首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Objective Evaluation of five pulse oximeters in dogs, cats and horses with sensors placed at five sites and hemoglobin saturation at three plateaus. Study design Prospective randomized multispecies experimental trial. Animals Five healthy dogs, cats and horses. Methods Animals were anesthetized and instrumented with ECG leads and arterial catheters. Five pulse oximeters (Nellcor Puritan Bennett‐395, NPB‐190, NPB‐290, NPB‐40 and Surgi‐Vet V3304) with sensors at five sites were studied in a 5 × 5 Latin square design. Ten readings (SpO2) were taken at each of three hemoglobin saturation plateaus (98, 85 and 72%) in each animal. Arterial samples were drawn concurrently and hemoglobin saturation was measured with a co‐oximeter. Accuracy of saturation measurements was calculated as the root mean squared difference (RMSD), a composite of bias and precision, for each model tested in each species. Results Accuracy varied widely. In dogs, the RMSD for the NPB‐395, NPB‐190, NPB‐290, NPB‐40 and V3304 were 2.7, 2.2, 2.4, 1.7 and 2.7% respectively. Failure to produce readings for the NPB‐395, NPB‐190, NPB‐290, NPB‐40 and V3304 were 0, 0, 0.7, 0, and 20%, respectively. The Pearson correlation coefficients for the tongue, toe, ear, lip and prepuce or vulva were 0.95, 0.97, 0.69, 0.87 and 0.95, respectively. In horses, the RMSD for the NPB‐395, NPB‐190, NPB‐290, NPB‐40 and V3304 were 3.1, 3.0, 4.7, 3.3 and 2.1%, respectively while rates of failure to produce readings were 10, 21, 0, 17 and 60%, respectively. The Pearson correlation coefficients for the tongue, nostril, ear, lip and prepuce or vulva were 0.98, 0.94, 0.88, 0.93 and 0.94, respectively. In cats, the RMSD for all data for the NPB‐395, NPB‐190, NPB‐290, NPB‐40 and V3304 were 5.9, 5.6, 7.9, 7.9 and 10.7%, respectively while failure rates were 0, 0.7, 0, 20 and 32%, respectively. The correlation coefficients for the tongue, rear paw, ear, lip and front paw were 0.54, 0.79,.0.64, 0.49 and 0.57, respectively. For saturations above 90% in cats, the RMSD for the NPB‐395, NPB‐190, NPB‐290, NPB‐40 and V3304 were 2.6, 4.4, 4.0, 3.5 and 4.8%, respectively, while failure rates were 0, 1.7, 0, 25 and 43%, respectively. Conclusions and clinical relevance Accuracy and failure rates (failure to produce a reading) varied widely from model to model and from species to species. Generally, among the models tested in the clinically relevant range (90–100%) RMSD ranged from 2–5% while failure rates were highest in the V3304.  相似文献   

4.
5.
6.
Objective – To determine the accuracy and precision of an oscillometric noninvasive blood pressure device as a predictor of invasive direct blood pressure in healthy anesthetized hypotensive and normotensive dogs. Design – Prospective observational study. Setting – University teaching hospital. Animals – Eight crossbred adult dogs. Interventions – Anesthesia was induced with propofol and maintained with isoflurane. A catheter was placed in the dorsal pedal artery to record systolic, mean, and diastolic arterial blood pressures (aSAP, aMAP, and aDAP, respectively). The noninvasive blood pressure device cuff was placed around the contralateral front limb to record noninvasive systolic, mean, and diastolic blood pressure (nSAP, nMAP, and nDAP). Two states of blood pressure (BP) were studied: baseline state was established by keeping end‐tidal isoflurane concentration at 1.2±0.1%. The hypotensive state was achieved by maintaining the same isoflurane concentration while withdrawing approximately 40% of the animal's blood volume until aMAP was stable at approximately 40 mm Hg. At the end of the study, blood was returned to the animal and it was allowed to recover from anesthesia. Measurements and Main Results – Agreement between the direct and indirect BP measurements was determined by the Bland‐Altman method. The SAP and MAP but not DAP bias varied significantly between each BP state. Normotensive absolute biases (mean [SD]) for SAP, MAP, and DAP were ?14.7 mm Hg (15.5 mm Hg), ?16.4 mm Hg (12.1 mm Hg), and ?14.1 mm Hg (15.8 mm Hg), respectively. Absolute biases during the hypotensive state for SAP, MAP, and DAP were ?32 mm Hg (22.6 mm Hg), ?24.2 mm Hg (19.5 mm Hg), and ?16.8 mm Hg (17.2 mm Hg), respectively. Conclusion – The oscillometric device was not reliably predictive of intra‐arterial BP during hypotension associated with acute hemorrhage.  相似文献   

7.
ObjectiveTo compare noninvasive (NIBP) with invasive blood pressure (IBP) measurements from a Datex S/5 Compact monitor in anaesthetized adult dogs, and to evaluate it according to the American College of Veterinary Internal Medicine (ACVIM) and the Association for the Advancement of Medical Instrumentation (AAMI) criteria.Study designProspective clinical study.AnimalsA group of 34 client-owned adult dogs.MethodsDogs were anaesthetized for different surgical procedures using different anaesthetic protocols. IBP was measured using a catheter placed in a dorsal pedal artery. A blood pressure cuff was placed over the contralateral dorsal pedal artery for NIBP measurement. Data were recorded using the Datex iCollect program, and paired readings were matched every 3 minutes for 60 minutes. Bland-Altman and error grid analyses were used to estimate the agreement between IBP and NIBP measurements, and its clinical significance, respectively. Data were reported as mean bias [lower, upper limits of agreement (LoA)].ResultsThe Datex S/5 monitor conformed to most ACVIM criteria. The correlation coefficient was less than 0.9 for systolic, diastolic, and mean arterial pressures (MAP). The best agreement between the noninvasive and invasive methods was observed for MAP, with LoA (–17 to 13 mmHg) and higher percentage of NIBP readings within 5 (55.6%), 10 (81.7%) and 20 (98.6%) mmHg of the IBP values. The Datex S/5 NIBP technology did not meet the AAMI validation criteria and less than 95% of the paired measurements were found within the green zone of the error grid analysis.Conclusions and clinical relevanceThe Datex S/5 monitor conformed to most ACVIM criteria but not with the more rigorous AAMI standards. Despite good agreement between IBP and NIBP for MAP measurements, care must be taken when using this device to guide therapeutic interventions of blood pressure in anaesthetized healthy adult dogs.  相似文献   

8.
9.
ObjectiveTo evaluate the agreement between oscillometric blood pressure (OBP) measured from the tongue and invasive blood pressure (IBP), and to compare OBPs measured from the tongue with OBPs measured from the pelvic limb and tail.Study designProspective experimental study.AnimalsA total of eight adult Beagle dogs weighing 11.1 ± 1.2 kg.MethodsAnimals were premedicated with intravenous (IV) acepromazine (0.005 mg kg–1). Anesthesia was induced with alfaxalone (3 mg kg–1) IV and maintained with isoflurane. The dorsal pedal artery was catheterized for IBP measurements. Systolic (SAP), diastolic (DAP) and mean (MAP) arterial pressure were simultaneously measured from the tongue, pelvic limb and tail. Based on invasive SAP, hypertension (>140 mmHg), normotension (90–140 mmHg) and hypotension (<90 mmHg) were induced by controlling end-tidal isoflurane concentrations and/or dobutamine/dopamine administration. Agreement between paired IBP and OBP measurements was analyzed with reference standards for noninvasive blood pressure devices used in small animals and humans.ResultsRegardless of cuff placement, the mean bias ± standard deviation between IBP and OBP met veterinary (≤10 ± 15 mmHg) and human (<5 ± 8 mmHg) standards for MAP and DAP. SAP measurements provided by the OBP device showed unacceptable agreement with IBP, and the bias between methods increased at higher blood pressures, regardless of cuff site. During hypotension, tongue OBP showed the largest percentage of absolute difference <10 mmHg in relation to IBP for SAP (90%), MAP (97%), and DAP (93%), compared with pelvic limb (60%, 97% and 82%, respectively) and tail OBP (54%, 92% and 77%, respectively).Conclusions and clinical relevanceThe tongue is a clinically useful site for measuring OBP in anesthetized Beagle dogs, providing reliable estimates of MAP and DAP. The tongue could replace other cuff placement sites and may be a relatively suitable site for assessing hypotension.  相似文献   

10.
OBJECTIVE: To evaluate the effect of the tiletamine/zolazepam (TZ) combination (Zoletil 100; Virbac, Carros, France) with and without atropine on blood gas values and acid-base status in dogs. STUDY DESIGN: Randomized cross-over experimental study. ANIMALS: Six healthy adult cross-bred dogs, weighing 11.0-18.5 kg. MATERIALS AND METHODS: Each dog received four different drug treatments at intervals of at least 15 days: (i) 5 mg kg(-1) intravenous (IV) TZ (TZ.IV); (ii) 10 mg kg(-1) intramuscular (IM) TZ (TZ.IM); (iii) atropine, 20 microg kg(-1) IV, followed 5 minutes later by 5 mg kg(-1) TZ IV (A.TZ.IV); and (IV) atropine (same dose) given 5 minutes before 10 mg kg(-1) TZ IM (A.TZ.IM). Arterial blood samples were collected from each dog before drug administration (baseline) at induction of anaesthesia (time 0) and 2, 5, 10 and 30 minutes thereafter. RESULTS: Transient hypoxaemia and respiratory acidosis were observed just after induction. PaO(2) and SaO(2) dropped, while H(+) concentration and PaCO(2) rose significantly above baseline values. In groups TZ.IV and A.TZ.IV, PaO(2) values as low as 6.0-6.4 kPa (45-48 mm Hg) were recorded. However, there was no significant difference in blood gas variables among the groups encountered during the evaluation period. The overall change in [HCO(3) (-)] and base excess (BE) was not significant among groups. Atropine did not affect the above variables. CONCLUSIONS AND CLINICAL RELEVANCE: Tiletamine/zolazepam injection may induce transient hypoxaemia and respiratory acidosis, but acid-base status changes are clinically unimportant. Particularly, close observation of dogs is recommended during the first 5-10 minutes after induction with TZ, especially in animals with cardiopulmonary disease. TZ should perhaps not be used in animals intolerant of tachycardia.  相似文献   

11.
12.
13.
14.
Objective – To evaluate the effect of body position on the arterial partial pressures of oxygen and carbon dioxide (PaO2, PaCO2), and the efficiency of pulmonary oxygen uptake as estimated by alveolar‐arterial oxygen difference (A‐a difference). Design – Prospective, randomized, crossover study. Setting – University teaching hospital, intensive care unit. Animals – Twenty‐one spontaneously breathing, conscious, canine patients with arterial catheters placed as part of their management strategy. Interventions – Patients were placed randomly into lateral or sternal recumbency. PaO2 and PaCO2 were measured after 15 minutes in this position. Patients were then repositioned into the opposite position and after 15 minutes the parameters were remeasured. Measurements and Main Results – Results presented as median (interquartile range). PaO2 was significantly higher (P=0.001) when patients were positioned in sternal, 91.2 mm Hg (86.0–96.1 mm Hg), compared with lateral recumbency, 86.4 mm Hg (73.9–90.9 mm Hg). The median change was 5.4 mm Hg (1.1–17.9 mm Hg). All 7 dogs with a PaO2<80 mm Hg in lateral recumbency had improved arterial oxygenation in sternal recumbency, median increase 17.4 mm Hg with a range of 3.8–29.7 mm Hg. PaCO2 levels when patients were in sternal recumbency, 30.5 mm Hg (27.3–32.7 mm Hg) were not significantly different from those in lateral recumbency, 32.2 mm Hg (28.3–36.0 mm Hg) (P=0.07). The median change was ?1.9 mm Hg (?3.6–0.77 mm Hg). A‐a differences were significantly lower (P=0.005) when patients were positioned in sternal recumbency, 21.7 mm Hg (17.3–27.7 mm Hg), compared with lateral recumbency, 24.6 mm Hg (20.4–36.3 mm Hg). The median change was ?3.1 mm Hg (?14.6–0.9 mm Hg). Conclusions – PaO2 was significantly higher when animals were positioned in sternal recumbency compared with lateral recumbency, predominantly due to improved pulmonary oxygen uptake (decreased A‐a difference) rather than increased alveolar ventilation (decreased PaCO2). Patients with hypoxemia (defined as PaO2<80 mm Hg) in lateral recumbency may benefit from being placed in sternal recumbency. Sternal recumbency is recommended to improve oxygenation in hypoxemic patients.  相似文献   

15.
OBJECTIVES: To determine if chronic selegiline HCl administration affects the cardiopulmonary response to medetomidine, oxymorphone, or butorphanol in dogs. STUDY DESIGN: Prospective randomized experimental study. ANIMALS: Twenty-eight adult, random source, hound dogs weighing 21-33 kg. METHODS: Dogs were assigned to the following treatment groups: selegiline + medetomidine (MED; n = 6); placebo + MED (n = 6), selegiline + oxymorphone (OXY; n = 6); placebo + OXY (n = 6); selegiline + butorphanol (BUT; n = 7) or placebo + BUT (n = 6). Nine dogs were treated with two of the three pre-medicants. Dogs were treated with selegiline (1 mg kg(-1) PO, q 24 hours) or placebo for at least 44 days prior to pre-medicant administration. On the day of the experiment, arterial blood for blood gas analysis, blood pressure measurements, ECG, cardiac ultrasound (mM-mode, 2-D, and continuous wave Doppler), and behavioral observations were obtained by blinded observers. An IV injection of MED (750 micro g m(-2)), OXY (0.1 mg kg(-1)) or BUT (0.4 mg kg(-1)) was given. Cardiopulmonary and behavioral data were collected at 1, 2, 5, 15, 30, and 60 minutes after injection. RESULTS: Selegiline did not modify responses to any of the pre-medicant drugs. Medetomidine caused a significant decrease in heart rate (HR), cardiac output (CO), and fractional shortening (FS). Mean arterial pressure (MAP), systemic vascular resistance (SVR), and central venous pressure (CVP) were increased. Level of consciousness and resistance to restraint were both decreased. Oxymorphone did not affect MAP, CO, CVP, or SVR, but RR and PaCO(2) were increased. Level of consciousness and resistance to restraint were decreased. BUT decreased heart rate at 1 and 5 minutes. All other cardiovascular parameters were unchanged. BUT administration was associated with decreased arterial pH and increased PaCO(2). BUT decreased level of consciousness and resistance to restraint. CONCLUSIONS AND CLINICAL RELEVANCE: Although pre-medicants themselves altered cardiopulmonary and behavioral function, selegiline did not affect the response to medetomidine, oxymorphone, or butorphanol in this group of normal dogs.  相似文献   

16.
驴,骡血气分析初探   总被引:1,自引:2,他引:1  
对25头驴、骡进行血气分析,结果表明:驴、骡血液pH,Po_2,O_2ST,HCO,Tco_2,BE_b,SBc,BE_(ecf)在二者之间无显著差异性(P>0.05);驴血液Pco_2,和乳酸皆高于骡(P<0.01和P<0.05);驴、骡的血液pH为7.41±0.03,Po_2为4.97±0.97kPa,Pco_2为5.20±0.39kPa,O_2ST为71.29±9.25%,HCO_3为25.94±1.68mmol/L,Tco_2为27.15±1.73mmol/L,BE_b为1.96±1.71mmol/L,SBc为25.68±1.31mmol/L,BE_(ecf)为1.23±1.89mmol/L,乳酸含量为1.68±0.63mmol/L。  相似文献   

17.
ObjectiveTo compare the effects of cuff size/position on the agreement between arterial blood pressure measured by Doppler ultrasound (ABPDoppler) and dorsal pedal artery catheter measurements of systolic (SAPinvasive) and mean arterial pressure (MAPinvasive) in anesthetized cats.Study designProspective study.AnimalsA total of eight cats (3.0–3.8 kg) for neutering.MethodsDuring isoflurane anesthesia, before surgery, changes in end-tidal isoflurane concentrations and/or administration of dopamine were performed to achieve SAPinvasive within 60–150 mmHg. Cuff sizes 1, 2 and 3 (bladder width: 20, 25 and 35 mm, respectively) were placed on distal third of the antebrachium, above the tarsus and below the tarsus for ABPDoppler measurements. Agreement between ABPDoppler and SAPinvasive or between ABPDoppler and MAPinvasive was compared with reference standards for noninvasive blood pressure devices used in humans and small animals.ResultsMean bias and precision (±standard deviation) between ABPDoppler and SAPinvasive met veterinary standards (≤10 ± 15 mmHg), but not human standards (≤5 ± 8 mmHg), with cuffs 1 and 2 placed on the thoracic limb (7.4 ± 13.9 and –5.8 ± 9.5 mmHg, respectively), and with cuff 2 placed proximal to the tarsus (7.2 ± 12.4 mmHg). Cuff width-to-limb circumference ratios resulting in acceptable agreement between ABPDoppler and SAPinvasive were 0.31 ± 0.04 (cuff 1) and 0.42 ± 0.05 (cuff 2) on the thoracic limb, and 0.43 ± 0.05 (cuff 2) above the tarsus. ABPDoppler showed no acceptable agreement with MAPinvasive by any reference standard.Conclusions and clinical relevanceThe agreement between ABPDoppler and SAPinvasive can be optimized by placing the occlusive cuff on the distal third of the antebrachium and above the tarsus. In these locations, cuff width should approach 40% of limb circumference to provide clinically acceptable estimations of SAPinvasive. Doppler ultrasound cannot be used to estimate MAPinvasive in cats.  相似文献   

18.
19.
20.
OBJECTIVE: To compare the performance of the Surgivet Non-Invasive Blood Pressure (NIBP) monitor V60046 with an invasive blood pressure (IBP) technique in anaesthetized dogs. STUDY DESIGN: A prospective study. ANIMALS: Thirty-four dogs, anaesthetized for a variety of procedures. METHODS: Various anaesthetic protocols were used. Invasive blood pressure measurement was made using a catheter in the femoral or the pedal artery. A cuff was placed on the contralateral limb to allow non invasive measurements. Recordings of arterial blood pressures (ABPs) were taken at simultaneous times for a range of pressures. For analysis, three pressure levels were determined: high [systolic blood pressure (SAP) > 121 mmHg], normal (91 mmHg < SAP < 120 mmHg) and low (SAP < 90 mmHg). Comparisons between invasive and non invasive measurements were made using Bland-Altmann analysis. RESULTS: The NIBP monitor consistently underestimated blood pressure at all levels. The lowest biases and greatest precision were obtained at low and normal pressure levels for SAP and mean arterial pressure (MAP). At low blood pressure levels, the biases +/- 95% confidence interval (CI) were 1.9 +/- 2.96 mmHg (SAP), 8.3 +/- 2.41 mmHg diastolic arterial pressure (DAP) and 3.5 +/- 2.09 mmHg (MAP). At normal blood pressure levels, biases and CI were: 1.2 +/- 2.13 mmHg (SAP), 5.2 +/- 2.32 mmHg (DAP) and 2.1 +/- 1.54 mmHg (MAP). At high blood pressure levels, the biases and CI were 22.7 +/- 5.85 mmHg (SAP), 5.5 +/- 3.13 mmHg (DAP) and 9.4 +/- 3.52 mmHg (MAP). In 90.6% of cases of hypotension (MAP < 70 mmHg), the low blood pressure was correctly diagnosed by the Surgivet. CONCLUSIONS: Measurement of blood pressure with the indirect monitor allowed detection of hypotension using either SAP or MAP. The most accurate readings were determined for MAP at hypotensive and normal levels. The monitor lacked accuracy at high pressures. CLINICAL RELEVANCE: When severe challenges to the cardiovascular system are anticipated, an invasive method of recording ABP is preferable. For routine usage, the Surgivet monitor provided a reliable and safe method of NIBP monitoring in dogs, thereby contributing to the safety of anaesthesia by providing accurate information about the circulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号