首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Columnar stalagmites in caves of the Guadalupe Mountains during the late Holocene record a 4000-year annually resolved climate history for the southwestern United States. Annual banding, hiatuses, and high-precision uranium-series dating show a present day-like climate from 4000 to 3000 years ago, following a drier middle Holocene. A distinctly wetter and cooler period from 3000 to 800 years ago was followed by a period of present day-like conditions, with the exception of a slightly wetter interval from 440 to 290 years before the present. The stalagmite record correlates well with the archaeological record of changes in cultural activities of indigenous people. Such climate change may help to explain evidence of dwelling abandonment and population redistribution.  相似文献   

2.
800,000 years of abrupt climate variability   总被引:1,自引:0,他引:1  
We constructed an 800,000-year synthetic record of Greenland climate variability based on the thermal bipolar seesaw model. Our Greenland analog reproduces much of the variability seen in the Greenland ice cores over the past 100,000 years. The synthetic record shows strong similarity with the absolutely dated speleothem record from China, allowing us to place ice core records within an absolute timeframe for the past 400,000 years. Hence, it provides both a stratigraphic reference and a conceptual basis for assessing the long-term evolution of millennial-scale variability and its potential role in climate change at longer time scales. Indeed, we provide evidence for a ubiquitous association between bipolar seesaw oscillations and glacial terminations throughout the Middle to Late Pleistocene.  相似文献   

3.
Oxygen-18 (delta(18)O) variations in a 36-centimeter-long core (DH-11) of vein calcite from Devils Hole, Nevada, yield an uninterrupted 500,000-year paleotemperature record that closely mimics all major features in the Vostok (Antarctica) paleotemperature and marine delta(18)O ice-volume records. The chronology for this continental record is based on 21 replicated mass-spectrometric uranium-series dates. Between the middle and latest Pleistocene, the duration of the last four glacial cycles recorded in the calcite increased from 80,000 to 130,000 years; this variation suggests that major climate changes were aperiodic. The timing of specific climatic events indicates that orbitally controlled variations in solar insolation were not a major factor in triggering deglaciations. Interglacial climates lasted about 20,000 years. Collectively, these observations are inconsistent with the Milankovitch hypothesis for the origin of the Pleistocene glacial cycles but they are consistent with the thesis that these cycles originated from internal nonlinear feedbacks within the atmosphere-ice sheet-ocean system.  相似文献   

4.
The El Ni?o-Southern Oscillation (ENSO) is the most potent source of interannual climate variability. Uncertainty surrounding the impact of greenhouse warming on ENSO strength and frequency has stimulated efforts to develop a better understanding of the sensitivity of ENSO to climate change. Here we use annually banded corals from Papua New Guinea to show that ENSO has existed for the past 130,000 years, operating even during "glacial" times of substantially reduced regional and global temperature and changed solar forcing. However, we also find that during the 20th century ENSO has been strong compared with ENSO of previous cool (glacial) and warm (interglacial) times. The observed pattern of change in amplitude may be due to the combined effects of ENSO dampening during cool glacial conditions and ENSO forcing by precessional orbital variations.  相似文献   

5.
Subpolar North Atlantic proxy records document millennial-scale climate variations 500,000 to 340,000 years ago. The cycles have an approximately constant pacing that is similar to that documented for the last glacial cycle. These findings suggest that such climate variations are inherent to the late Pleistocene, regardless of glacial state. Sea surface temperature during the warm peak of Marine Isotope Stage 11 (MIS 11) varied by 0.5 degrees to 1 degrees C, less than the 4 degrees to 4.5 degrees C estimated during times of ice growth and the 3 degrees C estimated for glacial maxima. Coherent deep ocean circulation changes were associated with glacial oscillations in sea surface temperature.  相似文献   

6.
In the western tropical Pacific, the interannual migration of the Indonesian Low convective system causes changes in rainfall that dominate the regional signature of the El Ni?o-Southern Oscillation (ENSO) system. A 96-year oxygen isotope record from a Tarawa Atoll coral (1 degrees N, 172 degrees E) reflects regional convective activity through rainfall-induced salinity changes. This monthly resolution record spans twice the length of the local climatological record and provides a history of ENSO variability comparable in quality with those derived from instrumental climate data. Comparison of this coral record with a historical chronology of EI Ni?o events indicates that climate anomalies in coastal South America are occasionally decoupled from Pacific-wide ENSO extremes. Spectral analysis suggests that the distribution of variance in this record has shifted among annual to interannual periods during the present century, concurrent with observed changes in the strength of the Southern Oscillation.  相似文献   

7.
The astronomical theory of climatic change provides an alternative to the traditional chronology for Holocene climatic change, which calls for one thermal maximum about 6000 years ago. The theory predicts a series of maxima during the Holocene, one for each season. Because the relation of the perihelion to the spring equinox changes with a 22,000-year period, late summer insolation would have been greatest 5000 years ago, whereas early summer insolation would have been greatest 13,000 years ago. Climatic reconstructions based on the response of ecosystems to late summer climate indicate a later Holocene thermal maximum than paleoclimatic data sensitive to early summer climate. In southern Idaho, three different vegetation types indicate thermal maxima at different times during the Holocene, depending on the climatic variable controlling each type.  相似文献   

8.
The climatic and environmental changes associated with the last glaciation (90,000 to 10,000 years before the present; 90 to 10 ka B.P.) are an important example of the effects of global climate change on biological diversity. These effects were particularly marked in Beringia (northeastern Siberia, northwestern North America, and the exposed Bering Strait) during the late Pleistocene. To investigate the evolutionary impact of these events, we studied genetic change in the brown bear, Ursus arctos, in eastern Beringia over the past 60,000 years using DNA preserved in permafrost remains. A marked degree of genetic structure is observed in populations throughout this period despite local extinctions, reinvasions, and potential interspecies competition with the short-faced bear, Arctodus simus. The major phylogeographic changes occurred 35 to 21 ka B.P., before the glacial maximum, and little change is observed after this time. Late Pleistocene histories of mammalian taxa may be more complex than those that might be inferred from the fossil record or contemporary DNA sequences alone.  相似文献   

9.
In contrast to the relatively stable climate of the past 10,000 years, during glacial times the North Atlantic region experienced large-amplitude transitions between cold (stadial) and warm (interstadial) states. In this modeling study, we demonstrate that hydrological interactions between the Atlantic thermohaline circulation (THC) and adjacent continental ice sheets can trigger abrupt warming events and also limit the lifetime of the interstadial circulation mode. These interactions have the potential to destabilize the THC, which is already more sensitive for glacial conditions than for the present-day climate, thus providing an explanation for the increased variability of glacial climate.  相似文献   

10.
Carbon istotope ratios of modern, 10,000-year-old, and more than 40,000-year-old Atriplex confertifolia (C(4)) material from Nevada caves indicate that the C(4) photosynthetic pathway was operating in these plants over that period. Samples of a plant with crassulacean acid metabolism, Opuntia polyacantha, were also measured, and a shift in the 8(13)C value from -21.9 per mil (more than 40,000 years ago) to -13.9 per mil (10,000 years ago) was observed. This provides unique physiological evidence to support the hypothesis that the late Pleistocene pluvial climate in the region already had become drier about 10,000 years ago.  相似文献   

11.
High-resolution profiles of the mass accumulation rate of biogenic silica and other geochemical proxies in two piston cores from northern Lake Malawi provide a climate signal for this part of tropical Africa spanning the past 25,000 years. The biogenic silica mass accumulation rate was low during the relatively dry late Pleistocene, when the river flux of silica to the lake was suppressed. Millennial-scale fluctuations, due to upwelling intensity, in the late Pleistocene climate of the Lake Malawi basin appear to have been closely linked to the Northern Hemisphere climate until 11 thousand years ago. Relatively cold conditions in the Northern Hemisphere coincided with more frequent north winds over the Malawi basin, perhaps resulting from a more southward migration of the Intertropical Convergence Zone.  相似文献   

12.
陈浩  曾晓东 《勤云标准版测试》2013,33(14):4343-4353
利用通用陆面模式(CLM3.0)及其植被动力学模式(DGVM)研究植被覆盖度(FC)和叶面积指数(LAI)的年际变化对全球蒸散发的影响。设计两套实验方案,其植被的FC和LAI的气候态相同,但一套实验中植被的FC和LAI有年际变化,而对照实验中则没有。结果表明:(1)在草、灌木、树占优势的地区植被FC年际变化依次减小;LAI年际变化较大的地区集中在草和灌木覆盖的地区,在落叶林地区,春秋两季植被LAI的年际变化也较大。(2)全球树占优势的大部分地区,植被的年际变化使得年平均蒸散发和地表蒸发增加、冠层蒸发和蒸腾减少;而在灌木和草覆盖区,变化则大致相反。(3)低纬度地区蒸散发季节循环变化比较明显,而北半球中纬度地区,蒸散发变化明显区随着纬度增加而在时间上向后推延。(4)FC和LAI年际变化较大时,蒸散发及地表蒸发降低,而蒸腾增加;这些差异随FC和LAI年际变化的增加而增加。单点分析进一步表明植被年际变化不仅改变蒸散发的多年平均值,同时改变其分量间的相对比例。  相似文献   

13.
A 194-year annual record of skeletal delta(18)O from a coral growing at Malindi, Kenya, preserves a history of sea surface temperature (SST) change that is coherent with instrumental and proxy records of tropical Pacific climate variability over interannual to decadal periods. This variability is superimposed on a warming of as much as 1.3 degrees C since the early 1800s. These results suggest that the tropical Pacific imparts substantial decadal climate variability to the western Indian Ocean and, by implication, may force decadal variability in other regions with strong El Nino-Southern Oscillation teleconnections.  相似文献   

14.
Central Greenland ice cores provide evidence of abrupt changes in climate over the past 100,000 years. Many of these changes have also been identified in sedimentary and geochemical signatures in deep-sea sediment cores from the North Atlantic, confirming the link between millennial-scale climate variability and ocean thermohaline circulation. It is shown here that two of the most prominent North Atlantic events-the rapid warming that marks the end of the last glacial period and the Bolling/Allerod-Younger Dryas oscillation-are also recorded in an ice core from Taylor Dome, in the western Ross Sea sector of Antarctica. This result contrasts with evidence from ice cores in other regions of Antarctica, which show an asynchronous response between the Northern and Southern Hemispheres.  相似文献   

15.
Interannual rainfall variations in equatorial East Africa are tightly linked to the El Ni?o Southern Oscillation (ENSO), with more rain and flooding during El Ni?o and droughts in La Ni?a years, both having severe impacts on human habitation and food security. Here we report evidence from an annually laminated lake sediment record from southeastern Kenya for interannual to centennial-scale changes in ENSO-related rainfall variability during the last three millennia and for reductions in both the mean rate and the variability of rainfall in East Africa during the Last Glacial period. Climate model simulations support forward extrapolation from these lake sediment data that future warming will intensify the interannual variability of East Africa's rainfall.  相似文献   

16.
Reconstruction of an 83-year record (1903 to 1985) of the discharge of the Amazon River shows that there has been no statistically significant change in discharge over the period of record and that the predominant interannual variability occurs on the 2- to 3-year time scale. Oscillations of river discharge predate significant human influences in the Amazon basin and reflect both extrabasinal and local factors. Cross-spectrum analyses of Amazon flow anomalies with indicators of the El Ni?o-Southern Oscillation phenomenon suggest that the oscillations in the hydrograph are coupled to the tropical Pacific climate cycle.  相似文献   

17.
The tropical ocean plays a major role in global climate. It is therefore crucial to establish the precise phase between tropical and high-latitude climate variability during past abrupt climate events in order to gain insight into the mechanisms of global climate change. Here we present alkenone sea surface temperature (SST) records from the tropical South China Sea that show an abrupt temperature increase of at least 1 degrees C at the end of the last glacial period. Within the recognized dating uncertainties, this SST increase is synchronous with the B?lling warming observed at 14.6 thousand years ago in the Greenland Ice Sheet Project 2 ice core.  相似文献   

18.
New radiocarbon dates and plant macrofossil data establish that parts of the Queen Charlotte Islands, British Columbia, were ice-free during and subsequent to the late Wisconsin glacial maximum on the Pacific coast of Canada. A paleoecological investigation of dated sediments at Cape Ball has indicated that a varied flora consisting of terrestrial and aquatic plants was present there about 16,000 years ago. This finding provides support for the existence of a heretofore questioned biotic refugium on the Queen Charlotte Islands during the last glaciation. These results shed new light on problems of glacial chronology, climatic change, biogeography, and archeology along the western margin of North America.  相似文献   

19.
Causes of climate change over the past 1000 years   总被引:9,自引:0,他引:9  
Recent reconstructions of Northern Hemisphere temperatures and climate forcing over the past 1000 years allow the warming of the 20th century to be placed within a historical context and various mechanisms of climate change to be tested. Comparisons of observations with simulations from an energy balance climate model indicate that as much as 41 to 64% of preanthropogenic (pre-1850) decadal-scale temperature variations was due to changes in solar irradiance and volcanism. Removal of the forced response from reconstructed temperature time series yields residuals that show similar variability to those of control runs of coupled models, thereby lending support to the models' value as estimates of low-frequency variability in the climate system. Removal of all forcing except greenhouse gases from the approximately 1000-year time series results in a residual with a very large late-20th-century warming that closely agrees with the response predicted from greenhouse gas forcing. The combination of a unique level of temperature increase in the late 20th century and improved constraints on the role of natural variability provides further evidence that the greenhouse effect has already established itself above the level of natural variability in the climate system. A 21st-century global warming projection far exceeds the natural variability of the past 1000 years and is greater than the best estimate of global temperature change for the last interglacial.  相似文献   

20.
A series of 14C measurements in Ocean Drilling Program cores from the tropical Cariaco Basin, which have been correlated to the annual-layer counted chronology for the Greenland Ice Sheet Project 2 (GISP2) ice core, provides a high-resolution calibration of the radiocarbon time scale back to 50,000 years before the present. Independent radiometric dating of events correlated to GISP2 suggests that the calibration is accurate. Reconstructed 14C activities varied substantially during the last glacial period, including sharp peaks synchronous with the Laschamp and Mono Lake geomagnetic field intensity minimal and cosmogenic nuclide peaks in ice cores and marine sediments. Simulations with a geochemical box model suggest that much of the variability can be explained by geomagnetically modulated changes in 14C production rate together with plausible changes in deep-ocean ventilation and the global carbon cycle during glaciation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号