首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.

Background

A sudden decline of the European brown hare (Lepus europaeus) population in one of the best hunting districts for small game species in northern Germany, the German North-Sea island Pellworm, in the years 2007/08 following marked habitat changes led to the implementation of a thorough health assessment program of the population. 110 animals were collected during the normal hunting season in the years 2010 and 2011. A post-mortem examination and histopathological investigation was performed on all animals. Additionally, routine bacteriology of the small intestine and parasitology were carried out. Sera of hares were tested for European Brown Hare Syndrome (EBHS) by enzyme linked immunosorbent assay, and for Treponema sp. by indirect immunofluorescent test. Additional testing was performed when deemed necessary.

Results

The most striking result was a shift in the intestinal bacterial flora towards Gram-negative Enterobacteriaceae with a predominance of either Escherichia coli, or Aeromonas sp., or a high-grade double-infection with these two pathogens with subsequent catarrhal enteritis. Additionally, a marked coccidiosis, and varying infestations with the nematode Trichostrongylus retortaeformis were found. The sero-prevalence for EBHS was 78.1%, and for Treponema 43.9%.

Conclusions

The shift and decrease in diversity of the intestinal flora was the main and most consistent result found. In the authors’ opinion the change of the habitat combined with other stressors increased the animals’ sensitivity to ubiquitous bacterial species and parasites which usually would not have such fatal effects.  相似文献   

5.
Neospora caninum antibodies in European brown hares (Lepus europaeus) were reported for the first time in sera collected from hares imported in Italy from East Europe. Sera from 93 hares coming from Hungary and 44 hares coming from Slovakia were tested using a direct agglutination test (DAT). Seroprevalence was 8.0% at the 1:40 dilution and 1.5% at 1:320 dilution. Seroprevalence in females and males and in different countries of origin did not differ significantly. Our results indicate that European brown hares are exposed to N. caninum. The low prevalence observed suggests a hares minimal exposure, but, considering that hares are common prey for foxes, it could be supposed that, also with a low prevalence, hares can be an important source of N. caninum infection in foxes.  相似文献   

6.
Background:  Many causes of mortality in the European brown hare, such as bacterial and viral infections, anticoagulant poisoning, and trauma, may result in hemorrhage. There are, however, no reference values concerning blood clotting in this species.  Objectives:  The aim of this study was to determine reference values for blood coagulation times and related parameters in healthy European brown hares.  Methods:  Blood samples from 30 clinically healthy adult hares (15 males and 15 females) were obtained. Hares were physically restrained for blood collection from the cephalic vein into tubes containing citrate and EDTA.  Results:  Mean ± SD were obtained for thrombin time (TT) (13.97 ± 1.37 seconds), prothrombin time (PT) (13.32 ± 2.15 seconds), activated partial thromboplastin time (APTT) (16.73 ± 1.86 seconds), fibrinogen concentration (2.98 ± 1.06 g/L), and platelet count (355.28 ± 128.73 × 109/L). Conclusions: Reference values for blood coagulation times and other parameters associated with blood clotting will be useful in the laboratory evaluation of hemorrhage in the European brown hare.  相似文献   

7.
Objective To investigate the cardiopulmonary effects of a xylazine–guaiphenesin–ketamine infusion combined with inter‐coccygeal extradural (lidocaine) anaesthesia in calves. Study design Prospective study. Animals Five Holstein Friesian calves (one steer, four heifers) aged 6 weeks weighing 65.2 ± 2.7 kg. Materials and methods Calves were anaesthetized with isoflurane in oxygen for instrumentation. At least 12 hours later, xylazine (0.2 mg kg?1 IM) was given. After 15 minutes, an infusion of xylazine hydrochloride (0.1 mg mL?1), guaiphenesin (50 mg mL?1) and ketamine (1 mg mL?1) (X–G–K) was infused at a rate of 1.1 mL kg?1 hour?1 IV. Oxygen (4 L minute?1) was delivered by nasotracheal tube 30 minutes later. Inter‐coccygeal (Co1–Co2) extradural anaesthesia (lidocaine 2%, 0.18 mL kg?1) was administered 30 minutes later. Cardiopulmonary variables were obtained in the unsedated standing calves 10 minutes after xylazine, 15 and 30 minutes after X–G–K without O2, 15 and 30 minutes after X–G–K with O2 and 5, 15, 30, 45 and 60 minutes after extradural anaesthesia. Data were analysed using a repeated measurement analysis of variance including an autoregressive covariance structure of order 1 (correlations at different time intervals). Results Xylazine caused significant (p < 0.05) decreases in heart rate (HR), cardiac output (Qt) and index (CI), stroke volume and stroke index, mean, systolic and diastolic arterial blood pressure (MAP, SAP, DAP), left (LVWSI) and right ventricular stroke work index (RVWSI), mean, systolic and diastolic pulmonary arterial pressure (MPAP, SPAP, DPAP), arterial pH, arterial oxygen tension (PaO2), arterial base excess, arterial HCO3? concentration, arterial saturation, packed cell volume, arterial and venous oxygen content (CaO2, CvO2), O2 consumption and O2 delivery (V?O2, ?O2). Increases in systemic vascular resistance (SVR) and pulmonary vascular resistance (PVR) were observed. During X–G–K infusion without O2, HR, Qt and CI increased gradually while SVR, PVR and MAP decreased. Left ventricular stroke work index and PaO2 remained constant, while O2 supplementation improved PaO2. Coccygeal extradural anaesthesia had little effect on cardiopulmonary variables. Respiratory rate (f) and PaCO2 significantly increased over the experiment. Conclusions and clinical relevance Xylazine caused adverse cardiopulmonary effects in calves. Improvement occurred during xylazine–guiaphenesin–ketamine infusion. Cardiac index and arterial blood pressure remained below baseline values while sustained increases in respiration rate and PaCO2 were observed. Inter‐coccygeal extradural anaesthesia had only minor effects. Oxygen supplementation proved advantageous during guiaphenesin, ketamine and xylazine infusion in healthy calves in combination with coccygeal extradural anaesthesia induced persistent cardiopulmonary depression.  相似文献   

8.
Ketamine is the most commonly used injectable anaesthetic in horses. Combinations of ketamine have been used to produce short durations of anaesthesia or as total intravenous anaesthesia (TIVA) for longer diagnostic or surgical procedures. In recent years, ketamine has been used for pain management due to its effectiveness in producing analgesia at subanaesthetic doses. This paper provides a review of the pharmacological effects of ketamine in general and its clinical use for injectable anaesthesia and pain management in horses.  相似文献   

9.
ObjectiveTo describe alfaxalone total intravenous anaesthesia (TIVA) following premedication with buprenorphine and either acepromazine (ACP) or dexmedetomidine (DEX) in bitches undergoing ovariohysterectomy.Study designProspective, randomised, clinical study.AnimalsThirty-eight healthy female dogs.MethodsFollowing intramuscular buprenorphine (20 μg kg?1) and acepromazine (0.05 mg kg?1) or dexmedetomidine (approximately 10 μg kg?1, adjusted for body surface area), anaesthesia was induced and maintained with intravenous alfaxalone. Oxygen was administered via a suitable anaesthetic circuit. Alfaxalone infusion rate (initially 0.07 mg kg?1 minute?1) was adjusted to maintain adequate anaesthetic depth based on clinical assessment. Alfaxalone boluses were given if required. Ventilation was assisted if necessary. Alfaxalone dose and physiologic parameters were recorded every 5 minutes. Depth of sedation after premedication, induction quality and recovery duration and quality were scored. A Student's t-test, Mann–Whitney U and Chi-squared tests determined the significance of differences between groups. Data are presented as mean ± SD or median (range). Significance was defined as p < 0.05.ResultsThere were no differences between groups in demographics; induction quality; induction (1.5 ± 0.57 mg kg?1) and total bolus doses [1.2 (0 – 6.3) mg kg?1] of alfaxalone; anaesthesia duration (131 ± 18 minutes); or time to extubation [16.6 (3–50) minutes]. DEX dogs were more sedated than ACP dogs. Alfaxalone infusion rate was significantly lower in DEX [0.08 (0.06–0.19) mg kg?1 minute?1] than ACP dogs [0.11 (0.07–0.33) mg kg?1 minute?1]. Cardiovascular variables increased significantly during ovarian and cervical ligation and wound closure compared to baseline values in both groups. Apnoea and hypoventilation were common and not significantly different between groups. Arterial haemoglobin oxygen saturation remained above 95% in all animals. Recovery quality scores were significantly poorer for DEX than for ACP dogs.Conclusions and clinical relevanceAlfaxalone TIVA is an effective anaesthetic for surgical procedures but, in the protocol of this study, causes respiratory depression at infusion rates required for surgery.  相似文献   

10.
ObjectiveTo compare racemic ketamine and S-ketamine as induction agents prior to isoflurane anaesthesia.Study designProspective, blinded, randomized experimental study.AnimalsThirty-one healthy adult goats weighing 39-86 kg.MethodsGoats were premedicated with xylazine (0.1 mg kg?1) intravenously (IV) given over 5 minutes. Each goat was assigned randomly to one of two treatments for IV anaesthetic induction: group RK (15 goats) racemic ketamine (3 mg kg?1) and group SK (16 goats) S-ketamine (1.5 mg kg?1). Time from end-injection to recumbency was measured and quality of anaesthetic induction and condition for endotracheal intubation were scored. Anaesthesia was maintained with isoflurane in oxygen for 90 minutes. Heart rate, invasive arterial blood pressure, oxygen saturation, temperature, end-tidal carbon dioxide and isoflurane were recorded every 5 minutes. Arterial blood samples were taken for analysis every 30 minutes. Recovery time to recurrence of swallowing reflex, to first head movement and to standing were recorded and recovery quality was scored. Two-way repeated measures anova, Mann-Whitney and a Mantel-Cox tests were used for statistical analysis as relevant with a significance level set at p < 0.05.ResultsInduction of anaesthesia was smooth and uneventful in all goats. There was no statistical difference between groups in any measured parameter. Side effects following anaesthetic induction included slight head or limb twitching, moving forward and backward, salivation and nystagmus but were minimal. Endotracheal intubation was achieved in all goats at first or second attempt. Recovery was uneventful on all occasions. All goats were quiet and needed only one or two attempts to stand.Conclusions and clinical relevanceS-ketamine at half the dose rate of racemic ketamine in goats sedated with xylazine and thereafter anaesthetised with isoflurane induces the same clinically measurable effects.  相似文献   

11.
ObjectiveTo compare anaesthesia induced with either alfaxalone or ketamine in horses following premedication with xylazine and guaifenesin.Study designRandomized blinded cross-over experimental study.AnimalsSix adult horses, five Standardbreds and one Thoroughbred; two mares and four geldings.MethodsEach horse received, on separate occasions, induction of anaesthesia with either ketamine 2.2 mg kg?1 or alfaxalone 1 mg kg?1. Premedication was with xylazine 0.5 mg kg?1 and guaifenesin 35 mg kg?1. Incidence of tremors/shaking after induction, recovery and ataxia on recovery were scored. Time to recovery was recorded. Partial pressure of arterial blood oxygen (PaO2) and carbon dioxide (PaO2), arterial blood pressures, heart rate (HR) and respiratory rates were recorded before premedication and at intervals during anaesthesia. Data were analyzed using Wilcoxon matched pairs signed rank test and are expressed as median (range).ResultsThere was no difference in the quality of recovery or in ataxia scores. Horses receiving alfaxalone exhibited a higher incidence of tremors/shaking on induction compared with those receiving ketamine (five and one of six horses respectively). Horses recovered to standing similarly [28 (24–47) minutes for alfaxalone; 22 (18–35) for ketamine] but took longer to recover adequately to return to the paddock after alfaxalone [44 (38–67) minutes] compared with ketamine [35 (30–47)]. There was no statistical difference between treatments in effect on HR, PaO2 or PaCO2 although for both regimens, PaO2 decreased with respect to before premedication values. There was no difference between treatments in effect on blood pressure.Conclusions and clinical relevanceBoth alfaxalone and ketamine were effective at inducing anaesthesia, although at induction there were more muscle tremors after alfaxalone. As there were no differences between treatments in relation to cardiopulmonary responses or quality of recovery, and only minor differences in recovery times, both agents appear suitable for this purpose following the premedication regimen used in this study.  相似文献   

12.
ObjectiveTo compare anaesthetic induction in healthy dogs using propofol or ketofol (a propofol-ketamine mixture).Study designProspective, randomized, controlled, ‘blinded’ study.AnimalsSeventy healthy dogs (33 males and 37 females), aged 6–157 months and weighing 4–48 kg.MethodsFollowing premedication, either propofol (10 mg mL?1) or ketofol (9 mg propofol and 9 mg ketamine mL?1) was titrated intravenously until laryngoscopy and tracheal intubation were possible. Pulse rate (PR), respiratory rate (fR) and arterial blood pressure (ABP) were compared to post-premedication values and time to first breath (TTFB) recorded. Sedation quality, tracheal intubation and anaesthetic induction were scored by an observer who was unaware of treatment group. Mann–Whitney or t-tests were performed and significance set at p = 0.05.ResultsInduction mixture volume (mean ± SD) was lower for ketofol (0.2 ± 0.1 mL kg?1) than propofol (0.4 ± 0.1 mL kg?1) (p < 0.001). PR increased following ketofol (by 35 ± 20 beats minute?1) but not consistently following propofol (4 ± 16 beats minute?1) (p < 0.001). Ketofol administration was associated with a higher mean arterial blood pressure (MAP) (82 ± 10 mmHg) than propofol (77 ± 11) (p = 0.05). TTFB was similar, but ketofol use resulted in a greater decrease in fR (median (range): ketofol -32 (-158 to 0) propofol -24 (-187 to 2) breaths minute?1) (p < 0.001). Sedation was similar between groups. Tracheal intubation and induction qualities were better with ketofol than propofol (p = 0.04 and 0.02 respectively).Conclusion and clinical relevanceInduction of anaesthesia with ketofol resulted in higher PR and MAP than when propofol was used, but lower fR. Quality of induction and tracheal intubation were consistently good with ketofol, but more variable when using propofol.  相似文献   

13.
ObjectiveTo determine the potency ratio between S-ketamine and racemic ketamine as inductive agents for achieving tracheal intubation in dogs.Study designProspective, randomized, ‘blinded’, clinical trial conducted in two consecutive phases.Animals112 client-owned dogs (ASA I or II).MethodsAll animals were premedicated with intramuscular acepromazine (0.02 mg kg−1) and methadone (0.2 mg kg−1). In phase 1, midazolam (0.2 mg kg−1) with either 3 mg kg−1 of racemic ketamine (group K) or 1.5 mg kg−1 of S-ketamine (group S) was administered IV, for induction of anaesthesia and intubation. Up to two additional doses of racemic (1.5 mg kg−1) or S-ketamine (0.75 mg kg−1) were administered if required. In phase 2, midazolam (0.2 mg kg−1) with 1 mg kg−1 of either racemic ketamine (group K) or S-ketamine (group S) was injected and followed by a continuous infusion (1 mg kg minute−1) of each respective drug. Differences between groups were statistically analyzed via t-test, Fisher exact test and ANOVA for repeated measures.ResultsDemographics and quality and duration of premedication, induction and intubation were comparable among groups. During phase 1 it was possible to achieve tracheal intubation after a single dose in more dogs in group K (n = 25) than in group S (n = 16) (p = 0.046). A dose of 3 mg kg−1 S-ketamine allowed tracheal intubation in the same number of dogs as 4.5 mg kg−1 of racemic ketamine. The estimated potency ratio was 1.5:1. During phase 2, the total dose (mean ± SD) of S-ketamine (4.02 ±1.56 mg kg−1) and racemic ketamine (4.01 ± 1.42) required for tracheal intubation was similar.Conclusion and clinical relevanceRacemic and S-ketamine provide a similar quality of anaesthetic induction and intubation. S-ketamine is not twice as potent as racemic ketamine and, if infused, the potency ratio is 1:1.  相似文献   

14.
15.
ObjectiveTo evaluate the cardiopulmonary effects of anaesthesia induced and maintained with propofol in acepromazine pre-medicated donkeys.Study designProspective experimental study.AnimalsSix healthy male donkeys weighing 78–144 kg.MethodsDonkeys were pre-medicated with intravenous (IV) acepromazine (0.04 mg kg−1). Ten minutes later, anaesthesia was induced with IV propofol (2 mg kg−1) and anaesthesia maintained by continuous IV infusion of the propofol (0.2 mg kg−1 minute−1) for 30 minutes. Baseline measurements of physiological parameters, and arterial blood samples were taken before the acepromazine administration, then 5, 15, 30, 45, and 60 minutes after the induction of anaesthesia. Changes from baseline were analysed by anova for repeated measures.ResultsWhen compared with baseline (standing) values, during anaesthesia heart rate increased throughout: significant at 5 (p = 0.001) and 15 (p = 0.015) minutes. Mean arterial blood pressure increased significantly only at 15 minutes (p < 0.001). Respiratory rate and arterial pH did not change significantly. PaO2 was lower throughout anaethesia, but this only reached significance at 15 minutes (p = 0.041). PaCO2 was statistically (but not clinically) significantly reduced at the times of 30 (p = 0.02), 45 (p = 0.01) and 60 (p = 0.04). Rectal temperature decreased significantly at all times of the study.Conclusions and clinical relevanceAdministration of propofol by the continuous infusion rate for the maintenance of anaesthesia resulted in stable cardiopulmonary effects and could prove to be clinically useful in donkeys.  相似文献   

16.
ObjectiveTo establish an accurate anaesthetic dose for chemical restraint of African mole-rats using ketamine and xylazine.Study designProspective nonrandomized laboratory study.AnimalsSixteen adult Ansell’s mole-rats (Fukomys anselli) and eight giant mole-rats (F. mechowii).MethodsFukomys anselli of different ages, sexes and reproductive status were systematically anaesthetized starting with an intramuscular injection of ketamine (2.5 mg kg−1) and increasing the doses in steps of 0.5 mg kg−1 until loss of the righting reflex (LRR) was observed. Xylazine was added to a constant dose of ketamine, starting at 0.5 mg kg−1 that was increased by 0.5 mg kg−1 in further trials. Once an effective combination was established and evaluated in F. anselli, it was also tested in F. mechowii. Heart and respiratory rates and rectal temperatures were measured during anaesthesia. anova for repeated measures and Student’s t-test were used to compare means.ResultsChemical restraint was accomplished at a dose of 6 mg kg−1 ketamine combined with 2.5 mg kg−1 xylazine. LRR lasted on average mean 56 ± SD 19 minutes (F. anselli) and 140 ± 41 minutes (F. mechowii). Loss of pedal withdrawal reflex (LPR) lasted for 20 ± 15 minutes (F. anselli) and for 29 ± 2 minutes (F. mechowii), respectively. All animals recovered satisfactorily. Heart and respiratory rates were stable during anaesthesia, but rectal temperature fell significantly in F. mechowii after losing the righting reflex (LRR) from T1 (32.6 ± 0.6 °C) to T3 (30.4 ± 0.9 °C).Conclusions and Clinical relevanceAfrican mole-rats (Bathyergidae) live in closed burrow systems under particular conditions (hypercapnia, hypoxia, stable temperature, humidity, darkness) and show several physiological adaptations. Injectable anaesthetics in the dose rates used in other rodents are not appropriate for use in these subterranean species. Here, a reliable protocol for chemical restraint is provided.  相似文献   

17.
18.
Brown hares (Lepus europaeus) trapped in the countryside and domestic rabbits were experimentally infected with Toxoplasma gondii (K7 strain) oocysts. Hares (n=12) were divided into groups of 4 and infected with 10, 10(3) and 10(5) oocysts. Rabbits (n=12) were infected in the same way. The experimentally infected animals were monitored for 33 days after infection (p.i.). Most of the infected hares demonstrated behavioural changes, and all of them died between 8 and 19 days p.i. Three of the rabbits demonstrated only clinical changes related to the concurrent pasteurellosis. The typical pathological finding in the hares were haemorrhagic enteritis, enlargement and hyperaemia of mesenteric lymph nodes, splenomegaly and multiple miliary necrotic lesions in the parenchyma of the liver and other organs. Pathological changes in the rabbits were less pronounced than in the hares. In rabbit brains, tissue cysts of the T. gondii were found. The incidence of T. gondii antibodies both in the hares and the rabbits was first ascertained on day 7 p.i. On day 12 p.i., antibodies were already found in all the animals infected. Antibody titres in indirect fluorescence antibody test (IFAT) using the anti-rabbit conjugate were markedly higher in rabbits than in hares. In all hares, T. gondii was isolated post mortem from the liver, brain, spleen, kidney, lung, heart and skeletal muscles. Although T. gondii was also isolated in all rabbits, it was not always isolated in all their organs. In all hares, parasitemia was demonstrated on days 7 and 12 p.i. The percentage of rabbits with detected parasitemia was lower. In hares, a decrease in the numbers of leukocytes during the infection was observed. No such decrease was observed in the rabbits. The lymphocyte activity after the stimulation with non-specific mitogens showed significant differences between the hares and the rabbits even before the infection. After the infection, the hares infected with 10(3) and 10(5) doses and in rabbits infected with a 10(5) dose showed a decrease of lymphocyte activity. Rabbits infected with a 10(3) dose showed an increase of the lymphocyte activity. While in hares toxoplasmosis was an acute and fatal disease, the infection in rabbits had subclinical manifestations only and easily passed to a latent stage. The different courses of toxoplasmosis in the hare and the rabbit may be due to the differences in the natural sensitivity of the two species to the T. gondii infection or a negative impact of stress to the immune status of hares.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号