首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The effects of wax myrtle (Myrica cerifera L.) on the nitrogen cycle were examined in a 23-year-old slash pine (Pinus elliottii Engelm. var. elliottii) plantation located near Gainesville, FL. These shrubs occurred naturally as an understory and had a crown cover of 8% of the study area. The potential rate of nitrogen fixation by wax myrtle was estimated to be 13 g N m?2 year?1, or 10.6 kg N ha?1 year?1 on a stand wide basis. Wax myrtle fixed substantial amounts of nitrogen throughout the year although winter rates were significantly less due to the greatly reduced activity of old nodules during that season. The average accumulation rate of nitrogen beneath wax myrtle was 1.5 g N m?2 year?1 in the soil and 0.9 g N m?2 year?1 in the forest floor. On a stand wide basis this amounted to an accretion of 1.9 kg N ha?1 year?1 in the soil and forest floor.  相似文献   

2.
Most salt marshes along the east coast of North America appear to accumulate sediment at a rate sufficient to keep pace with the rise in eustatic sea level and local subsidence. Thus, these marshes must be importing sediment from the coastal ocean and/or the adjacent estuaries. The sediment accumulating in the North Inlet salt marsh, South Carolina, is 80% inorganic, and, based on 210Pb dating, is accreting at a rate of 0.098 g cm–2 yr–1, equal to a 2.7 mm yr–1 vertical sedimentation rate. Tide gauge records show a relative sea level rise of 2.2 to 3.4 mm yr–1, indicating this marsh is maintaining its elevation relative to mean sea level rise. The North Inlet salt marsh has two avenues of sediment exchange: (1) through the tidal inlet to the ocean and (2) through Winyah Bay, the adjoining estuary. Long-term inorganic suspended sediment flux through the inlet is calculated to be a net import of 1.35 kg s–1, based on application of a tidal hypsometric flow model to seven years of daily suspended sediment concentrations. However, the import required to balance relative sea level rise is only 0.80 kg s–1, implying an excess net import of 0.55 kg s–1. The difference between import and accumulation is explained by the progradation of the marsh toward Winyah Bay, a conclusion which is supported by the geomorphology and stratigraphy of the marsh-estuary border. Thus, the North Inlet marsh imports sediment on the average through the tidal inlet, at a rate which allows for both vertical accumulation at a rate approximately equal to the relative sea level rise and also lateral expansion of the marsh.  相似文献   

3.
The study was carried out in a 9-year-old hinoki cypress (Chamaecyparis obtusa (Sieb. et Zucc.) Endl.), stand over a span of three years from July 1992 to June 1995, primarily to predict litter production from exteral tree dimensions by combining open-top clothtrap and clipping methods. Litter production was virtually concentrated in October and November. Stem cross-sectional area at the crown base was proved to be the reliable predictor of litter production, and that single regression model was evolved irrespective of year. The regression model had proportional constants of 2.696 × 10−2 and 3.540 × 10−2 kg cm−2 year−1 for leaf litter and total litter production, respectively. Utilizing the model, leaf litter production of the stand was assessed to be 5.04, 5.12, and 4.99, and total litter production to be 6.48, 6.58, and 6.40 Mg ha−1 year−1 for the first, second and third year, respectively. Biomass increment was 6.67, 7.80, and 7.70, tree mortality was 0.15, 0.13, and 0.41, and insect grazing was 0.09, 0.05, and 0.002 Mg ha−1 year−1 for the first, second and third year, respectively. Above-groud net production was therefore 13.39, 14.55, and 14.51, Mg ha−1 year−1, and biomass accumulation ratio (biomass/net production) was 1.86, 2.21, and 2.76 year for the first, second and third year, respectively. Considering data from earlier studies and the results of this study, biomass accumulation ratio,BAR (year), of hinoki stands was best related to above-ground biomass,y (Mg ha−1), using the power function:BAR=0.112y 0.936. Excluding seedling stands, leaf efficiency (above-ground net production per unit leaf mass) of hinoki stands was 0.91±0.02 (SE) Mg Mg−1 year−1, irrespective of stand biomass or age.  相似文献   

4.
The effects of prescribed burning on nutrient cycling were studied in a stand of oocarpa pine (Pinus oocarpa Schiede) in central Honduras. Small paired runoff plots were subjected to a low-intensity prescribed burn in one of two seasons and nutrient losses in runoff water and sediment were monitored together with nutrient inputs in bulk precipitation.Burning increased the loss of nutrients and net losses of calcium, potassium and magnesium were recorded during the first 1612 months after burning. Increased rates of sediment loss rather than increased losses in surface runoff were responsible for the greater part of the increase in total nutrient losses from the burned plots. Greater quantities of nutrients were lost from the plots burned just prior to the dry season than from those burned after the start of the wet season because of slow recovery of the ground vegetation during the dry season and exposure to the intense rains of May and early June. Recovery from burning was rapid and runoff and sediment loss from the burned plots approached the levels of controls 2 years after burning. As nutrient losses are a reflection of total runoff and sediment losses, it is probable that no net nutrient losses would have been detected during the 2nd year after burning had sampling been continued. The net nutrient losses recorded were small and this is attributed to the low initial fuel loadings, low fire intensities and the rapid rate of recovery of the ground vegetation. The significance of other potential sources of losses and gains of nutrients is discussed and it is concluded that low-intensity prescribed burning for hazard reduction, with burning cycles ranging from three to seven or more years, will reduce the rate of nutrient accumulation on the site rather than deplete the nutrient capital.  相似文献   

5.
Abstract

The National Forest Inventory (NFI) is an important resource for estimating the national carbon (C) balance. Based on the volume, biomass, annual biomass increment and litterfall of different forest types and the 6th NFI in China, the hyperbolic relationships between them were established and net primary production (NPP) and net ecosystem production (NEP) were estimated accordingly. The results showed that the total biomass, NPP and NEP of China's forests were 5.06 Pg C, 0.68 Pg C year?1 and 0.21 Pg C year?1, respectively. The area-weighted mean biomass, NPP and NEP were 35.43 Mg C ha?1, 4.76 Mg C ha?1 year?1 and 1.47 Mg C ha?1 year?1 and varied from 13.36 to 79.89 Mg C ha?1, from 2.13 to 9.15 Mg C ha?1 year?1 and from ?0.16 to 5.80 Mg C ha?1 year?1, respectively. The carbon sequestration was composed mainly of Betula and Populus forest, subtropical evergreen broadleaved forest and subtropical mixed evergreen–deciduous broadleaved forest, whereas Pinus massoniana forest and P. tabulaeformis forest were carbon sources. This study provides a method to calculate the biomass, NPP and NEP of forest ecosystems using the NFI, and may be useful for evaluating terrestrial carbon balance at regional and global levels.  相似文献   

6.
根据1973—2008年间7次全国森林资源清查数据及中国森林植被分布特征,从不同森林类型和不同气候带定量分析中国森林植被净生产量及平均生产力动态变化规律。研究结果表明:中国森林植被净生产量和平均生产力总体呈增加趋势,植被净生产量由1973—1976年间的803.359×106t·a-1增加到2004—2008年间的1 478.425×106t·a-1,增加了84.03%;相应的森林植被平均生产力由7.302 t·hm-2·a-1增加到9.502 t·hm-2·a-1,增加了30.13%。不同森林类型中,阔叶混交林、杨桦林、落叶阔叶林和常绿阔叶林对中国森林植被净生产量贡献较大;热带林、阔叶混交林、常绿阔叶林平均生产力较高,油松林和马尾松林平均生产力相对较低。不同气候带中,热带地区森林植被净生产量呈波动中减少趋势,其它气候带呈增加趋势;1973—2008年间各气候带森林植被平均生产力为:热带(18.625 t·hm-2·a-1)寒温带温带(9.610 t·hm-2·a-1)亚热带(8.499 t·hm-2·a-1)暖温带(7.800 t·hm-2·a-1)。  相似文献   

7.
Seasonal and spatial variability of litterfall and NO3 and NH4+ leaching from the litter layer and 5-cm soil depth were investigated along a slope in a tropical dry evergreen forest in northeastern Thailand. Using ion exchange resin and buried bag methods, the vertical flux and transformation of inorganic nitrogen (N) were observed during four periods (dry, early wet, middle wet, and late wet seasons) at 15 subplots in a 180-m × 40-m rectangular plot on the slope. Annual N input via litterfall and inorganic N leached from the litter layer and from 5-cm depth soil were 12.5, 6.9, and 3.7 g N m−2 year−1, respectively, whereas net mineralization and the inorganic N pool in 0–5-cm soil were 7.1 g N m−2 year−1 and 1.4 g N m−2, respectively. During the early wet season (90 days), we observed 82% and 74% of annual NO3 leaching from the litter layer and 5-cm soil depth, respectively. Higher N input via leaf litterfall in the dry season and via precipitation in the early wet season may have led to higher NO3 leaching rate from litter and surface soil layers during the early wet season. Large spatial variability in both NO3 vertical flux and litterfall was also observed within stands. Small-scale spatial patterns of total N input via litterfall were significantly correlated with NO3 leaching rate from the surface soil layer. In tropical dry evergreen forests, litterfall variability may be crucial to the remarkable seasonal changes and spatial variation in annual NO3 vertical flux in surface soil layers.  相似文献   

8.
Wastewater bioremediation has been practised successfully in several forests without significant adverse effect on water quality of adjacent aquatic systems. However, long-term success of wastewater irrigation systems depends on an overall positive response of the forest ecosystem to substantial amounts of added water and nutrients over time. Municipal wastewater irrigation effects on the fate of added nitrogen in a mature Appalachian hardwood forest were investigated during the first 2 years of irrigation. Wastewater was secondarily treated, chlorinated, and sprayed on the study site at five rates. Forest litter N decreased on irrigated sites due to increased litter decomposition rates. Nitrogen mineralization potential (N0) decreased greatly in soils irrigated at a rate of 140 cm year−1 for 2 years. Net nitrification and relative nitrification (the amount of NO3-N as a proportion of the total mineral N) increased proportionally with irrigation rate. The highest irrigation rates increased denitrification activity and contributed significantly to the bioremediation process by removing nitrate that otherwise would have been subject to leaching. The increase in NO3 production in the soil and limited N sequestration by the forest system nevertheless resulted in a net loss of N via leaching. Nitrate concentrations of soil water increased owing to irrigation, with the highest rate at 11 mg 1−1 on sites receiving 70 cm year−1. During the 2-year period, the forest ecosystem experienced a net leaching loss of N that ranged from 14.8 to 105 kg N ha−1 year−1, depending on the application rate. It is likely that this mature hardwood forest will continue to lose N, and that little or no additional N will be sequestered.  相似文献   

9.
Analysis of the impacts of forest management and climate change on the European forest sector carbon budget between 1990 and 2050 are presented in this article. Forest inventory based carbon budgeting with large scale scenario modelling was used. Altogether 27 countries and 128.5 million hectare of forests are included in the analysis. Two forest management and climate scenarios were applied. In Business as Usual (BaU) scenario national fellings remained at the 1990 level while in Multifunctional (MultiF) scenario fellings increased 0.5–1% per year until 2020, 4 million hectare afforestation program took place between 1990 and 2020 and forest management paid more attention to current trends towards more nature oriented management. Mean annual temperature increased 2.5 °C and annual precipitation 5–15% between 1990 and 2050 in changing climate scenario. Total amount of carbon in 1990 was 12 869 Tg, of which 94% in tree biomass and forest soil, and 6% in wood products in use. In 1995–2000, when BaU scenario was applied under current climatic conditions, net primary production was 409 Tg C year−1, net ecosystem production 164 Tg C year−1, net biome production 84.5 Tg C year−1, and net sequestration of the whole system 87.4 Tg C year−1 which was equal to 7–8% of carbon emissions from fossil fuel combustion in 1990. Carbon stocks in tree biomass, soil and wood products increased in all applied management and climate scenarios, but slower after 2010–2020 than that before. This was due to ageing of forests and higher carbon densities per unit of forest land. Differences in carbon sequestration were very small between applied management scenarios, implying that forest management should be changed more than in this study if aim is to influence carbon sequestration. Applied climate scenarios increased carbon stocks and net carbon sequestration compared to current climatic conditions.  相似文献   

10.
The main objectives were to study the effect of gap size and canopy openness on the natural regeneration dynamics considering the parameters of sapling growth, recruitment, mortality, density, species composition and above-ground biomass accumulation. The study was carried out in 32 artificial gaps with sizes varying from 100 to 1200 m2 and canopy openness from 10 to 45%, from the second to the twelfth year after gap creation. The gap size was measured using the vertical projection of the tree crowns on the ground (Brokaw's definition), and the canopy openness measurement by hemispherical photography. In the first five years, mean sapling growth (0.54 cm year−1), mortality (3.9% year−1) and AGB (26.2 Mg ha−1 or 8.7 Mg ha−1 year−1) were significantly higher in the gaps than in the forest understorey (0.17 cm year−1, 1.5% year−1 and −0.59 Mg ha−1 year−1 respectively) and positively correlated with gap size and canopy openness. In the same period, recruitment was also significantly higher in the gaps (5.8% year−1) than in the forest understorey (0.4% year−1) but decreased with gap size and negatively correlated with canopy openness. In the first five years, the relative density of pioneer species was higher in the gaps but not significantly correlated with gap size or canopy openness. AGB increased linearly since canopy opening, and twelve years after gap creation it was still higher in larger (121.2 Mg ha−1 or 10.1 Mg ha−1 year−1) rather than smaller (62.5 ha−1 or 5.2 ha−1 year−1) gaps. Twelve years after gap creation there were no significant differences in the parameters of sapling growth, recruitment, and mortality which could be attributed to the original gap size and canopy openness.  相似文献   

11.
A number of continuous eddy covariance measurements and long-term biomass inventories had proved that old-growth forests are carbon sinks worldwide. The present study estimated the net ecosystem productivity (NEP) for an old-growth subtropical forest at the Dinghushan Biosphere Reserve in South China to investigate the temporal pattern of carbon sequestration, both seasonally and annually. The measured NEP over 7 years (from 2003 to 2009) showed that this forest was a net carbon sink, ranging from 230 (in 2008) to 489 g C m?2 year?1 (in 2004). The greatest value of NEP was found in the driest year and the lowest value in the wettest year during the study period. Within a year, NEP during the dry season was about 81.4 % higher than for the wet season. Accordingly, the dry season at seasonal scale and dry years at interannual scale are key periods for carbon sequestration in this forest. The strong seasonality of ecosystem or soil respiration (ER or SR) compared with gross primary productivity (GPP) resulted in substantial amounts of carbon being sequestered during dry seasons. A decrease of GPP and an increase of ER or SR demonstrated the lower carbon uptake in rainy years. From this study, we conclude that GPP and living biomass carbon increment are not overriding parameters controlling NEP. The variations in ER or SR driven by the rainfall scheme were the dominant factor determining the magnitude of NEP in this forest in South China.  相似文献   

12.
In most temperate forest, nitrogen (N) is considered a limiting factor. This becomes important in extreme environments, as Nothofagus antarctica forests, where the antecedents are scarce. Thinning practices in N. antarctica forests for silvopastoral uses may modify the soil N dynamics. Therefore, the objective of this work was to evaluate the temporal variation of soil N in these ecosystems. The mineral extractable soil N, net nitrification and net N mineralization were evaluated under different crown cover and two site quality stands. The mineral N extractable (NH4 +–N + NO3 ?–N) was measured periodically. Net nitrification and net N mineralization were estimated through the technique of incubation of intact samples with tubes. The total mineral extractable N concentration varied between crown cover and dates, with no differences among site classes. The lowest and highest values were found in the minimal and intermediate crown cover, respectively. In the higher site quality stand, the annual net N mineralization was lower in the minimal crown cover reaching 11 kg N ha?1 year?1, and higher in the maximal crown cover (54 kg N ha?1 year?1). In the lower site quality stand there was no differences among crown cover. The same pattern was found for net nitrification. Thinning practices for silvopastoral use of these forests, keeping intermediate crown cover values, did not affect both N mineralization and nitrification. However, the results suggest that total trees removal from the ecosystem may decrease N mineralization and nitrification.  相似文献   

13.
Agroforestry systems based on poplar (Populus deltoides) are becoming popular in eastern and northern parts of India. Therefore studies on the structure and function of the systems are important. The investigations included allometric equations for above- and belowground tree components, crop and plantation floor biomass and litter fall estimation at Pusa, Bihar, India. Biomass, floor litter mass, litter fall and net primary productivity (NPP) of plantations increased with an increase in age of trees whereas, crop biomass for any specific crop interplanted with poplar decreased with the age of the plantation. The total plantation biomass increased from 12.08 to 90.59 Mg ha−1 and NPP varied from 5.69 to 27.9 Mg ha−1 year−1. The biomass accumulation ratio ranged from 2.1 to 3.2. Total annual litter fall was in between 1.95 and 10.00 Mg ha−1 year−1, of which 92–94% was contributed by leaf litter. Compartmental models were developed for dry matter distribution in agroforestry systems involving young (3-year-old) and mature (9-year-old) poplar trees interplanted with various crops, the crops being grown in two rotations maize (Zea mays) – wheat (Triticum aestivum) – turmeric (Curcuma domestica) and pigeonpea (Cajanus cajan) – turmeric. This study substantiates the potential of Populus deltoides G3 under agroforestry combinations.  相似文献   

14.
Fine root biomass, rates of dry matter production and nutrients dynamics were estimated for 1 year in three high elevation forests of the Indian central Himalaya. Fine root biomass and productivity were higher in closed canopied cappadocian maple forest (9.92 Mg ha−1 and 6.34 Mg ha−1 year−1, respectively), followed by Himalayan birch forest (6.35 Mg ha−1 and 4.44 Mg ha−1 year−1) and Bell rhododendron forest (6.23 Mg ha−1 and 2.94 Mg ha−1 year−1). Both fine root biomass and productivity declined with an increase in elevation. Across the sites, fine root biomass was maximal in fall and minimal in summer. In all sites, maximum nutrient concentration in fine roots was in the rainy season and minimum in winter. Fine root biomass per unit basal area was positively related with elevation, Bell rhododendron forest having the largest fine root biomass per unit of basal area (0.53 Mg m−2) and cappadocian maple the least (0.18 Mg m−2). The production efficiency of fine roots per unit of leaf biomass also increased with elevation and ranged from 1.13 g g−1 leaf mass year−1 in cappadocian maple forest to 1.28 g g−1 leaf mass year−1 in Bell rhododendron forest. Present fine root turnover estimates showed a decline towards higher elevations (0.72 year−1 in cappadocian maple and 0.58 year−1 in Bell rhododendron forest) and are higher than global estimates (0.52).  相似文献   

15.
A comparison was made of annual net ecosystem productivity (NEP) of a closed canopy Sitka spruce forest over 2 years, using either eddy covariance or inventory techniques. Estimates for annual net uptake of carbon (C) by the forest varied between 7.30 and 11.44 t C ha−1 year−1 using ecological inventory (NEPeco) measures and 7.69–9.44 t C ha−1 year−1 using eddy covariance-based NEP (-NEE) assessments. These differences were not significant due to uncertainties and errors associated with estimates of biomass increment (15–21%) and heterotrophic respiration (12–19%). Carbon-stock change inventory (NEPΔC ) values were significantly higher (27–32%), when compared to both NEPeco- and -NEE-based estimates. Additional analyses of the data obtained from this study, together with published data, suggest that there was a systematic overestimation of NEPΔC -based assessments due to unaccounted decomposition processes and uncertainties in the estimation of soil-C stock changes. In contrast, there was no systematic difference between NEPeco and eddy covariance assessments across a wide range of forest types and geographical locations.  相似文献   

16.
Epidemiological studies of white pine blister rust on limber pine require a temporal component to explain variations in incidence of infection and mortality. Unfortunately, it is not known how long the pathogen has been present at various sites in the central Rocky Mountains of North America. Canker age, computed from canker length and average expansion rate, can be used to estimate infestation origin and infection frequency. To investigate relationships between canker lengths and canker ages for limber pine, we collected live white pine blister rust branch and stem cankers from three locations in Wyoming and two locations in Colorado. We quantified relationships between various measures of canker length and an estimate of canker age based on dendrochronological analysis. Total branch canker length was strongly, negatively correlated (r = ?0.79) with the first year of incomplete, annual ring formation (canker age). Mean longitudinal canker expansion rate was 8.4 cm year?1 for branch and stem cankers where branches distal to the canker were either dead or alive. Annual longitudinal canker expansion, however, was significantly greater on a stem or branch where the portion distal to the canker was alive (11.5 cm year?1) rather than dead (7.1 cm year?1). For branches or stems, proximal expansion rate (i.e., toward or down stem) averaged 4.9 cm year?1. The circumferential canker expansion rate (around branch or stem) was greater for stem cankers (8.3 cm year?1) than for branch cankers (6.2 cm year?1). Additional site and host tree covariates did not improve prediction of canker age. Two simple linear equations were developed to estimate a canker age from total length of a canker with the distal portion either alive or dead. An appropriate sample of canker ages can be used to determine how long a limber pine stand has been infested with white pine blister rust and how frequently infections have occurred.  相似文献   

17.
Plant biomass, species diversity and net primary productivity are presented for herb layer of banj oak (Quercus leucotrichophora A. Camus)-chir pine (Pinus roxburghii Sarg.) mixed forest in Kumaun, central Himalaya, India. The species diversity declined from a maximum (3.56) in September to a minimum (2.11) in December. The monthly live shoots biomass exhibited a single peak growth pattern with highest live shoot biomass of 185 g·m-2 in August. The seasonal pattern showed that the maximum above-ground production (131 g·m-2) occurred during the rainy season and the minimum (1 g·m-2) during winter season. The below-ground production was maximum during winter season (84 g·m-2) and minimum during summer season (34 g·m-2). The annual net shoot production was 171 g·m-2 and total below-ground production was 165 g·m-2. Of the total input 61% was channeled to above-ground parts and 39% to below-ground parts. Transfer of live shoots to dead shoots compartments and that of dead shoots to litter compartments was 61% and 66%, respectively. The total dry matter disappearance was 61% of the total input within annual cycle. The herb layer showed a net accumulation of organic matter, indicating the seral nature of the community.  相似文献   

18.
In tropical areas of Mexico, Leucaena leucocephala is widely used in silvopastoral systems. However, little information exists on other native woody species of high forage potential, such as Guazuma ulmifolia. The aim of this study was to evaluate the components of biomass, forage yield and quality, and availability of N in fodder banks of L. leucocephala, G. ulmifolia, and a mixture of both species during dry and rainy seasons, under sub-humid tropical conditions. The experimental unit was a 5 × 10 m plot, containing three rows with 2 m between rows; each row had 20 plant positions with 0.50 m between plants. Within each plant position there was either a single plant, in the case of pure-crop, or two plants, in the case of mixed of both species. A complete randomized block design with three repetitions was used. In both seasons, there were a significantly greater proportion of leaves in the G. ulmifolia fodder banks (71 %) and in mixed fodder banks (69 %) than in L. leucocephala fodder banks (64 %). Consequently, these systems had leaf-to-stem ratios of 2.4, 2.2 and 1.9, respectively. The forage yield of fodder banks was not influenced by season. The mixed fodder bank had greater forage yield (5.1 t DM ha?1) than the L. leucocephala fodder bank (3.4 t DM ha?1) in each season. Additionally, the mixed fodder bank accumulated more forage yield during the experimental period (10.2 t DM ha?1 year?1) than G. ulmifolia (9.0 t DM ha?1 year?1) or L. leucocephala (6.9 t DM ha?1 year?1). The concentrations of CP, C and C:N were not influenced by season. Forage NDF and ADF concentrations were greater in the rainy season (476 g kg?1 DM) compared with the dry season (325 g kg?1 DM). Mixed fodder banks had the greatest N yield (185.9 kg ha?1) and consequently the greatest availability of N (371.8 kg N ha?1 year?1). We conclude that mixed fodder banks of L. leucocephala and G. ulmifolia are a better option for improving productivity and forage quality in comparison with pure fodder banks in Yucatan, Mexico.  相似文献   

19.
A 27-year-old stand of flooded gum (Eucalyptus grandis Hill ex Maiden) in the North Coast Region of N.S.W. was assessed in relation to aboveground distribution and turnover of organic matter, nitrogen, phosphorus, calcium, magnesium and potassium. Of the 453 t ha?1 of aboveground organic matter present, 394 t was in the tree, 42 t in the understorey and 28 t in the forest floor. The total nitrogen, phosphorus, calcium, magnesium and potassium contents of the stand were 739, 44, 1254 and 658 kg ha?1, respectively, and the understorey contained 35%, 35%, 16%, 24% and 49% of the above-ground distribution of these nutrients respectively. Although the developing rainforest understorey comprised a relatively small portion (9.3%) of the total aboveground biomass, it played a disproportionate role in nutrient accumulation and uptake, and had an annual net accumulation of 14%, 55%, 59%, 30%, 44% and 69% of the aboveground organic matter, nitrogen, phosphorus, calcium, magnesium and potassium respectively. The net annual removal from the soil was 30, 1, 38, 5 and 31 kg ha?1 year?1 for nitrogen, phosphorus, calcium, magnesium and potassium, respectively. Flooded gum had very high accumulations of calcium in the bark and the effect of this in nutrient cycling is discussed. An idealised management system, to exploit and optimise the nutrient cycle of flooded gum, has been hypothesided.  相似文献   

20.
Forest ecosystems can modify the atmospheric CO2 through biomass accumulation mostly in tree stems with diameter at breast height (DBH) ≥ 10 cm. Aboveground biomass increment (ΔAGB), and changes in stand AGB, no. stems and basal area (BA) were calculated from mortality, recruitment, and growth data of tree stems in tropical evergreen broadleaved forest, Central Highland Vietnam. Data were derived from ten 1-ha permanent plots established in 2004, where all stems with DBH ≥ 10 cm were tagged, identified to species, and measured for DBH in 2004 and 2012. In an 8-year duration, the increment was 53 ± 10 stems ha–1, 7.8 ± 0.3 m2 ha–1 for BA and 86.0 ± 4.6 Mg ha–1 for AGB. The stem mortality rate was 0.9% year–1 and the stem recruitment rate was 2.2% year–1. Annual ΔAGB was 10.8 Mg ha–1 year–1, equaling to 5.4 Mg C ha–1 year–1. Of which, tree stems of 35–80 cm DBH classes accounted for 65%. The results indicated that the forest is in stage of carbon sequestration. Any disturbances causing death of 35–80 cm DBH tree stems will much reduce carbon sequestration capacity and it will take a long time for AGB to return to pre-disturbance stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号