首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ObjectiveTo investigate the CD38/cADPR signaling pathway as possible underlying mechanism of the effects of medetomidine on insulin and glucose homeostasis.AnimalsThirty–two C57BL/6 mice of both sexes.MethodsWild–type (WT) and CD38–knockout (CD38?/?) mice received medetomidine (50 μg kg?1) or a similar volume of 0.9% NaCl (control) by intraperitoneal (IP) injection (each group n = 8). The mice were euthanized 45 minutes later with sodium pentobarbital IP and blood was sampled via cardiac puncture. Insulin and glucose concentrations were measured by radioimmunoassay and by the oxygen rate method, respectively. Data were analyzed with anova and Bonferroni post hoc (5% significance) and are shown as mean ± SD.ResultsPlasma insulin and glucose concentrations were similar between WT and CD38?/? mice under control conditions. As compared to controls, medetomidine administration produced a statistically significant decrease in plasma insulin concentrations in the WT mice whereas the decrease in the CD38?/? mice was not statistically significant. Correspondingly, medetomidine caused a significantly greater increase in plasma glucose concentrations in the WT than in the CD38?/? mice.ConclusionThe CD38/cADPR signaling pathway may be one underlying mechanism of the glucose and insulin effects of the alpha–2 adrenergic receptor agonist medetomidine and likely other drugs of its’ class.  相似文献   

2.
The objective of this study was to investigate the effects of substituting 1 kg of a standard lactation diet with 1 kg of a sugar‐rich (15.75 DE MJ/kg) or fat‐rich (23.85 DE MJ/kg) diet during late lactation on blood glucose and insulin changes in primiparous sows. During a 4‐week lactation period, 21 primiparous sows were fed to appetite with a standard lactation diet (14.10 DE MJ/kg). At 9 days before weaning, sows were assigned to a control (C, n = 7), fat (F, n = 6) or sugar (S, n = 8) treatment. During the treatment period (from 8 days before weaning until weaning), 1 kg of the lactation diet was substituted with 1 kg of a sugar‐rich or fat‐rich diet for S and F sows. At 3 days before weaning, serial blood samples were collected for a total of 228 min around feeding to establish pre‐ and postprandial plasma glucose and insulin concentrations. Preprandial plasma glucose and insulin concentrations did not differ between treatments (p > 0.05); however, mean plasma glucose and insulin concentrations were higher for S compared to F (p < 0.05) and intermediate for the C sows. Postprandial plasma concentrations of glucose and insulin were higher for the S sows than for C and F sows (p < 0.05). Sow body weight loss during late lactation did not differ between treatments (p > 0.05). The results from our study suggest that a sugar‐enriched diet during the last week of lactation elevates circulating glucose and insulin concentrations and may potentially improve post‐weaning fertility in primiparous sows.  相似文献   

3.
4.
ObjectiveTo quantify the effects of medetomidine on the onset and duration of vecuronium-induced neuromuscular blockade in dogs.Study designRandomized, prospective clinical study.AnimalsTwenty-four, healthy, client-owned dogs of different breeds, aged between 6 months and 10 years and weighing between 5.0 and 40.0 kg undergoing elective surgery.MethodsDogs were randomly allocated to two groups. Pre-anaesthetic medication in group M+ was intramuscular acepromazine (ACP) 25 μg kg−1, morphine 0.5 mg kg−1 and medetomidine 5 μg kg−1. Group M− received ACP and morphine only, at the same dose rate. After induction with thiopental, anaesthesia was maintained with halothane in oxygen and nitrous oxide. End-tidal halothane concentration was maintained at 1.1%. Neuromuscular blockade was produced with intravenous vecuronium (50 μg kg−1) and monitored using a train of four stimulus applied at the ulnar nerve. The times taken for loss and reappearance of the four evoked responses (twitches [T]) were recorded. Normal and nonparametric data were analysed with an independent t-test and Mann-Whitney's U-test, respectively.ResultsThe fourth twitch (T4) disappeared at similar times in each group: 107 ± 19; [72–132] (mean ± SD; [range]) seconds in M+ and 98 ± 17 [72–120] seconds in M− dogs. The first twitch (T1) was lost at 116 ± 15; [96–132] seconds in group M+ and 109 ± 19; [72–132] seconds in M−. The fourth twitch returned significantly earlier in M+ dogs: 20.8 ± 3.8 [14–28] minutes compared with 23.8 ± 2.7 [20–27] minutes (p = 0.032). The duration of drug effect (T4 absent) was significantly shorter (p = 0.027) in M+ (18.9 ± 3.7 minutes) compared with M− dogs (22.2 ± 2.9 minutes). The recovery rate (interval between reappearance of T1 and T4) was significantly more rapid (p = 0.0003) in medetomidine recipients (3.0 ± 1.2 versus 5.2 ± 1.3 minutes).Conclusion and clinical relevance Medetomidine 5 μg kg−1 as pre-anaesthetic medication shortened the duration of effect of vecuronium in halothane-anaesthetized dogs and accelerated recovery, but did not affect the onset time. These changes are of limited clinical significance.  相似文献   

5.
The effect of MK‐467, a peripheral α2‐adrenoceptor antagonist, on plasma drug concentrations, sedation and cardiopulmonary changes induced by intramuscular (IM) medetomidine was investigated in eight sheep. Additionally, the interactions with atipamezole (ATI) used for reversal were also evaluated. Each animal was treated four times in a randomized prospective crossover design with 2‐week washout periods. Medetomidine (MED) 30 μg/kg alone or combined in the same syringe with MK‐467 300 μg/kg (MMK) was injected intramuscular, followed by ATI 150 μg/kg (MED + ATI and MMK + ATI) or saline intramuscular 30 min later. Plasma was analysed for drug concentrations, and sedation was subjectively assessed with a visual analogue scale. Systemic haemodynamics and blood gases were measured before treatments and at intervals thereafter. With MK‐467, medetomidine plasma concentrations were threefold higher prior to ATI, which was associated with more profound sedation and shorter onset. No significant differences were observed in early cardiopulmonary changes between treatments. Atipamezole reversed the medetomidine‐related cardiopulmonary changes after both treatments. Sedation scores decreased more rapidly when MK‐467 was included. In this study, MK‐467 appeared to have a pronounced effect on the plasma concentration and central effects of medetomidine, with minor cardiopulmonary improvement.  相似文献   

6.
OBJECTIVE: To compare the sensory and motor effects of adding medetomidine to mepivicaine, administered either perineurally or systemically, for radial nerve block in dogs. STUDY DESIGN: Prospective randomized cross-over study. ANIMALS: Six healthy Beagles, aged 18.7 +/- 6.3 months and weighing 10.4 +/- 1.3 kg. METHODS: Dogs were anesthetized briefly with sevoflurane on three separate occasions and received each treatment administered in random order: mepivacaine 5 mg kg(-1) perineurally around the radial nerve with saline 0.01 mL kg(-1) intramuscularly (CONTROL); mepivacaine 5 mg kg(-1) and medetomidine 0.01 mg kg(-1) combined, perineurally with saline 0.01 mL kg(-1) intramuscularly (MEDPN); mepivacaine 5 mg kg(-1) perineurally around the radial nerve with medetomidine 0.01 mg kg(-1) intramuscularly (MEDIM). All nerve blocks were performed with the aid of a nerve locator. Motor effects were evaluated based on the ability to bear weight. Sensory effects were evaluated by the response to a graded-electrical stimulus. These were evaluated at 5-minute intervals for the first hour, and at 10-minute intervals thereafter. Mean intervals were calculated as follows: time to motor block onset, duration of motor block, time to peak sensory block, duration of peak sensory block (i.e. period of no response to maximal stimulus intensity), and duration of residual sensory block (i.e. time to return to baseline sensory function). Treatment means were compared using a one-way analysis of variance for repeated measures and, where significant differences were noted, a Student-Newman-Keuls test was applied; p < 0.05 was considered significant. RESULTS: Medetomidine, administered either systemically or perineurally, significantly prolonged duration of peak motor block, peak sensory block, and residual sensory block compared with CONTROL. CONCLUSION: Medetomidine prolonged sensory and motor blockade after radial nerve block with mepivacaine in dogs. CLINICAL RELEVANCE: Medetomidine may prove to be a useful adjunct to peripheral nerve blockade with local anesthetics.  相似文献   

7.
Insulin resistance during late gestation may act as a predisposing factor of ovine pregnancy toxaemia (OPT). To evaluate the insulin action on energy metabolism in ewes with different susceptibilities to OPT, intravenous glucose tolerance tests (1 mmol glucose/kg body weight) were performed in 5.6 ± 0.7 year old, slightly underfed German Blackheaded Mutton ewes [high‐risk (HR) ewes] and 2.5 year old, overnourished Finnish Landrace ewes [low‐risk (LR) ewes] during mid and late pregnancy, during early lactation and during the dry period. Plasma samples were analysed for glucose, insulin, non‐esterified fatty acids (NEFA) and β‐hydroxybutyrate (β‐HB). The glucose elimination rate and the glucose‐stimulated first‐phase insulin secretion were significantly (p < 0.05) lower in the HR, in relation to the LR group combining the data of all gestational stages. The basal rate of lipolysis was significantly increased in the HR ewes during late pregnancy, but the NEFA clearance after the glucose load was similar in both groups during all reproductive stages. Plasma β‐HB concentrations decreased only in the LR ewes after the glucose load during late pregnancy. Results indicate an insulin resistance in the HR ewes regarding the glucose utilization and the ketone body formation during late pregnancy. The insulin resistance in the HR ewes may represent one predisposing factor responsible for the susceptibility to OPT. Further scientific work is necessary to elucidate whether this insulin resistance was due to breed, age or nutritional state.  相似文献   

8.
ObjectiveTo compare post-operative pain in cats after alfaxalone or ketamine- medetomidine anaesthesia for ovariohysterectomy (OHE) and physiologic parameters during and after surgery.Study designProspective ‘blinded’ randomized clinical study.AnimalsTwenty-one healthy cats.MethodsCats were assigned randomly into two groups: Group A, anaesthesia was induced and maintained with alfaxalone [5 mg kg?1 intravenously (IV) followed by boli (2 mg kg?1 IV); Group MK, induction with ketamine (5 mg kg?1 IV) after medetomidine (30 μg kg?1 intramuscularly (IM)], and maintenance with ketamine (2 mg kg?1 IV). Meloxicam (0.2 mg kg?1 IV) was administered after surgery. Basic physiological data were collected. At time T = -2, 0, 0.5, 1, 2, 4, 6, 8, 12, 16, 20, and 24 hours post-operatively pain was assessed by three methods, a composite pain scale (CPS; 0–24 points), a visual analogue scale (VAS 0–100 mm), and a mechanical wound threshold (MWT) device. Butorphanol (0.2 mg kg?1 IM) was administered if CPS was scored =13. Data were analyzed using a general linear model, Kruskal–Wallis analyses, Bonferroni-Dunn test, unpaired t-test and Fisher's exact test as relevant. Significance was set at p < 0.05.ResultsVASs were significantly higher at 0.5, 1, 2, 4, and 20 hours in group A; MWT values were significantly higher at 8 and 12 hours in group MK. Post-operative MWT decreased significantly compared to baseline in both groups. There was no difference in CPS at any time point. Five cats required rescue analgesia (four in A; one in MK).Conclusion and clinical relevanceAnaesthesia with ketamine-medetomidine was found to provide better post-surgical analgesia than alfaxalone in cats undergoing OHE; however, primary hyperalgesia developed in both groups. Alfaxalone is suitable for induction and maintenance of anaesthesia in cats undergoing OHE, but administration of additional sedative and analgesic drugs is highly recommended.  相似文献   

9.
ObjectiveTo determine the effects of intramuscular (IM) administration of medetomidine and xylazine on intraocular pressure (IOP) and pupil size in normal dogs.Study designProspective, randomized, experimental, crossover trial.AnimalsFive healthy, purpose-bred Beagle dogs.MethodsEach dog was administered 11 IM injections of, respectively: physiological saline; medetomidine at doses of 5, 10, 20, 40 and 80 μg kg−1, and xylazine at doses of 0.5, 1.0, 2.0, 4.0 and 8.0 mg kg−1. Injections were administered at least 1 week apart. IOP and pupil size were measured at baseline (before treatment) and at 0.25, 0.50, 0.75, 1, 2, 3, 4, 5, 6, 7, 8 and 24 hours post-injection.ResultsA significant decrease in IOP was observed at 6 hours after 80 μg kg−1 medetomidine compared with values at 0.25 and 0.50 hours, although there were no significant changes in IOP from baseline. In dogs treated with 8.0 mg kg−1 xylazine, significant reductions in IOP were observed at 4 and 5 hours compared with that at 0.25 hours after administration. In dogs treated with 5, 10, 20 and 40 μg kg−1 medetomidine and 0.5, 1.0 and 2.0 mg kg−1 xylazine, there were no significant changes in IOP. Pupil size did not change significantly after any of the medetomidine or xylazine treatments compared with the baseline value.Conclusions and clinical relevanceLow or moderate doses of medetomidine or xylazine did not induce significant changes in IOP or pupil size. In contrast, high doses of medetomidine or xylazine induced significant changes up to 8 hours after treatment, but values remained within the normal canine physiological range. The results of this study suggest a lack of significant change in IOP and pupil size in healthy dogs administered low or moderate doses of xylazine or medetomidine.  相似文献   

10.
11.
Ghrelin action, which stimulates growth hormone (GH) secretion, may alter during the weaning period in calves. Our objective was to compare the effects of intravenous ghrelin injection on plasma GH, insulin and glucose concentrations in calves around the weaning period. Four Holstein bull calves were fed whole milk and allowed free access to solid feeds, and weaned at 7 weeks of age. Measurements were performed at weeks 1, 2, 4, 6, 7, 9, 11 and 13, when calves were intravenously injected with ghrelin (1.0 μg/kg body weight (BW)) through a catheter, and jugular blood samples were obtained temporally relative to the injection time. Estimated digestible energy intake per metabolic BW transiently decreased at week 7 because of low solid intake immediately after weaning, and thereafter gradually increased. Plasma insulin and glucose concentrations were not affected by ghrelin injection at all ages. In contrast, plasma GH concentrations increased with ghrelin injection at all ages. The incremental area of GH at week 7 was greatest and significantly higher compared with weeks 2, 4, 6 and 9. This result suggests that nutrient insufficiency immediately after weaning enhances GH responsiveness to ghrelin.  相似文献   

12.
The inhibitory effect of the somatostatin analogue octreotide on the secretion of insulin could be used in the treatment of insulinoma. However, current information on the effectiveness of octreotide in dogs is conflicting. Therefore, the endocrine effects of a single subcutaneous dose of 50 microg octreotide were studied in healthy dogs in the fasting state (n=7) and in dogs with insulinoma (n=12). Octreotide did not cause any adverse effects. In healthy dogs in the fasting state, both plasma insulin and glucagon concentrations declined significantly. Basal (non-pulse related) GH and ACTH concentrations were not affected. A slight but significant decrease in the plasma glucose concentrations occurred. Dogs with insulinoma had significantly higher baseline insulin concentrations and lower baseline glucose concentrations than healthy dogs in the fasting state. Plasma glucagon, GH, ACTH, and cortisol concentrations did not differ from those in healthy dogs. Baseline plasma insulin concentrations decreased significantly in dogs with insulinoma after octreotide administration, whereas plasma concentrations of glucagon, GH, ACTH, and cortisol did not change. In contrast to the effects in the healthy dogs, in the dogs with insulinoma plasma glucose concentrations increased. Thus, the consistent suppression of plasma insulin concentrations in dogs with insulinoma, in the absence of an suppressive effect on counter-regulatory hormones, suggests that further studies on the effectiveness of slow-release preparations in the long-term medical treatment of dogs with insulinoma are warranted.  相似文献   

13.
ObjectiveTo describe the pharmacodynamics and pharmacokinetics following an intravenous (IV) bolus dose of medetomidine in the horse.Study designProspective experimental trial.AnimalsEight, mature healthy horses age 11.7 ± 4.6 (mean ± SD) years, weighing 557 ± 54 kg.MethodsMedetomidine (10 μg kg?1) was administered IV. Blood was sampled at fixed time points from before drug administration to 48 hours post administration. Behavioral, physiological and biochemical data were obtained at predetermined time points from 0 minutes to 24 hours post administration. An algometer was also used to measure threshold responses to noxious stimuli. Medetomidine concentrations were determined by liquid chromatography-Mass Spectrometry and used for calculation of pharmacokinetic parameters using noncompartmental and compartmental analysis.ResultsPharmacokinetic analysis estimated that medetomidine peaked (8.86 ± 3.87 ng mL?1) at 6.4 ± 2.7 minutes following administration and was last detected at 165 ± 77 minutes post administration. Medetomidine had a clearance of 39.6 ± 14.6 mL kg?1 minute?1 and a volume of distribution of 1854 ± 565 mL kg?1. The elimination half-life was 29.1 ± 12.5 minutes. Glucose concentration reached a maximum of 176 ± 46 mg dL?1 approximately 1 hour post administration. Decreased heart rate, respiratory rate, borborygmi, packed cell volume, and total protein concentration were observed following administration. Horses lowered their heads from 107 ± 12 to 20 ± 10 cm within 10 minutes of drug administration and gradually returned to normal. Horse mobility decreased after drug administration. An increased mechanical threshold was present from 10 to 45 minutes and horses were less responsive to sound.Conclusion and clinical relevance Behavioral and physiological effects following intravenous administration positively correlate with pharmacokinetic profiles from plasma medetomidine concentrations. Glucose concentration gradually transiently increased following medetomidine administration. The analgesic effect of the drug appeared to have a very short duration.  相似文献   

14.
ObjectiveTo investigate the influence of l–methadone on medetomidine–induced changes in arterial blood gases and clinical sedation in dogs.Study designProspective experimental cross–over study (Latin square design).AnimalsFive 1–year–old purpose bred laboratory beagle dogs of both sexes.MethodsEach dog was treated three times: medetomidine (20 μg kg?1 IV), l–methadone (0.1 mg kg?1 IV) and their combination. Arterial blood was collected for blood gas analysis. Heart and respiratory rates were recorded, and clinical sedation and reaction to a painful stimulus were scored before drug administration and at various time points for 30 minutes thereafter.ResultsArterial partial pressure of oxygen decreased slightly after medetomidine administration and further after medetomidine/l–methadone administration (range 55.2–86.7 mmHg, 7.4–11.6 kPa, at 5 minutes). A slight increase was detected in arterial partial pressure of carbon dioxide after administration of l–methadone and medetomidine/l–methadone (42.6 ± 2.9 and 44.7 ± 2.4 mmHg, 5.7 ± 0.4 and 6.0 ± 0.3 kPa, 30 minutes after drug administration, respectively). Arterial pH decreased slightly after administration of l–methadone and medetomidine/l–methadone. Heart and respiratory rates decreased after administration of medetomidine and medetomidine/l–methadone, and no differences were detected between the two treatments. Most dogs panted after administration of l–methadone and there was slight sedation. Medetomidine induced moderate or deep sedation, and all dogs were deeply sedated after administration of medetomidine/l–methadone. Reaction to a noxious stimulus was strong or moderate after administration of methadone, moderate or absent after administration of medetomidine, and absent after administration of medetomidine/l–methadone.Conclusions and clinical relevanceAt the doses used in this study, l–methadone potentiated the sedative and analgesic effects and the decrease in arterial oxygenation induced by medetomidine in dogs, which limits the clinical use of this combination.  相似文献   

15.
The objective of this study was to observe how fat incorporated into an equine forage‐based diet through supplementation altered levels of plasma glucose, insulin and fatty acids. Five Shetland/Hackney cross pony mares were fed alfalfa pellet diets top dressed with commercially available vegetable oil (blend of soya bean, canola and corn oils) at 0%, 5%, 10% or 15% of diet. Ponies were randomly assigned one of four diets to start, with a 14‐day adjustment period between transitioning to another one of the four diets. Ponies were gradually adapted to the new diet within the 14‐day period before a five‐day trial period. Each pony received all four diets by the end of the study. Each trial was a five‐day period with a three‐day sample collection. Blood samples for each collection week were taken 0, 30, 60, 90, 120, 150, 180, 210, 240 and 270 min and at 5, 6, 7, 8, 9 and 10 hr post‐feeding. Excess fat did not impact plasma glucose (p > .1), nor did it affect blood plasma insulin concentration. While there was no time alteration found for plasma fatty acid concentration (p > .1), C14:0 increased when ponies were fed 0% fat and C18:2 decreased when ponies were fed 0% fat. Plasma fatty acids (% of total FA) were higher in C18:0, C18:1, C18:2 and C20:1 in the added fat diets (p < .1). These findings suggest the amounts reported in this study of fat supplementation on a forage‐based diet did influence the fatty acid analysis within the pony, but did not negatively impact blood glucose and insulin concentrations.  相似文献   

16.

Objective

To investigate changes in serum cardiac troponin I (cTnI) concentrations in dogs in which medetomidine was used for sedation or for premedication prior to anaesthesia with propofol and sevoflurane.

Study design

Prospective clinical study.

Animals

A total of 66 client-owned dogs.

Methods

The dogs were sedated with medetomidine (0.04 mg kg?1) intravenously (IV) (group M; n = 20) and left to breath room air or anaesthetized with propofol (6.5 ± 0.76 mg kg?1 IV) and sevoflurane (4.5% vaporizer setting) in oxygen (group P + S; n = 20) or with medetomidine (0.04 mg kg?1 IV), propofol (1.92 ± 0.63 mg kg?1) and sevoflurane (3% vaporizer setting) in oxygen (group M + P + S; n = 26), respectively. After 35 minutes, medetomidine was antagonized with atipamezole (0.1 mg kg?1 intramuscularly). Blood samples for serum cTnI determination were taken before sedation or anaesthesia, 6 and 12 hours and 4 days thereafter. Serum cTnI concentrations were measured with the Architect STAT Troponin-I assay.

Results

Before sedation or anaesthesia, cTnI concentrations were above the detection limit in 22 out of 66 (33%) of dogs. Compared to basal values, cTnI concentrations significantly increased at 6 and 12 hours in all groups and at day 4 in group M. There were no differences in cTnI concentration between groups at baseline, at 6 hours and at 4 days. At 12 hours, cTnI concentrations were significantly higher in groups M and P + S, respectively, compared to group M + P + S.

Conclusions and clinical relevance

Oxygenation during anaesthesia and reduction of propofol and sevoflurane dose due to the sparing effects of medetomidine might have played a role in alleviation of myocardial hypoxic injury as indicated by the less severe and short-lived increase of cTnI in the M + P + S group.  相似文献   

17.
ObjectiveTo compare the cardiopulmonary effects of intravenous (IV) and intramuscular (IM) medetomidine and butorphanol with or without MK-467.Study designProspective, randomized experimental cross-over.AnimalsEight purpose–bred beagles (two females, six males), 3–4 years old and weighing 14.5 ±1.6 kg (mean ± SD).MethodsAll dogs received four different treatments as follows: medetomidine 20 μg kg?1 and butorphanol tartrate 0.1 mg kg?1 IV and IM (MB), and MB combined with MK-467,500 μg kg?1 (MBMK) IV and IM. Heart rate (HR), arterial blood pressures (SAP, MAP, DAP), central venous pressure (CVP), cardiac output, respiratory rate (fR), rectal temperature (RT) were measured and arterial blood samples were obtained for gas analysis at baseline and at 3, 10, 20, 30, 45 and 60 minutes after drug administration. The cardiac index (CI), systemic vascular resistance index (SVRI) and oxygen delivery index (DO2I) were calculated. After the follow-up period atipamezole 50 μg kg?1 IM was given to reverse sedation.ResultsHR, CI and DO2I were significantly higher with MBMK after both IV and IM administration. Similarly, SAP, MAP, DAP, CVP, SVRI and RT were significantly lower after MBMK than with MB. There were no differences in fR between treatments, but arterial partial pressure of oxygen decreased transiently after all treatments. Recoveries were uneventful following atipamezole administration after all treatments.Conclusions and clinical relevanceMK-467 attenuated the cardiovascular effects of a medetomidine-butorphanol combination after IV and IM administration.  相似文献   

18.
ObjectiveTo record, with a thermal camera, peripheral temperature changes during different sedation protocols and to relate the results to changes in the rectal temperature.Study designRandomized crossover part-blinded experimental study.AnimalsEight healthy purpose-bred neutered Beagles (two females and six males) weight 14.5 ± 1.6 kg (mean ± SD) and aged 3–4 years.MethodsEach dog was sedated four times. Treatments were medetomidine 20 μg kg?1 and butorphanol 0.1 mg kg?1 (MB) with or without MK-467 500 μg kg?1 (MK). Both drug combinations were administered IV and IM as separate treatments. A thermal camera (T425, FLIR) with a resolution of 320 by 240 was used for imaging.The dogs were placed in lateral recumbency on an insulated mattress. Digital (DFT) and metatarsal footpad temperatures (MFT) were measured with thermography. Thermograms and rectal temperature (RT) were taken before and at 3, 10, 20, 30, 45 and 60 minutes after treatment.ResultsAt 60 minutes after drug administration, MFT was higher (p < 0.001) after MB+MK (34.5 ± 1.1 IV, 34.8 ± 0.5 IM) than MB (31.1 ± 2.9 IV, 30.5 ± 3.6 IM), DFT was higher (p < 0.001) after MB+MK (33.6 ± 1.4 IV, 34.0 ± 0.6 IM) than MB (26.7 ± 1.4 IV, 26.7 ± 2.5 IM), and RT was lower (p < 0.001) after MB+MK (36.7 ± 0.8 IV, 36.9 ± 0.3 IM) than MB (37.5 ± 0.3 IV, 37.4 ± 0.4 IM), with both routes. The change from baseline was greater with MB+MK than MB in all variables.ConclusionsSuperficial temperature changes can be seen and detected with thermography. MK-467 used with MB resulted in increased superficial temperatures and a decline in rectal temperature compared to MB alone.Clinical relevanceThe sedation protocol may influence core temperature loss, and may also have an effect on thermographic images.  相似文献   

19.
Reasons for performing study: Hyperinsulinaemia is detected in horses with insulin resistance (IR) and has previously been attributed to increased pancreatic insulin secretion. Connecting peptide (C‐peptide) can be measured to assess pancreatic function because it is secreted in equimolar amounts with insulin and does not undergo hepatic clearance. Hypothesis: A human double antibody radioimmunoassay (RIA) detects C‐peptide in equine serum and concentrations would reflect responses to different stimuli and conditions. Methods: A validation procedure was performed to assess the RIA. Six mature mares were selected and somatostatin administered i.v. as a primed continuous rate infusion, followed by 50 nmol human C‐peptide i.v. Insulin and C‐peptide concentrations were measured in horses (n = 6) undergoing an insulin‐modified frequently sampled i.v. glucose tolerance test, and in horses with insulin resistance (n = 10) or normal insulin sensitivity (n = 20). Results: A human RIA was validated for use with equine sera. Endogenous C‐peptide secretion was suppressed by somatostatin and median (range) clearance rate was 0.83 (0.15–1.61) ml/min/kg bwt. Mean ± s.d. C‐peptide‐to‐insulin ratio significantly (P = 0.004) decreased during the glucose tolerance test from 3.60 ± 1.95 prior to infusion to 1.03 ± 0.18 during the first 20 min following dextrose administration. Median C‐peptide and insulin concentrations were 1.5‐ and 9.5‐fold higher, respectively in horses with IR, compared with healthy horses. Conclusions: Endogenous C‐peptide secretion decreases in response to somatostatin and increases after dextrose infusion. Results suggest that relative insulin clearance decreases as pancreatic secretion increases in response to dextrose infusion. Hyperinsulinaemia in insulin resistant horses may be associated with both increased insulin secretion and decreased insulin clearance. Potential relevance: Both C‐peptide and insulin concentrations should be measured to assess pancreatic secretion and insulin clearance in horses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号