首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Colony growth and germ tube emergence of sporangia and encysted zoospores of Phytophthora infestans were highly sensitive to cymoxanil (ED50 0.5–1.5 μg/ml), whereas differentiation of sporangia and zoospore release were insensitive at concentrations up to 100 μg/ml. Treated sporangia did not show distorted germ tubes. Oxygen consumption for glucose oxidation by germinating sporangia and zoospore motility were not inhibited at concentrations up to 100 μg/ml. Cymoxanil hardly affected the uptake of radiolabeled precursors of DNA, RNA, and protein at concentrations up to 100 μg/ml. Incorporation of [14C]phenylalanine into protein was completely insensitive. RNA synthesis as measured by [3H]uridine incorporation was differentially inhibited in the various developmental stages of the fungus. Inhibition did not occur at differentiation of sporangia, whereas at cyst and sporangial germination and mycelial growth this process was inhibited 20–45% at a concentration of 100 μg cymoxanil/ml. Endogenous RNA polymerase activity of isolated nuclei was not inhibited by cymoxanil. DNA synthesis as measured by [methyl-3H]thymidine incorporation was inhibited 20–80% at the various stages of development at cymoxanil concentrations higher than 10 μg/ml. Metalaxyl, a specific inhibitor of ribosomal RNA synthesis, inhibited [3H]uridine incorporation 40–60% at all developmental stages. The data suggest that although DNA synthesis is affected more than RNA synthesis, inhibition of both biosynthetic processes is a secondary effect. The primary mode of action of cymoxanil thus remains unknown.  相似文献   

2.
Triarimol (2 μg/ml) strongly inhibited multiplication of Ustilago maydis sporidia after one doubling, but growth continued and sporidia became abnormally large, branched and multicellular. Oxidation of glucose or acetate was not affected, and only slight limitations occurred in DNA, RNA and protein syntheses. The toxicant did not inhibit triglyceride synthesis but markedly increased the quantity and altered the quality of free fatty acids. Incorporation of [14C]acetate into ergosterol and an unidentified sterol was inhibited more than 90%, but incorporation into two other unidentified sterols was almost unaffected. Inhibition in the sterol biosynthetic pathway at a point preceeding ergosterol is regarded as a primary site of triarimol action in U. maydis.  相似文献   

3.
Rapidly growing mycelia of Aspergillus fumigatus treated with 10 μg/ml triforine (N,N′-bis-(1-formamido-2,2,2-trichloroethyl)-piperazine) showed little or no inhibition in dry weight increase prior to 2 h. By 2.5–3 h, triforine inhibited dry weight increase by 85%. The effects of triforine on protein, DNA, and RNA syntheses corresponded to the effect on dry weight increase both in time of onset and magnitude. Neither glucose nor acetate oxidation were inhibited by triforine.Ergosterol synthesis was almost completely inhibited by triforine even in the first hour after treatment. Inhibition of ergosterol synthesis was accompanied by an accumulation of the ergosterol precursors 24-methylenedihydrolanosterol, obtusifoliol, and 14α-methyl-Δ8, 24 (28)-ergostadienol. Mycelia treated with 5 μg/ml of triarimol (α-(2,4-dichlorophenyl)-α-phenyl-5-pyrimidinemethanol) also accumulated the same sterols as well as a fourth sterol believed to be Δ5, 7-ergostadienol.Identification of 4,4-dimethyl-Δ8, 24 (28)-ergostadienol in untreated mycelia indicates that the C-14 methyl group is the first methyl group removed in the biosynthesis of ergosterol by A. fumigatus. The lack of detectable quantities of 4,4-dimethyl-Δ8, 24 (28)-ergostadienol in triforine or triarimol-treated mycelia and the accumulation of C-14 methylated sterols in treated mycelia suggests that both fungicides inhibit sterol C-14 demethylation. The accumulation of Δ5, 7-ergostadienol in triarimol-treated mycelia further implies that triarimol also inhibits the introduction of the sterol C-22(23) double bond.Two strains of Cladosporium cucumerinum tolerant to triforine and triarimol were also tolerant to the fungicide S-1358 (N-3-pyridyl-S-n-butyl-S′-p-t-butylbenzyl imidodithiocarbonate).  相似文献   

4.
A field experiment at Cockle Park, Northumberland on a clay loam soil (Dunkeswick series) cropped with winter wheat investigated the effects of drainage and season of application on pesticide movement. Isoproturon, mecoprop, fonofos and trifluralin were applied in two consecutive seasons at normal agricultural rates to three hydrologically isolated plots each of 0.25 ha. Two of the plots were mole-drained and the third was an undrained control. Surfacelayer flow and drainflow from each plot were monitored at 10-min intervals. Samples of flow were analysed for pesticides to evaluate transport of applied chemicals from the site. Despite widely differing properties (Koc 20–8000 ml g?1, t1/2 10–60 days), all four pesticides were found in surface-layer flow and mole drainflow from the site. Maximum concentrations of pesticides in flow ranged from 0.1 to 121 μg litre?1 (aqueous phase) and < 0.2 to 48 μg litre?1 (particulate phase). Over two contrasting seasons, total losses of pesticides in flow followed total amounts of flow and were approximately four and five times larger, respectively, in 1990/91 than in 1989/90. The maximum loss occurred from the undrained plot and was 2.8 g isoproturon (0.45% of that applied). Total losses of autumn-applied pesticides from an undrained plot were up to four times greater than losses from a mole-drained plot. Mole drainage decreased movement of pesticides from this slowly permeable soil by reducing the amount of surfacelayer flow. Maximum concentrations of mecoprop and isoproturon in drainflow were 10–20 times larger following spring application than after application in autumn. Bypass flow down soil cracks was an important process by which pesticide was lost from the site, with transport to the drainage system via mole channels (55 cm depth) after less than 0.5 and 6.7 mm net drainage in the two winters.  相似文献   

5.
Enzymatically isolated leaf cells from navy beans (Phaseolus vulgaris L., cv. “Tuscola”) were used to study the effect of buthidazole (3-[5-(1,1-dimethylethyl)-1,3,4-thiadiazol-2-yl]-4-hydroxy-1-methyl-2-imidazolidinone) and tebuthiuron (N-[5-(1,1-dimethylethyl)-1,3,4-thiadiazol-2-yl]-N,N′-dimethylurea) on photosynthesis, protein, ribonucleic acid (RNA), and lipid synthesis. The incorporation of NaH14CO3, [14C]leucine, [14C]uracil, and [14C]acetic acid as substrates for the respective metabolic process was measured. Time-course and concentration studies included incubation periods of 30, 60, and 120 min and concentrations of 0.1, 1, 10, and 100 μM of both herbicides. Photosynthesis was very sensitive to both buthidazole and tebuthiuron and was inhibited in 30 min by 0.1 μM concentrations. RNA and lipid syntheses were inhibited 50 and 87%, respectively, by buthidazole and 42 and 64%, respectively, by tebuthiuron after 120 min at 100 μM concentration. Protein synthesis was not affected by any herbicide at any concentration or any exposure time period. The inhibitory effects of buthidazole and tebuthiuron on RNA and lipid syntheses may be involved in the ultimate herbicidal action of these herbicidal chemicals.  相似文献   

6.
The effect of different concentrations of the carbamate pesticide, aminocarb (Matacil), on the growth and selection of facultative anaerobic bacteria and degradation of the pesticide by human endoflora of the intestinal tract was examined in vitro. Microorganisms were cultured under aerobic or anaerobic conditions, in nutrient broth and mineral media. The intestinal population was more sensitive to 10–1000 μg/ml aminocarb under anaerobic conditions than in aerobic culture; however, spontaneous degradation of aminocarb in media markedly affected the degree of bacterial growth inhibition in prolonged cultures. In addition, the type of culture medium appeared to influence the degree of aminocarb-induced bacterial growth inhibition. A dose of aminocarb inducing 50% growth inhibition was established for different culture conditions: for mineral medium, aminocarb inhibited bacterial growth by 50% at 600 μg/ml under anaerobic and aerobic conditions, whereas less than 50% inhibition was observed even at 1000 μg/ml aminocarb when bacteria were grown in nutrient broth. A selection of bacterial strains occurred in the presence of increasing aminocarb concentrations, which was determined quantitatively and qualitatively by the identification of codominants. A shift in several Escherichia coli biotypes was also observed in cultures with aminocarb, in comparison to control cultures. Bacterial degradation of aminocarb, under anaerobic and aerobic conditions, was determined in a mixed population of the intestinal microflora by high-performance liquid chromatography analysis of culture media. Data showed that aminocarb can be quickly degraded by human intestinal bacteria at relatively high pesticide concentrations. Moreover, other HPLC data suggest rapid spontaneous degradation of aminocarb in neutral and slightly alkaline pH conditions characteristic of the human intestinal tract, which can effectively eliminate the pesticide. Therefore, aminocarb, at the concentrations used, does not seriously affect the bacterial microflora of the human gut.  相似文献   

7.
Tricyclazole [5-methyl-1,2,4-triazolo (3,4-b)-benzothiazole] controls rice blast disease caused by Pyricularia oryzae at concentrations (5–10 μg/ml) which do not inhibit growth of the pathogen in vitro. However, concentrations of 1 μg/ml or less inhibit melanin formation in the fungus. Production of pyriculol by the pathogen is usually enhanced by 10 μg/ml of tricyclazole, whereas production of 3,4-dihydro-4,8-dihydroxy-1(2H)-naphthalenone is strongly inhibited or markedly reduced and delayed. Evidence suggests that tricyclazole blocks aspects of polyketide metabolism in P. oryzae which may have a role in pathogenicity.  相似文献   

8.
The effects of the herbicides hexazinone [3-cyclohexyl-6-(dimethylamino)-1-methyl-1,3,5-triazine-2,4(1H,3H)-dione] and chlorsulfuron (2-chloro-N-[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)aminocarbonyl]benzenesulfonamide) on the metabolism of enzymatically isolated leaf cells from soybean [Glycine max (L.) Merr., cv. ‘Essex’] were examined. Photosynthesis, protein, ribonucleic acid (RNA), and lipid syntheses were assayed by the incorporation of specific radioactive substrates into the isolated soybean leaf cells. These specific substrates were NaH14CO3, [14C]leucine, [14C]uracil, and [14C]acetate, respectively. Time-course and concentration studies included incubation periods of 30, 60, and 120 min and concentrations of 0.1, 1, 10, and 100 μM of both herbicides. Photosynthesis was the most sensitive and first metabolic process inhibited by hexazinone. RNA and lipid syntheses were also inhibited significantly by hexazinone whereas the effect of this herbicide on protein synthesis was less. The most sensitive and first metabolic process inhibited by chlorsulfuron was lipid synthesis. Photosynthesis, RNA, and protein syntheses were affected significantly only by the highest concentration of this herbicide and longest exposure. Although these two herbicides may exert their herbicidal action by affecting other plant metabolic processes not examined in this study, hexazinone appears to be a strong photosynthetic inhibitor, while the herbicidal action of chlorsulfuron appeared to be related to its effects on lipid synthesis.  相似文献   

9.
Treatment of human erythrocytes with 5 × 10?5M captan or captafol caused a rapid increase in the efflux of intracellular potassium. Captafol had a more pronounced effect than captan on cation permeability. Captafol also decreased anion permeability whereas captan did not affect this process. Glutathione (5 × 10?4M) had little effect in reducing potassium efflux when added to the cells after they were incubated for 1 h with captan or captafol, but it was effective in reducing the potassium loss when added to the cells prior to their treatment with the fungicides. Captafol caused an increase in osmotic fragility of the cells. Incubation of the cell membranes with captafol resulted in the liberation of a small fraction of membrane phospholipids, whereas captan produced no effect. Both the fungicides readily reacted with the sulfhydryl groups in the isolated membrane; 31.5 and 45.7% of the membrane sulfhydryl groups had disappeared following treatment with captan and captafol, respectively. It is suggested that the reaction of captan or captafol and/or their reaction products with the sulfhydryl and amino groups of the red cell membrane protein produces changes in the structure of the membrane with consequent alteration in its permeability.  相似文献   

10.
Excretion and distribution of single and multiple intraperitoneal doses of [35S]captan and [14C]folpet were similar in normal and 70% hepatectomized male rats. After receiving the single dose of captan, the rats eliminate approximately 76% of the radioactivity in the urine after 72 hr. The elimination in the feces for the same time period was 13%. Normal rats administered single or multiple doses of [14C]folpet excreted nearly 100% of the total dose in the urine within the first 24 hr. Nuclei isolated from the liver of normal and 70% hepatectomized rats receiving multiple doses of [35S]captan contained 0.008–0.009 μg 35S/g of tissue. Appreciable amounts of the radioactivity from [35S]captan were bound by isolated nuclei from the livers of normal and partially hepatectomized rats. After a 1-hr treatment with [36S]captan, the nuclei were fractionated into nuclear sap protein, deoxyribonucleoprotein (including histones), acidic ribonucleoprotein, and “residual” protein fractions. These proteins in normal nuclei bound 10, 14, 39, and 16% of the total label, respectively, with essentially the same results obtained with nuclei from regenerating rat liver. When compared by polyacrylamide gel electrophoresis, acidic nuclear proteins from treated and nontreated normal nuclei were characterized by band diffusion and the presence or absence of Amido Schwartz-staining bands. None of the abovementioned effects on histones from treated nuclei were observed. Captan treatment of isolated nuclei also altered the extraction characteristics of the nuclear protein fractions, presumably because of extensive aggregation of thiol-containing nuclear proteins.  相似文献   

11.
American cockroaches injected with sublethal doses of DDT (0.75 μg/roach) at 5-day intervals showed a 40% reduction in oligomycin-sensitive Mg2+ATPase from muscle homogenates, and a 23% reduction of Na+-K+ATPase from nerve cords. Thus, the maximum effect measured occurred with the same enzyme and tissue as determined from in vitro studies. The metabolite, DDE, used at 15 μg per roach, gave no significant change in activity of the ATPase system following injection. In contrast, high single doses of DDT (7.5 μg/roach) and 100 μg DDE and dicofol per roach caused over 30% increase in oligomycin-sensitive Mg2+ATPase of muscle and a 10–15% increase in Na+-K+ATPase of nerve cords measured 24 and 48 hr later. While a similar response was observed for Mg2+ATPase activities in cockroaches that were immobilized, the increase in enzyme activities were much greater than that caused by the pesticides.  相似文献   

12.
3-Phenylindole is an antimicrobial compound active towards many fungi and gram-positive bacteria. At 5 μg/ml it inhibits growth of Aspergillus niger. Higher concentrations (50 μg/ml) also suppress spore germination; they do not kill the fungus. Dry weight of the fungus still increases for 1 or 2 days after fungicide treatment. The toxicant has no effect on O2 uptake even at higher concentrations (100 μg/ml). The compound markedly affects composition of the lipid fraction of A. niger inducing a decrease in phospholipid concentration with a coincident increase in free fatty acids. Sterol pattern and sterol concentration were not affected. Antifungal activity was reversed by phospholipids added to the medium. 3-Phenylindole induced a slight leakage of 32P-labeled compounds from the treated cells under growth conditions but not under nongrowth conditions. A strain of A. niger resistant to 3-phenylindole had the same phospholipid and sterol pattern as the wild type, but the level of both components was higher (40–60%). The 3-phenylindole-resistant strain showed resistance to triarimol and pimaricin. The wild type and the resistant strain both took up 3-phenylindole quite rapidly and accumulated it in the mycelium. 3-Phenylindole possibly interferes with phospholipid function in cell membranes, although the specific site of action has not yet been elucidated.  相似文献   

13.
Imazalil had no effect on the initial growth of mycelia of Penicillium italicum (for 10 hr) or Aspergillus nidulans (for 2 hr). In P. italicum during this period neither respiration nor cell permeability was affected, but uptake of [32P]phosphate, [14C]leucine, or [14C]uridine was partially inhibited. The initial (5 hr) inhibition of substrate uptake coincided with a 50% reduction in ergosterol content. Within 0.5 hr, incorporation of [14C]acetate into C-4-desmethyl sterols was strongly inhibited in mycelia of A. nidulans treated with 0.5 μg/ml of imazalil. However, radioactivity in C-4-methyl and dimethyl sterols exceeded that of control cultures. Concentrations of imazalil as low as 0.005 μg/ml caused short-term (1 hr) declines of incorporation into desmethyl sterols and increases into the C-4-methyl and dimethyl sterols. Incorporation into phospholipids, triglycerides, and free fatty acids was not affected. These data suggest that the primary antifungal action of imazalil is inhibition of demethylation in the biosynthesis of ergosterol.  相似文献   

14.
A study was conducted concerning the inhibition of calf thymus nuclear DNA synthesis by captan. Captan was shown to be toxic to the in vitro incorporation of [3H]dTTP into calf thymus DNA, with an ID50 value of 0.16 mM being measured. This inhibition was determined to be independent of Mg2+ concentration. Although intact nuclear activities were affected, the soluble DNA polymerizing activity isolated from calf thymus nuclei exhibited no inhibition when exposed to captan. Treatment of purified calf thymus DNA with 10?5 and 10?4M captan caused an elevation of the Tm by 2 and 6°C, respectively. The inhibitory characteristic of captan on DNA polymerizing activities and the influence of this compound on the thermostability of DNA indicate a mechanism of inhibition which is located in the nucleus and is possibly related to the template function of DNA and/or with the nuclear DNA polymerizing enzymes.  相似文献   

15.
The effects of piperonyl butoxide on metabolism of 14C-labeled methoxychlor, aldrin, and trifluralin were investigated in green sunfish, Lepomis cyanellus. Piperonyl butoxide inhibited epoxidation of aldrin to dieldrin, O-dealkylation of methoxychlor, and N-dealkylation of trifluralin, resulting in higher levels of total radioactivity in animals exposed to the combination compared to those exposed to pesticide alone. Where piperonyl butoxide was present a greater proportion of the total radioactivity in the fish extract occurred as parent compound compared to metabolites than in fish exposed to pesticide alone. After 16 days of exposure piperonyl butoxide increased the proportion of parent compound eight times for methoxychlor, 17 times for aldrin, and 15 times for trifluralin.  相似文献   

16.
The uptake and metabolism of DDT, fenitrothion and chlorpyrifos were studied in cultures of the ciliate protozoan Tetrahymena pyriformis. When cultures were treated with DDT in concentrations varying from 0.01 to 0.5 μg ml−1, concentrations found in T. pyriformis were 3.8 to 335 μg g−1 dry weight. The accumulation of fenitrothion ranged from 28.7 μg g−1 in cultures treated with 1 μg ml−1 to 2260 μg g−1 in cultures treated with 10 μg ml−1. Under similar experimental conditions chlorpyrifos was accumulated from 24.7 to 15400 μg g−1. The patterns of uptake were dependent on the growth cycle, the ability of the organism to metabolise insecticide and the type of the insecticide used. Maximum accumulation of DDT, fenitrothion and chlorpyrifos occurred in 2, 4 and 6 h respectively. Tetrahymena metabolised DDT to DDD and DDE but failed to metabolise fenitrothion and chlorpyrifos. The effects on growth and morphology of T. pyriformis were studied over a period of 5 days. Higher concentrations (10, 50 and 100 μg ml−1) of DDT inhibited only the growth of the organisms and did not change cell morphology. Fenitrothion was extremely toxic to the organisms and at 5 and 10 μg ml−1 cells became more or less spherical and died after 48 h. However, concentrations of 0.5, 1 and 2.5 μg ml−1 fenitrothion caused growth inhibition, but only at 2.5 μg ml−1 was this permanent. Chlorpyrifos inhibited the growth of the organisms at 1, 5 and 10 μg ml−1 but the morphology was affected only at 5 and 10 μg ml−1.  相似文献   

17.
The sterol biosynthesis inhibitors bromuconazole and difenoconazole and tank mixes of each fungicide with captan were applied to apples and evaluated as controls for moldy-core and fruit decay caused by Alternaria alternata. Effectiveness of a mixture of bromuconazole and captan in controlling colonization by the fungus was also evaluated. Decay formation by A. alternata on mature detached fruits was partially inhibited by bromuconazole at 0.5 μg ml−1 and was completely inhibited at 50 μg ml−1; it was significantly affected by either bromoconazole at 5 μg ml−1 or captan at 1,250 μg ml−1, and was completely inhibited by their mixture. In general, three foliar applications of bromuconazole or difenoconazole in the field, during the bloom period, reduced the numbers of infected fruits by 40–60% compared with untreated control trees. However, tank mixes of either fungicide with captan improved control of moldy-core in fruits at harvest. Tank mixtures of bromuconazole and captan also significantly reduced the percentage of fruits colonized by A. alternata when sampled at various days after full bloom. Artificial inoculations in the orchard at full bloom did not change the inhibitory effects of the tank mixtures. Large-scale demonstration trials in commercial orchards supported these findings. The inhibitory effects of tank mixes on decay development in detached fruits, and on moldy-core in the field indicate that a control programme based on mixtures of either bromuconazole or difenoconazole with captan during the bloom period can effectively reduce moldy-core on Red Delicious apples.  相似文献   

18.
Seventeen field isolates of Botrytis cinerea were compared by determining their radial growth on synthetic media containing various amounts of 21 antifungal compounds. Twelve of these compounds were fungicides that are recommended for the control of Botrytis infections. There were marked differences between the isolates in their sensitivity to the compounds. Individual isolates displayed high levels of resistance to some of the fungicides, including benomyl, carbendazim, iprodione, thiabendazole, thiophanate-methyl, vinclozolin and zineb. The most potent growth inhibitors were benomyl and carbendazim (ED95 values for most isolates <0.1 μg fungicide ml?1 media), dichlofluanid, iprodione, nystatin, thiabendazole, thiophanatemethyl and vinclozolin (ED95 values for most isolates < 1.0 μg ml?1), and captan, chlorothalonil, dicloran and thiram (ED95 values for most isolates < 6.0 μg ml?1). Zineb was much less potent than the other recommended anti-Botrytis fungicides; it was no more effective than carboxin, dinocap and mancozeb (ED95 values for most isolates > 25 μg ml?1).  相似文献   

19.
The bioconcentration factors (BCF) for 15 pesticides by a freshwater fish (topmouth gudgeon) were measured under continuous flow conditions in water containing 5 to 20 μg litre?1 of each pesticide at the equilibrium condition. A significant correlation was found between the BCF by the fish and the water solubility of the pesticide or its partition coefficient (PC) between octan-1-01 and water. Moreover, a significant correlation was also found between the BCF by topmouth gudgeon and the acute toxicities to carp, rainbow trout and water flea. It would therefore appear that the bioconcentration potential of a pesticide by a fish may be predicted from knowledge of its solubility or PC, and that the acute toxicity of a pesticide to a fish may be predicted from knowledge of the BCF.  相似文献   

20.
Monilinia laxa, the incitant of blossom blight in stone fruits in Israel, is sensitive to 5μg/ml of the dicarboximide fungicides vinclozolin and iprodione in the growth medium. When a large number of spores, from an isolate never exposed to these fungicides, was seeded on a medium containing 15 μg/ml iprodione, spontaneous resistant mutants appeared at 10-5 frequency. These mutants showed cross resistance to the dicarboximide fungicides vinclozolin, procymidone, l-(3,5-dichloro-phenyl)-3-propen(2)-pyrrolidin-2,5-dion (Co 4462), l-(3,5-dichlorophenyl)-3-methoxymethyl-pyrrolidin-2,5-dion (Co 6054), and to dicloran. Growth rate on fungicide-free medium was similar to that of the parental sensitive strain but sporulation was much reduced. Growth rate on media supplemented with dicarboximide fungicides decreased gradually with increasing fungicide concentrations. The resistance has been stable for more than one year in the absence of fungicides. Artificial inoculation of cherry, apricot and plum fruits previously treated with 500 μg/ml vinclozolin, iprodione, procymidone or Co 6054, with a resistant strain, resulted in brown rot; similar treatments provided full protection of the fruits against the sensitive strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号