首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pigs, asymptomatically infected with Actinobacillus pleuropneumoniae in their upper respiratory tract, can transmit the infection. Detection of such animals is indispensable to prevent the intake of the disease in a herd. This study was conducted to evaluate bacteriology, polymerase chain reaction (PCR) and serology for the detection of subclinically infected pigs. Pigs were inoculated onto the tonsils with an A. pleuropneumoniae serotype 9 strain (n=12, group 1) or phosphate buffered saline solution (PBSS) (n=5, group 2). To prevent infection of the lungs, pigs of group 1 were treated three times with sodium ceftiofur as an aerosol. A third group (n=5) was inoculated intranasally with the same strain. All animals were euthanized 30 days post-inoculation (dpi). In pigs of group 1, clinical signs were not observed. A small lung lesion was found in only one pig and A. pleuropneumoniae was isolated from this lesion. The bacterium was not isolated from the lungs of animals that did not develop lung lesions. A. pleuropneumoniae was demonstrated in tonsils of 9/12 animals using bacteriological isolation, whereas it was demonstrated in mixed bacterial cultures from tonsils of all 12 animals by PCR. In non-infected animals (group 2), clinical signs were not observed and A. pleuropneumoniae was not demonstrated in any sample. All intranasally infected animals (group 3) developed disease signs and lung lesions. High antibody titers against ApxI, ApxII and heat-stable antigens were detected in animals that developed lung lesions. Antibody titers against these antigens were low or absent in all other pigs. It was concluded that pigs carrying A. pleuropneumoniae in the upper respiratory tract generally do not show measurable antibodies in serum. Therefore, sensitive methods for the detection of the etiological agent such as PCR are required to identify carrier animals, while serological methods are not suitable.  相似文献   

2.
Within-herd transmission of pathogens occurs either by direct or by indirect contact between susceptible and infected animals. In dairy herds that are structured into groups, the way in which animals encounter each other and share an environment can affect pathogen transmission. Dairy cattle are heterogeneous in terms of susceptibility and infectivity with respect to Mycobacterium avium subspecies paratuberculosis (Map) transmission. It is mainly young animals that are susceptible and adults that are infectious. Both vertical and horizontal transmission through the ingestion of Map shed into the environment by adults and transiently infected calves can occur. Our objective was to assess the effect of contact structure on Map transmission in persistently infected dairy herds and to examine the effect of isolating calves from other calves or from adults before weaning. We developed a stochastic compartmental model of Map transmission in a closed dairy herd. The model reflects the Map infection process and herd management characteristics. Indirect transmission via the environment was modelled explicitly. Six infection states (susceptible, resistant, transiently infectious, latently infected, subclinically infected, and clinically affected) and two contaminated farm area environments (whole farm and calf area) were modelled. Calves were housed in hutches, individual indoor pens, or group indoor pens. Two different levels of exposure of calves to a farm environment contaminated by adults were possible: no exposure and indirect exposure through fomites. Three herd sizes were studied. We found that contacts between calves before weaning did not influence Map transmission in a herd, whereas the level of exposure of calves to an environment contaminated by adults and the starting age of exposure of calves to adults were pivotal. Early culling of clinically affected adults led to a lower prevalence of infectious adults over time. The results were independent of herd size. Despite the many transmission routes that are known, the best control approach is to limit the exposure of calves to adult faeces through the systematic separation of adults and calves in combination with hygiene measures. Reducing contact between calves does not appear effective.  相似文献   

3.
A better understanding of the variation in infectivity and its relation with clinical signs may help to improve measures to control and prevent (clinical) outbreaks of diseases. Here we investigated the role of disease severity on infectivity and transmission of Actinobacillus pleuropneumoniae, a bacterium causing respiratory problems in pig farms. We carried out transmission experiments with 10 pairs of caesarean-derived, colostrum-deprived pigs. In each pair, one pig was inoculated intranasally with 5 × 106 CFUs of A. pleuropneumoniae strain 1536 and housed together with a contact pig. Clinical signs were scored and the course of infection was observed by bacterial examination and qPCR analysis of tonsillar brush and nasal swab samples. In 6 out of 10 pairs transmission to contact pigs was observed, but disease scores in contact infected pigs were low compared to the score in inoculated pigs. Whereas disease score was positively associated with bacterial load in inoculated pigs and bacterial load with the transmission rate, the disease score had a negative association with transmission. These findings indicate that in pigs with equal bacterial load, those with higher clinical scores transmit A. pleuropneumoniae less efficiently. Finally, the correlation between disease score in inoculated pigs and in positive contact pigs was low. Although translation of experimental work towards farm level has limitations, our results suggest that clinical outbreaks of A. pleuropneumoniae are unlikely to be caused only by spread of the pathogen by clinically diseased pigs, but may rather be the result of development of clinical signs in already infected pigs.  相似文献   

4.
The study describes a polymerase chain reaction (PCR) assay for the detection of Actinobacillus pleuropneumoniae. The test is based on the amplification of the omlA gene coding for an outer membrane protein of A. pleuropneumoniae. To test the specificity of the reaction, 19 other bacterial species related to A. pleuropneumoniae or isolated from pigs were assayed. They were all found negative in the PCR assay. The detection threshold of the test was 10(2) A. pleuropneumoniae CFU/assay. The test was then applied to the detection of A. pleuropneumoniae from tonsillar biopsies and tracheobronchial lavage fluids of pigs without a culture step. The detection of A. pleuropneumoniae in these samples was performed by PCR, by conventional culture and by bacteriology with immunomagnetic beads. The number of samples that were found positive by PCR was almost three times higher than the number of samples from which A. pleuropneumoniae was isolated by both bacteriological techniques. The detection of A. pleuropneumoniae in these samples allowed us to demonstrate its aerosol transmission to pigs under experimental conditions. The trial involved 18 specific pathogen free pigs. Six pigs, infected with A. pleuropneumoniae, were located in a unit A, together with four non-infected animals (contact pigs). Eight non-infected pigs (reporter pigs) were located in a unit B, adjacent to A. We detected A. pleuropneumoniae in samples from infected animals but also from 'contact' (unit A) and 'reporter' (unit B) pigs. The results of this study show that the simple preparation of the samples followed by the PCR assay may be a useful tool for epidemiological studies.  相似文献   

5.
Thirty cohort pigs were followed from birth to slaughter to study epidemiological patterns of porcine pleuropneumonia caused by Actinobacillus pleuropneumoniae. The study was conducted within a larger 380-animal study of vaccination against Mycoplasma hyopneumoniae and A. pleuropneumoniae in a 340-sow farrow-to-finish piggery with 4-month weaning, operating a continuous system of intensive production in the North Island of New Zealand. The cohort pigs were randomly allocated into two equal groups: vaccinated and control. Pigs in the first group were vaccinated at 2 and 4 weeks of age with both M. hyopneumoniae vaccine and A. pleuropneumoniae vaccine at separate vaccination sites. A series of nasal swabs was taken at 4, 8, 10, 11, 12, 14, 16 and 18 weeks of age. Each swab was streaked onto the surface of a selective medium on the farm and the plates were immediately transported to a laboratory and incubated at 37 degrees C for 5 days. After the trial, pigs were slaughtered at an average of 132 days of age, lungs were examined and samples taken for bacteriological culture and isolation. Thirty-five out of 256 samples produced haemolytic colonies which were Gram-negative, V-factor-dependent and positive to the CAMP test. A. pleuropneumoniae was first isolated at 4 weeks of age from one vaccinated pig. This finding suggests that piglets became infected in the farrowing pen and the source of infection might be a carrier sow. The interval-specific cumulative incidence of A. pleuropneumoniae infection reached a maximum of 54% and 40% at 11 weeks of age in the vaccinated and control groups, respectively. Infection status of the litter is considered to be a factor influencing morbidity in infected herds during weaner and grower periods. Our results suggest that simultaneous vaccination with M. hyopneumoniae and A. pleuropneumoniae vaccines at 2 and 4 weeks of age might lessen the prevalence but cannot absolutely prevent A. pleuropneumoniae infection during the weaner or grower-finisher periods.  相似文献   

6.
During serological screening of a closed SPF-herd free of pleuropneumonia, more than half of the pigs were positive for complement-fixing antibodies to Haemophilus pleuropneumoniae. Actinobacillus bacteria closely related to A. suis were isolated from tonsillar tissue of 14 out of 20 slaughtered pigs submitted for pathological and bacteriological evaluation. None of the pigs had evidence of respiratory disease. Two pigs inoculated endobronchially with a selected Actinobacillus strain developed mild focal pneumonia and complement-fixing antibodies cross-reacting with H. pleuropneumoniae. Five pigs exposed and vaccinated with the Actinobacillus strain and five pigs spontaneously infected with the strain also developed complement-fixing antibodies against H. pleuropneumoniae and appeared to be less susceptible to experimental Haemophilus pleuropneumonia than pigs not exposed to the Actinobacillus infection. The agglutination test applied on serum treated with 2-mercaptoethanol detected antibodies against H. pleuropneumoniae serotype 5 but not against serotype 1 in pigs exposed to the Actinobacillus strain. Antibodies reactive with the Actinobacillus strain were also found in pigs hyperimmunized against H. pleuropneumoniae serotypes 1-5 in 2-mercaptoethanol tube agglutination test and rabbits hyperimmunized against serotypes 1,2 and 7, and strain 73567 in the immunodiffusion test. Conversely rabbits immunized against the Actinobacillus strain had antibodies against H. pleuropneumoniae serotypes 1, 3, 4, 5 and 6. It is concluded that pigs infected with Actinobacillus organisms may become false positive reactors against H. pleuropneumoniae.  相似文献   

7.
Airborne transmission of Actinobacillus pleuropneumoniae was studied as the percentage of air needed to establish airborne transmission from an infected pig unit into a neighbouring non-infected pig unit. The experiment was carried out in two containers constructed as pig units, placed 1m apart and connected by pipes. By manipulating the air pressure in the two units, the amount of ventilation air transferred from the infected pigs (unit A) to the non-infected pigs (unit B) was controlled and measured. In three experiments, between 48 and 50 specific pathogen free-pigs were randomly assigned to each of the two units. In unit A, five pigs (experiment 1) or eight pigs (experiments 2 and 3) were inoculated with A. pleuropneumoniae serotype 2. In experiments 1 and 3, 10% of the air was transferred from unit A to B; in experiment 2, 70% of the air was transferred. In the non-infected unit (B), 36% of the pigs seroconverted during experiment 2 (70% air transfer), whereas none of the pigs seroconverted in experiments 1 and 3 (10% air transfer). As air transmission between closely located pig units has been estimated to be less than 2% under field conditions, these results indicate that airborne transmission of A. pleuropneumoniae serotype 2 between closely located pig units is rare.  相似文献   

8.
In order to demonstrate the possible role of aerosol in the transmission of Actinobacillus pleuropneumoniae, an experiment including 18 specific pathogen-free (SPF), 10-week-old piglets, randomly distributed into 2 adjacent units, was carried out. In these facilities, air was forced through absolute filters to prevent any contact with infectious agents. During the first 6 d post inoculation, the 2 units were connected by a rectangular opening and the air circulation was forced by the ventilation system from unit A (inoculated pigs) to unit B (non-inoculated pigs). The A. pleuropneumoniae strain (biovar 1 serovar 9) was isolated in France from an outbreak of porcine pleuropneumonia. Two different infecting doses, 10(7) cfu/animal and 10(8) cfu/animal, were inoculated by intranasal route in 6 pigs of unit A. The infection spread quickly from the inoculated pigs to the non-inoculated pigs. Clinical signs were acute during the 4 d post inoculation: hyperthermia, respiratory distress and, sometimes, death (6 pigs of the unit A and 2 pigs of the unit B). All pigs seroconverted against A. pleuropneumoniae serovar 9 within 2 weeks. Lung lesions were severe: fibrinous pleurisy and lung hemorrhages in the acute stage, pleural adherences and focal pulmonary necrosis in the chronic stage. Actinobacillus pleuropneumoniae was isolated from the tonsils and/or lungs in 16 animals. It could be also isolated from the air of the experimental unit. This study showed that A. pleuropneumoniae was readily transmitted through aerosol over a distance of at least 2.5 m.  相似文献   

9.
A strict system for visiting experimentally inoculated and susceptible weaner pigs was used to examine the potential indirect transmission of classical swine fever (CSF) virus by people wearing contaminated boots, gloves and coveralls. The inoculated and susceptible pigs were housed in separate compartments, between which the airborne transmission of the virus was impossible. A worst-case scenario with an intensive visiting protocol and no form of disinfection or hygiene was established. Fifteen days after the pigs were inoculated, infection was detected in one contact pig, and it was concluded that under the conditions of the experiment CSF virus could be transmitted by contact with people.  相似文献   

10.
11.
An experiment was set up to investigate the role of excretions and secretions in the indirect transmission of classical swine fever virus (CSFV). In five small pens, 10 weaner pigs (two pigs per pen) were housed and inoculated with CSFV. Experimental infection was successful in all pigs. The infected pigs were kept in the pens for a period of 15 days after which the pens were depopulated and pigs were killed. At the moment of depopulation, all inoculated pigs were visibly clinically diseased and had high fever. Ten hours later the same pens were repopulated with five pairs of susceptible pigs. From inoculation onwards and especially between depopulation and restocking, the pens were neither cleaned nor disinfected. Four days post-repopulation, three of the susceptible pigs were detected positive on virus isolation. A fourth pig was detected positive 2 days later. Later on, the remaining pigs also became infected, most probably due to contact and between pen infections. It can be concluded that transmission of the virus via excretions and secretions succeeded in four of 10 pigs. This result indicates that transmission of CSFV via excretions and secretions can be of importance in a late, clinical stage of disease.  相似文献   

12.
New serological tests have recently been introduced for Actinobacillus pleuropneumoniae diagnosis. No information is currently available on how these tests compare regarding the detection of antibodies from subclinically infected pigs. To answer this question, 80 pigs were randomly assigned to experimental groups infected with A. pleuropneumoniae serovars 1, 3, 5, 7, 10, 12, 15 and a non-inoculated control group. Blood samples and oropharyngeal swabs were collected prior to infection and for 7 consecutive weeks thereafter. Serum samples were tested using the Swinecheck(?) APP ELISA and the Multi-APP ELISA (University of Montreal). All pigs were euthanized at 49 days post-inoculation. Tonsil and lung samples were cultured for isolation and tested by PCR. The Multi-APP ELISA detected seroconversion 1 week earlier than the Swinecheck(?) APP ELISA with the earliest seroconversion detected at 1 week post-infection (serovar 10) and the latest at 3 weeks post-infection (serovar 1). Seroconversion at day 49 was serovar-dependent and varied from 4 (44%) positives detected in the serovar 10 group to 9 positives (100%) detected in the serovar 15 group. Thirty-one pigs were serologically positive for A. pleuropneumoniae at 49 days post-infection and only 15 still carried A. pleuropneumoniae on their tonsils based on PCR results. No cross-reactions were observed when serum samples were cross-tested using the Swinecheck(?) APP ELISA. A. pleuropneumoniae was successfully isolated from the lung of 2 pigs that developed pleuropneumonia, but was not isolated from tonsils due to heavy contamination by the resident flora. This study offers a comprehensive evaluation of the diagnostic tools currently available for detection of A. pleuropneumoniae subclinical infection.  相似文献   

13.
Cho WS  Choi C  Chae C 《Veterinary research》2002,33(6):653-660
The detection of the apxlV gene in lung tissues from pigs experimentally infected with the 12 major A. pleuropneumoniae serotype (1 to 12) reference strains was studied by in situ hybridization using a non-radioactive digoxigenin-labeled DNA probe. In situ hybridization produced a distinct positive signal in all pigs inoculated with the 12 A. pleuropneumoniae serotypes. Positive hybridization typically exhibited a dark-brown to black reaction product in intracellular and extracellular locations, without background staining. A strong hybridization signal was seen in degenerated alveolar leukocytes ("oat cells") adjacent to the foci of coagulative necrosis and in the alveolar spaces. The in situ hybridization methodology developed for the detection of the apxIV gene is a valuable tool for the diagnosis of porcine pleuropneumonia caused by A. pleuropneumoniae when only formalin-fixed tissues are submitted for diagnosis.  相似文献   

14.
The susceptibility to an initial challenge and a re-challenge inoculation with Actinobacillus pleuropneumoniae was analysed in pigs that were treated with antimicrobials of different efficacies following the first exposure to A pleuropneumoniae. In brief, 30 nine-week-old specific pathogen-free pigs were allocated to five groups of six. After acclimatisation, four groups were inoculated with A pleuropneumoniae serotype 2. At the onset of clinical signs, three of the groups of pigs were treated with enrofloxacin, tetracycline or penicillin. A fourth group served as the inoculated control and the fifth group as a control group that had not been inoculated. On day 28, all five groups were re-challenged with the same strain of A pleuropneumoniae serotype 2 as had been used in the first inoculation. No treatments were carried out at this time. The acute phase responses and differential leucocyte counts were monitored in detail after both inoculations. Leucocytosis and acute phase responses in the forms of serum amyloid A, pig-major acute phase protein and haptoglobin were recorded in all of the inoculated groups after the onset of clinical signs following the first inoculation. A porcine mannan-binding lectin-A response was less evident in the pigs. Acute phase responses resembling those of the first inoculation were observed in the pigs that had not previously been inoculated and in the pigs treated with enrofloxacin. Acute phase responses were not recorded in the other three groups, where the pigs had seroconverted to A pleuropneumoniae serotype 2 following the first inoculation.  相似文献   

15.
Several routes contribute to the spread of classical swine fever (CSF) during outbreaks of this disease. However, for many infected herds in recent epidemics, no route of virus introduction could be indentified. To obtain more insight into the relative importance of secretions and excretions in transmission of CSF virus, a model was developed. This model quantified the daily transmission probabilities from one infectious pig to one susceptible pig, using quantitative data on: (a) virus excretion by infected pigs, (b) survival of virus in the environment and (c) virus dose needed to infect susceptible pigs. Furthermore, the model predicted the relative contribution of secretions and excretions to this daily probability of infection of a susceptible pig. Three virus strains that differed in virulence were evaluated with the model: the highly virulent strain Brescia, the moderately virulent strain Paderborn and the low virulent strain Zoelen. Results suggest that it is highly probable that susceptible pigs in contact with Brescia or Paderborn infected pigs will be infected. For a pig in contact with a Zoelen infected pig, infection is less likely. When contact with blood is excluded, the predicted overall probability of infection was only 0.08 over the entire infectious period. The three strains differed in the relative contribution of secretions and excretions to transmission, although blood had a high probability of causing infection of a susceptible pig when in contact with a pig infected with any strain. This supports the statement that during outbreaks, control measures should ideally be based on the characteristics of the specific virus strain involved, which implies the development of strain-specific measures.  相似文献   

16.
The benefit of increased immunity to cross-reacting lipopolysaccharide core antigens of gram-negative bacteria induced by vaccination with an Rc mutant of Escherichia coli 0111:B4 (strain J5) was evaluated in commercial swine herds endemically infected with Haemophilus pleuropneumoniae. Weanling pigs were vaccinated IM with E coli J5 (group 1) before the expected time of H pleuropneumoniae infection. Clinical signs, antibiotic treatment frequency, mortality, growth performance (days to market weight), and serologic responses of the pigs were monitored for approximately 5 months after vaccination. The results were compared with those of pigs vaccinated IM with a commercial H pleuropneumoniae bacterin (group 2) and with those of nonvaccinated control pigs of the same age (group 3). The treatment frequency and growth performance were similar in the 3 groups. However, vaccination with E coli J5 or with the H pleuropneumoniae bacterin lowered mortality, compared with mortality in the controls. Serum titers against E coli J5 increased after vaccination with the E coli J5 bacterin, but were not increased by vaccination with the H pleuropneumoniae. In contrast, serum titer to E coli J5 increased in all treatment groups as a result of H pleuropneumoniae infection or exposure. The protection against lethal H pleuropneumoniae infections in swine that was provided by vaccination with the E coli J5 and the H pleuropneumoniae bacterin appeared to be immunologically distinct on the basis of serologic analysis, indicating the possibility of different mechanisms of protection.  相似文献   

17.
It has been demonstrated that pigs that have been double vaccinated with an E2 sub-unit marker vaccine and that are infected with classical swine fever virus (CSFV) through a natural contact infection may react positive in a CSFV detecting RT-nPCR test, whereas no virus could be isolated by using the conventional virus isolation (VI) technique. To evaluate whether these vaccinated and infected pigs may spread the virus, three experiments were set up. In the first, susceptible pigs were inoculated with serum originating from vaccinated RT-nPCR positive pigs. In the second, vaccinated RT-nPCR positive pigs were brought into contact with sentinel animals. In the third, vertical transmission was evaluated in RT-nPCR positive vaccinated pregnant gilts. In the first two experiments, no proof of virus transmission was found, whereas in the third vertical transmission was observed. The conclusion is that in vaccinated pigs that are positive in RT-nPCR but negative in VI, the level of circulating virus is probably not high enough for horizontal transmission, whereas vertical transmission of the virus is possible.  相似文献   

18.
A real-time quantitative PCR (qPCR) for detection of the apxIVA gene of Actinobacillus pleuropneumoniae was validated using pure cultures of A. pleuropneumoniae and tonsillar and nasal swabs from experimentally inoculated Caesarean-derived/colostrum-deprived piglets and naturally infected conventional pigs. The analytical sensitivity was 5colony forming units/reaction. In comparison with selective bacterial examination using tonsillar samples from inoculated animals, the diagnostic sensitivity of the qPCR was 0.98 and the diagnostic specificity was 1.0. The qPCR showed consistent results in repeatedly sampled conventional pigs. Tonsillar brush samples and apxIVA qPCR analysis may be useful for further epidemiological studies and monitoring for A. pleuropneumoniae.  相似文献   

19.
The aroA gene from Actinobacillus pleuropneumoniae serotype 1 reference strain 4074 was isolated and sequenced. The gene complemented the aroA mutation in Escherichia coli AB2829. A kanamycin resistance cassette was inserted into the aroA gene and the mutant gene was reintroduced into A. pleuropneumoniae by allelic replacement. Intratracheal infection of susceptible pigs with A. pleuropneumoniae aroA caused no signs of respiratory disease or lung lesions in any of the animals at a dose 10(4) times the dose reliably known to induce acute pleuropneumonia; all animals infected with the unaltered control strain developed acute disease. The aroA mutant was rapidly eliminated from the lungs and tonsil of infected animals. The mutant may represent a safely attenuated strain for use in live bacterial vaccination or the delivery of antigen by the intranasal route. However, the residence time of the mutant in the respiratory tract of the pig may be too short for it to be useful in generating a protective immune response.  相似文献   

20.
Quantified transmission parameters of Foot-and-Mouth Disease Virus (FMDV) are needed for epidemic models used for control and surveillance. In this study, we quantified the within- and between-pen transmission of FMDV in groups of pigs by estimating the daily transmission rate beta, i.e. the number of secondary infections caused by one infectious pig during one day, using an SIR (susceptible-infectious-removed) model. Within-pen transmission was studied in four groups of ten pigs in which 5 infected and 5 susceptible pigs had direct contact; between-pen transmission was studied in one group of ten pigs in which 5 infected and 5 susceptible pigs had indirect contact. Daily results of virus isolation of oropharyngeal fluid were used to quantify the transmission rate beta, using Generalised Linear Modelling (GLM) and a maximum likelihood method. In addition, we estimated the expected time to infection of the first pig within a pen T(w) and in the indirect-contact pen T(b). The between-pen transmission rate beta(b) was estimated to be 0.59 (0.083-4.18) per day, which was significantly lower than the within-pen transmission rate beta(w) of 6.14 (3.75-10.06). T(w) was 1.6 h, and T(b) was 16 h. Our results show that the transmission rate is influenced by contact structure between pigs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号