harvested and root system architecture, N uptake kinetics, and NR activity measured. Betula alleghaniensis responded to elevated [CO2] with significant increases in growth, regardless of the source of N. Pinus strobus showed no significant response in biomass production or allocation to elevated [CO2]. Both species exhibited significantly greater growth with NH4+ than with NO3-, along with lower root:shoot biomass ratios. Betula showed significant increases in total root length in response to elevated [CO2]. However, root N uptake rates in Betula (for both NO3- and NH4+) were either reduced or unchanged by elevated [CO2]. Pinus showed the opposite response to elevated [CO2], with no change in root architecture, but an increase in maximal uptake rates in response to elevated [CO2]. Nitrate reductase activity (on a mass basis) was reduced in leaves of Betula in elevated [CO2], but did not change in other tissues. Nitrate reductase activity was unaffected by elevated [CO2] in Pinus. Scaling this response to the whole-plant, NR activity was reduced in elevated [CO2] in Betula but not in Pinus. However, because Betula plants were larger in elevated [CO2], total whole-plant NR activity was unaffected.  相似文献   

5.
We studied the effects of excess nitrogen added as nitrate (NO(3) (-)) or ammonium (NH(4) (+)), or both, on mineral nutrition and growth of beech (Fagus sylvatica L.) plants grown at pH 4.2 in Al-free nutrient solution or in solutions containing 0.1 or 1.0 mM AlCl(3). A high external concentration of NH(4) (+) increased the concentration of nitrogen in roots, stems and leaves. The root/shoot dry weight ratio was less in plants grown in the presence of NH(4) (+) than in plants grown in the presence of NO(3) (-). The concentration of phosphorus in the roots was increased and the concentration of potassium in all parts of the plant was decreased by NH(4) (+). A high external concentration of NO(3) (-) caused a decrease in phosphorus concentrations of the root, stem and leaf. Uptake of (45)Ca(2+) by roots was reduced in the presence of high concentrations of NH(4) (+) or NO(3) (-), and a combination of high concentrations of nitrogen and aluminum further reduced the uptake of (45)Ca(2+). Uptake of phosphate ((32)P) and concentrations of phosphorus in root and shoot were increased when plants were grown in the presence of 0.1 mM Al. Exposure to 1.0 mM Al, however, reduced the concentration of phosphorus in roots and shoots and the reduction was greater when plants were grown in the presence of a high external NO(3) (-) concentration. Aluminum binds to roots, and plants grown in the presence of 1.0 mM Al had a slightly higher concentration of aluminum in roots than plants grown in the presence of 0.1 mM Al, whereas the concentration of Al in the shoot was increased 2 to 3 times in plants exposed to 1.0 mm Al. Furthermore, the effects of 1.0 mM Al on uptake of other macronutrients were quite different from the effects of 0.1 mM Al. We conclude that 0.1 mM Al facilitates uptake and transport of phosphorus in beech and that between 0.1 and 1.0 mM Al there is a dramatic change in the effects of Al on uptake and transport of divalent cations and phosphorus.  相似文献   

6.
Effects of 3, 25, 100, 200 and 800 microM Mn on biomass and pigment, starch and nitrate concentrations were studied in Norway spruce (Picea abies (L.) Karst.) seedlings grown with either NO(3) (-) or NH(4) (+) as the sole nitrogen source. After 77 days of exposure to 800 microM Mn, shoot growth had ceased in about 50% of the seedlings independently of the N source. Despite high Mn concentrations in roots and shoots of the Mn-treated seedlings, no visible symptoms of Mn toxicity were evident. The rate of root elongation was decreased by treatment with >/= 200 microM Mn when N was supplied as NO(3) (-), but not when it was supplied as NH(4) (+). This difference could be attributed to the higher Mn concentrations in root tips of the NO(3) (-)-grown seedlings compared with the NH(4) (+)-grown seedlings. In Mn-treated seedlings, the concentration of Mg, and to a lesser extent that of Ca, decreased. Depletion of these elements might account for the observed growth depression. Potassium concentrations were similar in the control and Mn-treated seedlings. Treatment of seedlings with 800 microM Mn for 50 days led to several physiological changes: starch accumulated, the concentrations of nitrate and phenolic compounds increased, pigment concentrations decreased, and in vivo nitrate reductase activity in roots was reduced.  相似文献   

7.
Three-year-old clonal cuttings of Picea sitchensis (Bong.) Carr. were grown for two years (1988-1989) in sand irrigated with a nutrient solution containing either 1.0 mol N m(-3) (low N) or 6.0 mol N m(-3) (high N) NH(4)NO(3). In 1988, all the N provided was enriched with (15)N to 4.95 atom % (labeled N). In 1989, N was supplied with (15)N at natural abundance (unlabeled N). The recovery of unlabeled and labeled N in new foliage was used to quantify the internal cycling of N. In the high-N treatment, trees had two flushes of shoot growth and a period of rapid root growth, which coincided with the second flush of shoot growth in August. The timing of root growth and the first flush of shoot growth was similar in the low-N treatment, but there was no second flush of shoot growth and a greater proportion of biomass was recovered in roots. By November 1989, the root/needle dry matter ratio was 1.95 for the low-N trees and 1.36 for the high-N trees. Nitrogen was stored overwinter in roots and current-year needles. During the first six weeks of growth in the spring of 1989, stored N was remobilized for new foliage growth. Subsequent growth depended on root uptake of N. Remobilization of stored N was apparently not affected by the current N supply, because the amount of unlabeled N recovered in foliage produced in 1988 was the same for both N treatments. During 1989, the proportion of (15)N remobilized from roots relative to that from leaves produced in 1988 was greater in low-N trees than in high-N trees. In the autumn of both years, there was rapid uptake of N into roots and current-year needles. The effects of N supply on tree growth and nitrogen use efficiency are discussed in terms of the capacity for both N storage and internal cycling.  相似文献   

8.
An understanding of root system capacity to acquire nitrogen (N) is critical in assessing the long-term growth impact of rising atmospheric CO2 concentration ([CO2]) on trees and forest ecosystems. We examined the effects of mycorrhizal inoculation and elevated [CO2] on root ammonium (NH4+) and nitrate (NO3-) uptake capacity in sweetgum (Liquidambar styraciflua L.) and loblolly pine (Pinus taeda L.). Mycorrhizal treatments included inoculation of seedlings with the arbuscular mycorrhizal (AM) fungus Glomus intraradices Schenck & Smith in sweetgum and the ectomycorrhizal (EM) fungus Laccaria bicolor (Maire) Orton in loblolly pine. These plants were then equally divided between ambient and elevated [CO2] treatments. After 6 months of treatment, root systems of both species exhibited a greater uptake capacity for NH4+ than for NO3-. In both species, mycorrhizal inoculation significantly increased uptake capacity for NO3-, but not for NH4+. In sweetgum, the mycorrhizal effect on NO3- and NH4+ uptake capacity depended on growth [C02]. Similarly, in loblolly pine, the mycorrhizal effect on NO3- uptake capacity depended on growth [CO2], but the effect on NH4+ uptake capacity did not. Mycorrhizal inoculation significantly enhanced root nitrate reductase activity (NRA) in both species, but elevated [CO2] increased root NRA only in sweetgum. Leaf NRA in sweetgum did not change significantly with mycorrhizal inoculation, but increased in response to [CO2]. Leaf NRA in loblolly pine was unaffected by either treatment. The results indicate that the mycorrhizal effect on specific root N uptake in these species depends on both the form of inorganic N and the mycorrhizal type. However, our data show that in addressing N status of plants under high [CO2], reliable prediction is possible only when information about other root system adjustments (e.g., biomass allocation to fine roots) is simultaneously considered.  相似文献   

9.
Hawkins BJ 《Tree physiology》2007,27(6):911-919
Nitrogen (N) uptake and utilization in seedlings of six full-sib families of coastal Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) known to differ in growth rate were assessed at the whole plant and root levels. Seedlings were grown in soil or aeroponically with high and low nutrient availability. Consistent family differences in growth rate and N utilization index were observed in both soil and aeroponic culture, and high-ranking families by these measures also had greater net N uptake in soil culture. Two of the three families found to be fast-growing in long-term field trials exhibited faster growth, higher N utilization indices and greater net N uptake at the seedling stage. Mean family net influx of ammonium (NH4+) and efflux of nitrate (NO3-) in the high- and low-nutrient treatments were significantly correlated with measures of mean family biomass. The high-nutrient availability treatment increased mean net fluxes of NH4+ and NO3- in roots. These results indicate that efficiency of nutrient uptake and utilization contribute to higher growth rates of trees. Nutrient-related traits should be considered in tree breeding programs, as the indications are that assessments may be made at an early stage.  相似文献   

10.
Effects of four N sources and two defoliation treatments on growth and nitrogenase activity of Gliricidia sepium (Jacq.) Walp seedlings were studied in a greenhouse. All nutrients were supplied in irrigation water to the sterile growing medium. The N sources were: (1) 100 mg l(-1) of N supplied as NO(3) (-) (high-NO(3) (-)), (2) 50 mg l(-1) of N supplied as NO(3) (-) and inoculation with Rhizobium spp. medium-NO(3) (-)), (3)100 mg l(-1) of N supplied as NH(4)NO(3), and (4) inoculation with Rhizobium spp without mineral N (N(2)). At 35 weeks after sowing, mean total biomass was 130.5, 50.5, 22.9 and 17.4 g seedling(-1) in the NH(4)NO(3), N(2), medium-NO(3) (-) and high-NO(3) (-) treatments, respectively. The root/shoot ratio was high in all of the N treatments (1.73-2.77) because the seedlings had big taproots. The medium-NO(3) (-) treatment completely inhibited nodulation, whereas seedlings in the N(2) treatment were profusely nodulated. At 32 weeks after sowing, groups of seedlings in the N(2) and high-NO(3) (-) treatments were subjected to 50 or 100% defoliation. Closed-chamber acetylene reduction assays of intact root systems were conducted to compare nitrogenase activity at 7, 14 and 28 days after defoliation (DAD). At 7 and 14 DAD, nitrogenase activity of completely and partially defoliated seedlings was about 10 and 60%, respectively, of that of undefoliated controls. At 28 DAD, nitrogenase activity of completely defoliated seedlings was twice the predefoliation value, whereas nitrogenase activity of partially defoliated seedlings was only 87% of the predefoliation value. Recovery of nitrogenase activity was strongly correlated with foliage regrowth in the completely defoliated seedlings, but not in the partially defoliated seedlings. Abundant belowground C and N reserves in the large taproot probably contributed to the rapid recovery from defoliation. Accumulation of belowground biomass may also improve defoliation tolerance of mature trees.  相似文献   

11.
Lack of information concerning root growth of trees limits our knowledge of plant development and fertilizer response. The objective of this work was to study root growth dynamics of an E. urophylla forest after harvesting and the supply of nutrients from the roots and the soil to the new sprouts originating from the stumps. About 7-year-old eucalypt trees were felled and the sprouts and roots were sampled at 0, 60, 120, 180, 240, 330 days after harvesting. The roots were separated into fine roots (<1 mm), medium roots (1–3 mm), coarse roots (>3 mm), and taproot. Nutrient supply to sprouts from the old roots and the soil was calculated based on the change in nutrient content of the roots with time and accumulation of nutrients in the sprouts. Fine, medium and coarse root biomass increased with time after harvesting. However, the increase was more pronounced with fine roots. Between harvesting and day 60 of the new growth, all nutrients allocated to the sprouts, excluding potassium, were supplied by the soil. K was the nutrient most dependent on root reserves for the initial growth of sprouts. The contribution of the old roots to N, P, Ca, and Mg accumulation in the sprouts increased between day 60 and 120. At 330 days after harvesting, about 9.2, 23.9, and 12.6% of the N, K, and Mg, respectively, that had accumulated in the sprouts were supplied by the roots, while all P and Ca were supplied by the soil.  相似文献   

12.
Nitrogen mobilization, nitrogen uptake and growth of cuttings obtained from poplar stock plants fertigated with different nitrogen (N) treatments and sprayed with urea in autumn were studied. Stock plants propagated from poplar cuttings were trained to a single shoot and fertigated with 0, 5, 10, 15 or 20 mmol l(-1) N during the first growing season. In October, a subset of stock plants from each N fertigation treatment was sprayed twice with either 3% urea or water, and overwintered outside. In March, total tree biomass and total N concentration and content of stems were estimated for stock plants in each treatment, and cuttings were taken from the middle of each stock plant and stored in plastic bags at 2 degrees C. In mid-April, cuttings were planted in 7.5-l pots containing N-free medium and grown outdoors with a weekly fertigation with nutrient solution containing 0 or 10 mmol l(-1) 15NH4 15NO3. In mid-July, cuttings were harvested, and new shoot (new stems and leaves), shank (old cutting stem) and roots were analyzed for new biomass growth and total N and 15N content. Growth of stock plants was positively related to N supply in the previous growing season. Foliar urea application in autumn had no effect on subsequent stock plant growth even though urea sprays increased both N concentration and content in stem tissues. Biomass growth of cuttings obtained from stock plants was closely related to their N content when the cuttings were grown in an N-free medium regardless of previous treatments applied to the stock plants. When N was supplied in the growth medium, the strength of the relationship between regrowth and N content of cuttings was significantly reduced. Cuttings from stock plants treated with foliar urea and grown in a N-free medium remobilized between 75 and 82% of their total N for new growth, whereas cuttings from plants receiving no urea spray remobilized only between 60 and 69% of their total N for new growth. Current N fertilization of the cuttings reduced the percentage of N remobilized. We conclude that new growth of poplar cuttings in spring was more dependent on currently applied N than on reserve N, and urea N applied as a spray in autumn was more easily remobilized than N taken up by roots during the previous season.  相似文献   

13.
Sustained increases in plant production in response to elevated atmospheric carbon dioxide (CO(2)) concentration may be constrained by the availability of soil nitrogen (N). However, it is possible that plants will respond to N limitation at elevated CO(2) concentration by increasing the specific N uptake capacity of their roots. To explore this possibility, we examined the kinetics of (15)NH(4) (+) and (15)NO(3) (-) uptake by excised roots of Populus tremuloides Michx. grown in ambient and twice-ambient CO(2) concentrations, and in soils of low- and high-N availability. Elevated CO(2) concentration had no effect on either NH(4) (+) or NO(3) (-) uptake, whereas high-N availability decreased the capacity of roots to take up both NH(4) (+) and NO(3) (-). The maximal rate of NH(4) (+) uptake decreased from 12 to 8 &mgr;mol g(-1) h(-1), and K(m) increased from 49 to 162 &mgr;mol l(-1), from low to high soil N availability.Because NO(3) (-) uptake exhibited mixedkinetics over the concentration range we used (10-500 &mgr;mol l( -1)), it was not possible to calculate V(max) and K(m). Instead, we used an uptake rate of 100 &mgr;mol g(-1) h(-1) as our metric of NO(3) (-) uptake capacity, which averaged 0.45 and 0.23 &mgr;mol g(-1) h(-1) at low- and high-N availability, respectively. The proximal mechanisms for decreased N uptake capacity at high-N availability appeared to be an increase in fine-root carbohydrate status and a decrease in fine-root N concentration. Both NH(4) (+) and NO(3) (-) uptake were inversely related to fine-root N concentration, and positively related to fine-root total nonstructural carbohydrate concentration. We conclude that soil N availability, through its effects on fine-root N and carbohydrate status, has a much greater influence on the specific uptake capacity of P. tremuloides fine roots than elevated atmospheric CO(2). In elevated atmospheric CO(2), changes in N acquisition by P. tremuloides appeared to be driven by changes in root architecture and biomass, rather than by changes in the amount or activity of N-uptake enzymes.  相似文献   

14.
Effects of Al on growth, nutrient uptake and proton efflux were studied in Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings grown for about nine months in culture solutions with a pH between 3.4 and 3.6 and with both calcium and magnesium (Ca + Mg) at a concentration of 0.1, 0.5 or 2.5 mM. In the absence of Al, plant dry matter production and root development increased with increasing concentrations of (Ca + Mg) in the culture solution. At the low and intermediate (Ca + Mg) concentrations, optimal root and shoot development were observed at an Al concentration of 4 mg l(-1). At the highest (Ca + Mg) concentration, Al up to 4 mg l(-1) did not affect growth, but at higher concentrations, it significantly reduced both shoot and root growth. As the concentration of (Ca + Mg) in the nutrient solution increased, the concentrations of Ca and Mg increased in shoots and roots also. The concentrations of Ca and Mg in the roots were unaffected by the presence of Al, whereas in the shoots they were either unaffected, or increased, by Al. Concentrations of Al in, or on, roots, or in shoots, did not change in response to changing concentrations of Ca + Mg in the nutrient medium. In general, concentrations of P and K in shoots and roots were higher in seedlings grown in nutrient solutions containing Al. Stimulation of growth by moderate concentrations of Al, which was observed at suboptimal (Ca + Mg) concentrations, was associated with a low NH(4) preference and a low root proton efflux. The Al-induced increase in internal K concentration and reduction in NH(4) preference may be explained by a lower efflux of K and NO(3), respectively.  相似文献   

15.
Influence of plant internal nitrogen (N) stocks on carbon (C) and N uptake and allocation in 3-year-old beech (Fagus sylvatica L.) was studied in two 15N- and 13C-labeling experiments. In the first experiment, trees were grown in sand and received either no N nutrition (-N treatment) or 4 mM unlabeled N (+N treatment) for 1 year. The -N- and +N-pretreated trees were then supplied with 4 mM 15N and grown in a 13CO2 atmosphere for 24 weeks. In the second experiment, trees were pretreated with 4 mM 15N for 1 year and then supplied with unlabeled N for 24 weeks and the remobilization of stored 15N was monitored. On the whole-plant level, uptake of new C was significantly reduced in -N-pretreated trees; however, partitioning of new C was not altered, although there was a trend toward increased belowground respiration. The amount of N taken up was not influenced by N nutrition in the previous year. In +N-pretreated trees, partitioning of new N was dominated by the fine roots (59.7% at Week 12), whereas in -N-pretreated trees, partitioning of new N favored stem, coarse roots and fine roots (24, 21 and 31.9%, respectively, at Week 12), indicating the formation of N stores. The contribution of previous-year N to leaf N was about 15%. The N remobilized for leaf formation had been stored in stem and coarse roots. We conclude that, within a growing season, the growth of beech is strongly determined by the availability of tree internal N stores, whereas the current N supply is of less importance.  相似文献   

16.
调查了施加氮肥(15NH4和15NO3)处理后在两个连续生长季内欧洲水青冈(Fagus sylvatica L.)幼苗地上部分和地下部分的生物量和营养元素分配。盆栽欧洲水青冈幼苗培养于温室大棚内,培养土样取自相邻的三种林分:欧洲水青冈,挪威赤松,欧洲水青冈-赤松混交林。结果表明,氮肥(15N)处理对欧洲水青冈营养元素分配没有显著影响,施加氮素形式决定自身流入植物库的情况。欧洲水青獭收氮素主要以硝态氮的形式,因此,尽管植物体内保存的硝态氮和氨态氮并没有统计差异,但是叶片中硝态氮明显减少。施加硝态氮对欧洲水青冈氮素恢复的影响要大于施加氨态氮。与欧洲水青冈茎、粗根相比,优质根系对氮素(15N)固定是一个缓慢过程。表8图1参40。  相似文献   

17.
We measured fine root N concentration, root in vivo nitrate reductase activity (NRA) and root uptake capacity for (15)NH(4) (+) and (15)NO(3) (-) along an N-deposition gradient from northern Sweden to central Europe, encompassing a variation in N deposition rates of < 5 to about 40 kg N ha(-1) year(-1). The focus was on Picea abies (L.) Karst., but Fagus sylvatica L. in central Europe and Pinus sylvestris L. and Betula spp. in northern Sweden were also studied. We assumed that, with an increased supply of N, root N concentration would increase, activity of the inducible enzyme nitrate reductase (NR) in roots would increase, particularly with an increasing supply of NO(3) (-), and root uptake capacity for inorganic N would decline, reflecting a lower demand for N. As expected, fine root N concentration in P. abies increased along the gradient from 1.1% (d.w. basis) at the northern site to 2.1% at central European sites. This variation compared with an amplitude of 0.7-1.5% for foliage. Root in vivo NRA was low in northern Sweden, and higher in central Europe. Picea abies and broad-leaved species had similar root NRA. At one location in Denmark and one in France, however, root NRA in the spring was very high in F. sylvatica. Root uptake capacity for NO(3) (-), as measured in excised roots, was low throughout the transect, but in P. abies, it was high for NH(4) (+) in northern Sweden and decreased by a factor of 4 with increasing N deposition. A similar pattern was found in the broad-leaved species. Unless the higher availability of NO(3) (-) and lower specific root uptake capacity per unit root mass for inorganic N in central Europe (compared with northern Sweden) is balanced by a higher root biomass, the central European forests will be a weaker sink for N.  相似文献   

18.
In spring, nitrogen (N) uptake by apple roots begins about 3 weeks after bud break. We used 1-year-old 'Fuji' Malus domestica Borkh on M26 bare-root apple trees to determine whether the onset of N uptake in spring is dependent solely on the growth stage of the plant or is a function of soil temperature. Five times during early season growth, N uptake and total amino acid concentration were measured in trees growing at aboveground day/night temperatures of 23/15 degrees C and belowground temperatures of 8, 12, 16 or 20 degrees C. We used (15NH4)(15NO3) to measure total N uptake and rate of uptake and found that both were significantly influenced by both soil temperature and plant growth stage. Rate of uptake of 15N increased with increasing soil temperature and changed with plant growth stage. Before bud break, 15N was not detected in trees growing in the 8 degrees C soil treatment, whereas 15N uptake increased with increasing soil temperatures between 12 and 20 degrees C. Ten days after bud break, 15N was still not detected in trees growing in the 8 degrees C soil treatment, although total 15N uptake and uptake rate continued to increase with increasing soil temperatures between 12 and 20 degrees C. Twenty-one days after bud break, trees in all temperature treatments were able to acquire 15N from the soil, although the amount of uptake increased with increasing soil temperature. Distribution of 15N in trees changed as plants grew. Most of the 15N absorbed by trees before bud break (approximately 5% of 15N supplied per tree) remained in the roots. Forty-six days after bud break, approximately one-third of the 15N absorbed by the trees in the 12-20 degrees C soil temperature treatments remained in the roots, whereas the shank, stem and new growth contained about two-thirds of the 15N taken up by the roots. Total amino acid concentration and distribution of amino acids in trees changed with plant growth stage, but only the amino acid concentration in new growth and roots was affected by soil temperature. We conclude that a combination of low soil temperature and plant developmental stage influences the ability of apple trees to take up and use N from the soil in the spring. Thus, early fertilizer application in the spring when soil temperatures are low or when the aboveground portion of the tree is not actively growing may be ineffective in promoting N uptake.  相似文献   

19.
Sycamore (Acer pseudoplatanus L.) and Sitka spruce (Picea sitchensis(Bong.) Carr.) were grown in sand culture in glasshouses withtwo levels of N supplied with irrigation 1.0 (deficient) and6.0 (sufficient) molNm–3, all as NH4NO3. Providing trees with a sufficient N supply increased both theirabove ground growth and N content compared with the N deficientplants. Provision of the generous N supply also altered thedistribution of growth between leaves and roots, with the N-deficientplants having a higher root:leaf or root:needle ratio than thewell fertilized trees. Provision of a generous N supply stimulatedroot growth, especially at the later harvests, which was reflectedmainly in growth of the tap root in sycamore. There was an increasein both root mass and root diameter with N supply. When thegrowth of white roots was monitored using a borescope, it wasshown that there were significantly more new roots producedby the well-fertilized trees. The borescope data also showeddetail of the bimodal seasonal pattern of root growth underhigh N in Sitka spruce which related to trends in nitrogen uptake.  相似文献   

20.
不同形态氮素配比对马大杂种相思无性系幼苗生长的影响   总被引:1,自引:0,他引:1  
在温室内采用不同氮形态配比的营养液,水培研究9个马大杂种相思(Acacia mangium×A.au-riculiformis Cunn.ex Bench)无性系幼苗的生长状况,结果表明,NO3^-∶NH4+值对马大相思生长及生物量的影响均达到极显著水平。当NO3^-∶NH4^+为25∶75时,马大相思幼苗的苗高、生物量干质量及生物量鲜重积累均达到最大。而NO3^-∶NH4^+为75∶25时,根长净生长量最大,但抑制了苗高的生长;在供氮总量不变的条件下,NO3^-∶NH4^+为25∶75时最有利于马大杂种相思幼苗的生长。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号