首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetic constants, Kd, k2, and ki, were determined for the inhibition by 4-nitro-phenyl methyl(phenyl)phosphinate of three cholinesterases: butyrylcholinesterase, bovine erythrocyte acetylcholinesterase and eel acetylcholinesterase. Stopped-flow kinetic evaluations and automated data acquisition and processing were employed. A broad range in affinity for the phosphinate inhibitor was observed as reflected by the binding constants, Kd. A similar wide range in the k2 values for the unimolecular inhibition step was obtained. The net bimolecular rate constants, ki, indicate equal overall reactivity for butyrylcholinesterase and eel acetylcholinesterase with a smaller inhibition rate constant for bovine erythrocyte acetylcholinesterase.  相似文献   

2.
The inhibitory effects of a recently introduced series of the titled compounds on insect and mammalian acetylcholinesterase (AChE) activity were examined, where the median inhibition concentration (I50) and the inhibition kinetic parameters, bimolecular inhibition rate constant (ki), affinity constant (Ka), and phosphorylation rate constant (kp), were determined for each compound. Results indicated that all examined dioxaphospholenes had less inhibitory effects on mammalian AChE than fenitrothion, a commercial pesticide with moderate mammalian toxicity. The highest selectivity was obtained with compounds containing glutamic and leucine moieties (2.70 and 2.18, respectively) while selectivity of fenitrothion was 0.93. The low inhibitory effects of the examined dioxaphospholenes on mammalian AChE were attributed to their low phosphorylation rates (kp < 2.2 min−1) compared to that of fenitrothion (kp = 4.84 min−1). QSAR equations indicated that the inhibition process is controlled mainly by both the phosphorylation rate (direct effect) and the affinity of compounds toward the enzyme (inverse effect). Although the compounds’ hydrophobicity had no effects on the inhibition process, it affects the compounds’ toxicity since it affects the ability of compounds to penetrate insects to reach the enzyme active site.  相似文献   

3.
The inhibition of eel acetylcholinesterase and bovine erythrocyte acetylcholinesterase by the 4-nitrophenyl esters of methyl-, ethyl-, and isopropyl(phenyl)phosphinic acid (MPP, EPP, and IPP, respectively) was investigated at pH 6.90 in 0.067 M phosphate buffer (25.0°C) using stopped-flow instrumentation and automated data processing. Our evaluation of the dissociation constant, Kd, the unimolecular bonding rate constant, k2, and the bimolecular reaction constant, ki, are the first reported values for these constants for a homologous series of this class of organophosphorus compounds. The largest k1 value (29,428 M?1 sec?1) was observed for the reaction of eel acetylcholinesterase with 4-nitrophenyl methyl(phenyl)phosphinate. The smallest ki value (9.6 M?1 sec?1) was observed for the reaction of bovine erythrocyte acetylcholinesterase with 4-nitrophenyl isopropyl(phenyl)phosphinate.  相似文献   

4.
Several aryl N-hydroxy- and N-methoxy-N-methylcarbamates were examined as inhibitors of bovine erythrocyte acetylcholinesterase (AChE). These carbamate derivatives were generally strong inhibitors of AChE, but, unlike the typical N-methyl- and N,N-dimethylcarbamates which are carbamylating agents, they proved to be reversible, competitive inhibitors of the enzyme. The values for the dissociation constant (Ka) for the enzyme-inhibitor complex to enzyme and inhibitor were in the range of 2 × 10?5?1 × 10?7M.  相似文献   

5.
Four organophosphorus esters found as impurities in technical malathion were synthesized, and their abilities to inhibit monomeric and oligomeric carboxylesterases from rabbit liver, as well as type I and type II esterases from porcine liver, were studied. The equilibrium dissociation constant (Kd), phosphorylation constant (k2), and bimolecular rate constant (ki) were determined in the presence of substrate. Inhibition, as judged by the ki, was in the following order: isomalathion > O,S,S-trimethyl phosphorodithioate > O,O,S-trimethyl phosphorothioate > O,O,S-trimethyl phosphorodithioate. All of the k2 values were relatively small, indicating that the kd values contribute most to the overall inhibitory power. Rabbit liver carboxylesterases are more sensitive to inhibition by isomalathion than porcine liver esterases, reflecting a species difference. Isomalathion undergoes nonenzymatic degradation in the presence of fluoride ions, producing diethyl thiomalate. A kinetic investigation of the nonenzymatic degradation of isomalathion was conducted, and reaction rate constants were determined in phosphate buffer at various molarities, temperatures, and pH values.  相似文献   

6.
The inhibition of eel acetylcholinesterase by the 4-nitrophenyl esters of 2-furyl(methyl)-, methyl(2-thienyl)-, di-2-furyl-, and di-2-thienylphosphinic acid (I, II, III, and IV, respectively) was investigated at pH 6.90 in 0.067 M phosphate buffer (25.0°C) using stopped-flow instrumentation and automated data processing. Our evaluation of the dissociation constant, Kd, the unimolecular bonding rate constant, k2, and the bimolecular reaction constant, ki, are the first reported values for these constants for alkyl/heteroaryl and diheteroaryl esters of phosphinic acids. The largest ki value (19,330 M?1 sec?1) was observed for the reaction of I with the enzyme. The order for the remaining three is II > IV > III. There is no direct relationship between the hydrolysis rates of the esters and their anticholinesterase activities on eel acetylcholinesterase. Likewise, there is no direct relationship between their anticholinesterase activities and the LD50 values in rats.  相似文献   

7.
Some inhibition kinetic properties and in vivo inhibition of the plasma juvenile hormone esterase from the cabbage looper (Trichoplusia ni Hübner) by one phosphoramidothioate and two trifluoromethylketones were examined. O-ethyl,S-phenyl phosphoramidothioate was shown to react irreversibly with the enzyme in a time-dependent manner, and the inhibition reaction can be factored into a reversible step with a dissociation constant, Kd, of 4.55 × 10?5M followed by a phosphorylation step with a rate constant, k2, of 1.98 min?1. The phosphorylated enzyme did not show spontaneous recovery after 48 hr of dialysis. On the other hand, the two trifluoromethylketones were shown to act as reversible inhibitors, as their inhibited enzyme was regenerated completely after dialysis. However, 1,1,1,-trifluoro-3-thiooctylpropan-2-one, in contrast to 1,1,1-trifluorotetradecan-2-one, showed progressive time-dependent inhibition, and its reaction with the enzyme followed characteristic bimolecular second-order kinetics with a rate constant, ki, of 3.37 × 107M?1 min?1. The in vivo inhibition data of topically treated larvae at equimolar amounts of the tested compounds indicated rapid penetration, and the stability of the inhibition was higher for the phosphoramidothioate than for the trifluoromethylketones. The relationship of the mechanism of inhibition and the in vivo inhibition of these compounds to the understanding of the interactions between juvenile hormone and juvenile hormone esterase is discussed.  相似文献   

8.
A series of 27 substituted aryl N-methoxy-N-methylcarbamates were synthesized and their ability to reversibly inhibit house fly-head and bovine-erythrocyte acetylcholinesterase and horse-serum cholinesterase was determined. These compounds were all competitive, reversible inhibitors of bovine erythrocyte acetylcholinesterase but some of them showed mixed competitive inhibition against the house fly-head and horse-serum enzymes. Dissociation constants (Ki) as small as 9.9 × 10?9M and as large as 1.4 × 10?4M were observed. A highly satisfactory correlation between log Ki for the inhibition of fly-head acetylcholinesterase by the N-methoxy-N-methylcarbamates and ?log I50 for the inhibition of the same enzyme by the corresponding methylcarbamates was noted. Analysis of the anticholinesterase data by multiple regression showed -log Ki to be related to Hansch's π constant and ring position terms. The results indicate that reversible binding of these compounds to acetylcholinesterase occurs by hydrophobic bonding.  相似文献   

9.
In vitro inhibition of house cricket head, house fly head, and bovine erythrocyte acetylcholinesterase by O,O-dimethyl S-aryl phosphorothioates was studied by Main's kinetic treatment. The potency of the compounds as reflected by the bimolecular reaction constants (ki) indicated that house fly head acetylcholinesterase was the most sensitive to the inhibition followed by house cricket head and bovine erythrocyte acetylcholinesterase. There are no linear relationships between the phosphorylation rate constants and the total binding energies for the inhibition of three enzymes by this series of compounds, suggesting that the initial binding and the phosphorylation rate are not related. The structure and activity relationships were analyzed by multiple regression analyses with the use of Hammett's sigma, alkaline hydrolysis rates of the compounds, and pi constants. The hydrophobic bonding of the compound on the enzyme surface as reflected by the pi constant played a significant role in the determination of the potency of the inhibition of house cricket head and house fly head acetylcholinesterase by those compounds. However, the alkaline hydrolysis rates of the compounds, or the Hammett's sigma values seems to play a more important role in the determination of the inhibition of bovine erythrocyte acetylcholinesterase. Moderate insecticidal activity toward house crickets, house flies, and mosquito larvae were found.  相似文献   

10.
The kinetics of inhibition of human and horse sera butyryl cholinesterases by solanaceous glycoalkaloids α-solanine, α-chaconine and tomatine has been studied by means of a potentiometric biosensor based on pH-sensitive field effect transistors (pH-FETs). Using acetyl- and butyryl choline as substrates, the optimal pH and the apparent kinetic parameters (Kmapp, Vmaxapp) of immobilized cholinesterases have been calculated in the absence of inhibitors. All studied glycoalkaloids were reversible inhibitors of both butyryl cholinesterases, and inhibited the horse and human immobilized enzymes in competitive and mixed modes, respectively. The affinity of each enzyme towards α-solanine, α-chaconine and tomatine has been estimated through calculation of apparent inhibition constants Kiapp and inhibition coefficients I50. An application of the butyryl cholinesterases studied in the biosensors for glycoalkaloids determination in the concentration range of 10−7 to 10−4 M has been discussed.  相似文献   

11.
The kinetic constants, Ka (affinity) k+2 (acylation), ka (second order, acylation), and k+3 (deacylation) were determined for the reaction of a number of organophosphorus (OP) and carbamate inhibitors with acetylcholinesterase (AChE) from inhibitor-sensitive Yeerongpilly (Y) OP susceptible ticks, relatively insensitiveBiarra (B) and Ridgelands (R) OP-resistant ticks and bovineerythrocytes (Bov). B, R, and Bov AChE exhibited lower affinity for inhibitors than Y AChE. K+2 (carbamylation and phosphorylation) decreased in the order Bov ? Y ? B ? R. For inhibitors with markedly different leaving groups there was no clear-cut linear relationship between rates of alkaline hydrolysis and enzymatic hydrolysis (acylation). Decarbamylation and dephosphorylation were rate limiting. The ratios of Y to B to R AChE for Vmax and catalytic center activity (substrate hydrolysis) and k+3 (carbamate hydrolysis) were very similar. This was a requirement if a lowered deacylating ability was the cause of the reduced catalytic hydrolysis of substrate observed for B and R AChE. Changes to the catalytic sites of B and R AChE are discussed. A strong parallel of these results is drawn with those obtained for spider mite AChE.  相似文献   

12.
The hydrolysis kinetics of iprodione in alkaline solutions of pH 8.3 to 12 at 25°C have been determined by ultraviolet spectrophotometry. Under these conditions, iprodione leads quantitatively and irreversibly to N-(3,5-dichloroanilinocarbonyl)-N-(isopropylaminocarbonyl)glycine. The reaction is not subject to a general basic catalysis and the rate law takes the form Kobs = KOH- [OH?1]. The activation entropy of -77 J mol?1deg?1, the value of the kinetic solvent isotope effect kOH?/kOD? of 0.79 and the value of 0.60 for the Hammett parameter σ, obtained for the hydrolysis of a series of 3-aryl-N-isopropyl-2,4-dioxoimidazolidine-1-carboxamides are all in agreement with the rate-determining attack by the hydroxyl ion on the carbonyl in the 4-position of the hydantoin ring of the fungicide.  相似文献   

13.
Acetylcholinesterase (AChE, E.C. 3.1.1.7) from an organophosphate-resistant strain of house fly, Musca domestica (L.) exhibited a decrease in sensitivity towards four organophosphates and two carbamates in comparison with enzyme from the parent susceptible strain. Sensitivity was less, as measured by the bimolecular reaction constant (ki), by a factor of 117 for dichlorvos, 94 for paraoxon, 11 for diazoxon, 7 for Tetram, 62 for propoxur, and 50 for dimetilan. These differences in bimolecular reaction constants were attributed entirely to differences in their affinity for the enzyme, as measured by the dissociation constant, Kd. It is suggested that the cross resistance to these inhibitors is due at least in part to insensitive acetylcholinesterase.  相似文献   

14.
The synthesis of the four optical isomers of known absolute configuration of O-2-butyl S-2-(dimethylammonium)ethyl ethylphosphonothioate hydrogen oxalate is described. Values for the affinity constant (Ka), phosphonylation constant (kp), and bimolecular inhibition rate constant (ki) for the inhibition of bovine erythrocyte acetylcholinesterase, housefly-head acetylcholinesterase, and horse serum cholinesterase by the chiral isomers and the racemic mixture are reported. Using a relatively simple spectrophotometric technique, inhibition times as low as 0.5 sec were used. The phosphorus isomers of Sp configuration were more potent inhibitors than their Rp enantiomers by 1630-fold against the bovine enzyme, 9120-fold against the fly-head enzyme, and 40-fold against the horse serum enzyme. The differences in anticholinesterase activity were attributable to differences in the affinity constant, Ka, and the phosphonylation constant, kp. Small but consistent inhibition rate differences were attributable to asymmetry at carbon. Against horse serum cholinesterase, the SC isomers indicated the presence of three kinetic forms in this enzyme preparation.  相似文献   

15.
Relationships between three types of herbicidal activity of N′-substituted phenyl-N-methoxy-N-methylureas and substitution at the benzene ring were analyzed by the Hansch-Fujita method. First, the Hill inhibitory activity was correlated with electronic (σ) as well as hydrophobic (π) substituent constants. The existence of an optimum value of hydrophobicity for substituents was suggested to reach the target site of action. Second, bliaching activity observed for the 3-substituted but not for 4-substituted compounds was correlated with π, σ, and steric substituent constant, Es. Third, the postemergent herbicidal activity was shown to correlate linearly with the Hill inhibitory activity, pI50, and hydrophobic parameter, π.  相似文献   

16.
The electron transport inhibition, uncoupling, and binding of ioxynil and bromoxynil salts is compared in chloroplast fragments isolated from two weed species with contrasting responses to the hydroxybenzonitriles. Ioxynil Na was three to four times more inhibitory than bromoxynil K towards DCPIP and SiMo reduction in both Matricaria inodora and Viola arvensis. Ioxynil Na was also a more potent uncoupler of PSI-dependent electron transport from ascorbate/DCPIP to methyl viologen. Uncoupling occurred at concentrations higher than those that inhibited electron transport. Binding studies with [14C]bromoxynil K and [14C]ioxynil Na salts revealed slightly biphasic curves with no significant difference in the amounts of the two herbicides bound at a given concentration. The ratios of inhibition constant (Ki) and binding constant (Kb) were approximately one for ioxynil Na and three for bromoxynil K. Radiolabelled herbicide displacement studies revealed that ioxynil Na could partially displace bound [14C]bromoxynil K, but bromoxynil K could not displace bound ioxynil Na at biochemically active concentrations. Ioxynil Na may be a more effective inhibitor than bromoxynil K because it binds more strongly to the thylakoid membrane.  相似文献   

17.
The hydrolysis of 3, 4-dihydroprecocene I 3, 4-epoxide (3, 4-dihydro-7-methoxy-2, 2-dimethyl-3, 4-epoxy-2H-benzo[b]pyran), the putative ultimate cytotoxin of the insect growth regulator precocene I (7-methoxy-2, 2-dimethyl-2H-benzo[b]pyran), has been studied and found to exhibit first-order kinetics [k = 0.17 s?1 in 10 mm-phosphate buffer pH 7.0, containing 1, 4-dioxane (1 + 1 by volume), ionic strength 0.1]. Plots of log k versus pH, and k versus buffer concentration, suggest that the reaction is subject to both specific and general acid catalysis. High-performance liquid chromatography showed the reaction products to be predominantly the corresponding stereoisomeric diols (3, 4-dihydro-7-methoxy-2, 2-dimethyl-2H-benzo[b]pyran-3, 4-diol), the trans : cis ratio of which varied from 1.8: 1 to 2.2: 1 but was constant over the pH range 6-8, at a given buffer concentration. The results indicate that acid-catalysed hydration of 3, 4-dihydroprecocene I 3, 4-epoxide is an SN1 reaction, involving a trigonally hybridised carbocation at C4, even at physiological pH. Similar studies on 3, 4-dihydroiso-precocene I 3, 4-epoxide (3, 4-dihydro-6-methoxy-2, 2-dimethyl-3, 4-epoxy-2H-benzo-[b]pyran), a biologically inactive isomer of 3, 4-dihydroprecocene I 3, 4-epoxide suggest that an SNI mechanism also contributes to its hydrolysis, but the rate constant is 4000 times lower than that for 3, 4-dihydroprecocene I 3, 4-epoxide. Knowledge of the reactivity and mechanism of reaction of such compounds forms an important part of the basis for rational prediction of biological activity in precocene analogues, and hence their possible use as pest control agents.  相似文献   

18.
The hydrolysis of [14C] fenpropathrin ( I ) [(RS)-α-cyano-3-phenoxybenzyl 2,2,3,3-tetramethylcyclopropanecarboxylate] was studied in buffer solutions at pH 1.9–10.4, and in natural river and sea water at 25, 40, 55 and 65°C under laboratory conditions. The hydrolysis of I proceeded predominantly through neutral (pH independent) and base-catalysed processes in the regions below pH 3.9 and above pH 7.0, respectively, whereas both reactions occurred between pH 3.9 and 7.0. The rates of hydrolysis of I in buffer solutions were similar to those in one sample of river and one sample of sea water. If this obtains generally, it may be expected that the half-life of I in natural waters, normally within the range pH 5–9, will range from 1.54 to 1080 days at 40°C, 11.3 to 8520 days at 25°C and, by extrapolation of the data obtained in buffer solutions, 106 to 83 000 days at 10°C. The rate constants for hydrolysis of I in aqueous media can be expressed by: Where log kN = 9.60–(5.56 × 103 T?1) and log kB = 7.32–(2.56 × 103 T?1). The calculated rate constants were in good accord with the observed values in buffer solutions. Cleavage of the ester linkage was more rapid than hydration of the cyano group at any pH and temperature tested.  相似文献   

19.
Acetylcholinesterase from an organophosphate-resistant strain of housefly exhibited a decrease in sensitivity to Rabon in vitro, to the extent of 206-fold for the soluble enzyme and 38-fold for the particulate. These effects upon the bimolecular reaction constant, ki, were due to a 573-fold decrease in affinity of the inhibitor for the soluble and 103-fold for the particulate enzyme, coupled with a small increase in reactivity.  相似文献   

20.
Glutathione transferase (GST) was purified from the hindgut of grasshopper (Zonocerus variegatus) a polyphagous insect. The purified enzyme had a native molecular weight of 40 kDa and a subunit molecular weight of 19 kDa. The purified enzyme could conjugate glutathione (GSH) with 1-chloro-2,4-dinitrobenzene (CDNB), paranitrobenzylchloride, paranitrophenylacetate, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBDCl), and 1,2-dichloro-4-nitrobenzene (DCNB) with specific activities of 3.3 ± 0.3, 0.49 ± 0.10, 0.10 ± 0.002, 1.2 ± 0.2, and 1.7 ± 0.4 μmol/min/mg protein, respectively. CDNB appears to be the best substrate with a specificity constant, kcat/Km, of 1.8 ± 0.1 × 10−4 M−1 S−1. The kinetic mechanism of Z. variegatus GST (zvGST) in the conjugation of GSH with some electrophilic substrates appears complex. Conjugation of GSH with DCNB was inhibited by high DCNB concentration, while with NBDCl, as the electrophilic substrates, different values of Km were obtained at high and low concentrations of the substrates. Cibacron blue, hematin, S-hexylglutathione, and oxidized glutathione inhibited the enzyme with I50 values of 0.057 ± 0.004, 0.80 ± 0.2, 33 ± 2 μM, and 5.2 ± 0.3 mM, respectively. The nature of inhibition by each of these inhibitors is either competitive or non-competitive at varying GSH or CDNB as substrates. NADH and NAD+ inhibited the enzyme with an I50 value of 0.4 ± 0.01 and 11 ± 1 mM, respectively. NADH at a concentration of 0.54 mM completely abolished the activity. As part of its adaptation, the flexible kinetic pathway of detoxication by zvGST may assist the organism in coping with various xenobiotics encountered in its preferred food plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号