首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New experimental data on the isotopic variations of neon, argon, and xenon in a popping rock imply that the 40Ar/36Ar ratio of the upper mantle is less than 44,000 and that the 129Xe/130Xe ratio is less than 8.2. The elemental abundance pattern of rare gases is chondritic-like and is quite distinct from the solar pattern. These data imply that Earth accreted from planetesimals that probably underwent a transformation of their rare gas budget from solar- to chondritic-like, leaving the isotopic composition unchanged from the solar pattern.  相似文献   

2.
The canonical model of helium isotope geochemistry describes the lower mantle as undegassed, but this view conflicts with evidence of recycled material in the source of ocean island basalts. Because mantle helium is efficiently extracted by magmatic activity, it cannot remain in fertile mantle rocks for long periods of time. Here, I suggest that helium with high 3He/4He ratios, as well as neon rich in the solar component, diffused early in Earth's history from low-melting-point primordial material into residual refractory "reservoir" rocks, such as dunites. The difference in 3He/4He ratios of ocean-island and mid-ocean ridge basalts and the preservation of solar neon are ascribed to the reservoir rocks being stretched and tapped to different extents during melting.  相似文献   

3.
Lunar soils have been thought to contain two solar noble gas components with distinct isotopic composition. One has been identified as implanted solar wind, the other as higher-energy solar particles. The latter was puzzling because its relative amounts were much too large compared with present-day fluxes, suggesting periodic, very high solar activity in the past. Here we show that the depth-dependent isotopic composition of neon in a metallic glass exposed on NASA's Genesis mission agrees with the expected depth profile for solar wind neon with uniform isotopic composition. Our results strongly indicate that no extra high-energy component is required and that the solar neon isotope composition of lunar samples can be explained as implantation-fractionated solar wind.  相似文献   

4.
Hiyagon H 《Science (New York, N.Y.)》1994,263(5151):1257-1259
It was recently proposed that subduction of interplanetary dust particles (IDPs) contained in deep sea sediments could have introduced substantial solar helium and neon to the Earth's mantle. However, it is not certain if IDPs would retain solar noble gases during subduction. A diffusion experiment that examined He and Ne in IDPs in a magnetic separate from Pacific Ocean sediments showed that He and Ne would be lost from IDPs within 3 years at 500 degrees C, and possibly within 10(5) years at 200 degrees C, which suggests that they would be lost from subducting slabs at shallow depths.  相似文献   

5.
Gases trapped in individual vesicles in the volatile-rich basaltic glass "popping rock" were found to have the same carbon dioxide, helium-4, and argon-40 composition, but a variable 40Ar/36Ar ratio ( approximately 4000 to >/=40,000). The argon-36 is probably surface-adsorbed atmospheric argon; any mantle argon-36 trapped in the vesicles cannot be distinguished from an atmospheric contaminant. Consequently the 40Ar/36Ar ratios and 3He/36Ar ratios (1.45) determined are minimum estimates of the upper mantle composition. Heavy noble gas relative abundances in the mantle resemble solar noble gas abundance patterns, and a solar origin may be common to all primordial mantle noble gases.  相似文献   

6.
Noble gas isotopes were measured in three rocky grains from asteroid Itokawa to elucidate a history of irradiation from cosmic rays and solar wind on its surface. Large amounts of solar helium (He), neon (Ne), and argon (Ar) trapped in various depths in the grains were observed, which can be explained by multiple implantations of solar wind particles into the grains, combined with preferential He loss caused by frictional wear of space-weathered rims on the grains. Short residence time of less than 8 million years was implied for the grains by an estimate on cosmic-ray-produced (21)Ne. Our results suggest that Itokawa is continuously losing its surface materials into space at a rate of tens of centimeters per million years. The lifetime of Itokawa should be much shorter than the age of our solar system.  相似文献   

7.
The occurrence of positive and negative (26)Mg anomalies in inclusions of the Allende meteorite is explained in terms of proton bombardment of a gas of solar composition. A significant fraction of (26)Mg in the irradiated gas is stored temporarily in the form of radioactive (26)Al by the reaction (26)Mg(p,n) (26)Al. Proton fluxes of 10(17) to 10(19) protons per square centimeter per year at l million electron volts are inferred. Aluminum-rich materials condensing from the gas phase have positive (26)Mg anomalies, whereas magnesium-rich materials have negative (26)Mg anomalies. The proton flux required to account for the observed magnesium anomalies is used to investigate possible isotopic anomalies in the elements from oxygen to argon. Detectable isotopic anomalies are predicted only for neon. The anomalous neon is virtually pure (22)Ne from (22)Na decay. The predicted amount of anomalous (22)Ne is about 10(-8) cubic centimeter (at standard temperature and pressure) per milligram of sodium.  相似文献   

8.
The rare gas distribution in lunar soil, breccias, and rocks was studied with a micro-helium-probe. Gases are concentrated in grain surfaces and originate from solar wind. Helium-4 concentrations of different mineral components vary by more than a factor of 10 apart from individual fluctuations for each type. Also grains with no detectable helium-4 exist. Titanium-rich components have the highest, calcium-rich minerals the lowest concentrations. The solar wind was redistributed by diffusion. Mean gas layer thicknesses are 10, 6, and 5 microm for helium, neon, and argon respectively. Lithic fragments in breccias contain no solar gases. Glass pitted surfaces of crystalline rocks contain about 10(-2) cubic centimeter of helium-4 per square centimeter. Etched dust grains clearly show spallogenic and radiogenic components. The apparent mean exposure age of dust is approximately 500 x 10(6) years, its potassium-argon age is approximately 3.5 x 10(9) yerars. Cavities of crystalline rocks contain helium-4, radiogenic argon, H(2), and N(2).  相似文献   

9.
A statistical analysis of the properties of dense interstellar clouds indicates that the solar system has encountered at least a dozen clouds of sufficient density to cause planets to accumulate nonnegligible amounts of some isotopes. The effect is most pronounced for neon. This mechanism could be responsible for much of the neon in Earth's atmosphere. For Mars, the predicted amount of neon added by cloud encounters greatly exceeds the present abundance.  相似文献   

10.
Helium-3 in hotspot magmas has been used as unambiguous evidence for the existence of a primordial, undegassed reservoir deep in the Earth's mantle. However, a large amount of helium-3 is delivered to the Earth's surface by interplanetary dust particles (IDPs). Recycling of deep-sea sediments containing these particles to the mantle, and eventual incorporation in magma, can explain the high helium-3/helium-4 ratios of hotspot magmas. Basafts with high helium-3/helium-4 ratios may represent degassing of helium introduced by ancient (probably 1.5 to 2.0 billion years old) pelagic sediments rather than degassing of primordial lower mantle material brought to the surface in plumes. Influx of IDPs can also explain the neon and siderophile compositions of mantle samples.  相似文献   

11.
Samarium-neodymium isotope data for six lunar basalts show that the bulk Moon has a 142Nd/144Nd ratio that is indistinguishable from that of chondritic meteorites but is 20 parts per million less than most samples from Earth. The Sm/Nd formation interval of the lunar mantle from these data is 215(-21)(+23) million years after the onset of solar system condensation. Because both Earth and the Moon likely formed in the same region of the solar nebula, Earth should also have a chondritic bulk composition. In order to mass balance the Nd budget, these constraints require that a complementary reservoir with a lower 142Nd/144Nd value resides in Earth's mantle.  相似文献   

12.
Composition of the Earth   总被引:1,自引:0,他引:1  
New estimates of solar composition, compared to earlier measurements, are enriched in Fe and Ca relative to Mg, Al, and Si. The Fe/Si and Ca/Al atomic ratios are 30 to 40 percent higher than chondritic values. These changes necessitate a revision in the cosmic abundances and in the composition of the nebula from which the planets accreted (which have been based on chondritic values). These new values imply that the mantle could contain about 15 weight percent FeO and more CaMgSi(2)O(6) than has been supposed. Geophysical data are consistent with a dense, FeO-rich lower mantle and a CaMgSi(2)O(6) (diopside)-rich transition region. FeO contents of 13 to 18 weight percent appear to be typical of the mantles of bodies in the inner solar system. The oldest komatiites (high-temperature MgO-rich magmas) have a similar chemistry to the derived mantle. These results favor a chemically zoned mantle.  相似文献   

13.
Hydrogen, carbon, nitrogen, and oxygen isotopic compositions are heterogeneous among comet 81P/Wild 2 particle fragments; however, extreme isotopic anomalies are rare, indicating that the comet is not a pristine aggregate of presolar materials. Nonterrestrial nitrogen and neon isotope ratios suggest that indigenous organic matter and highly volatile materials were successfully collected. Except for a single (17)O-enriched circumstellar stardust grain, silicate and oxide minerals have oxygen isotopic compositions consistent with solar system origin. One refractory grain is (16)O-enriched, like refractory inclusions in meteorites, suggesting that Wild 2 contains material formed at high temperature in the inner solar system and transported to the Kuiper belt before comet accretion.  相似文献   

14.
Late accretion, early mantle differentiation, and core-mantle interaction are processes that could have created subtle (182)W isotopic heterogeneities within Earth's mantle. Tungsten isotopic data for Kostomuksha komatiites dated at 2.8 billion years ago show a well-resolved (182)W excess relative to modern terrestrial samples, whereas data for Komati komatiites dated at 3.5 billion years ago show no such excess. Combined (182)W, (186,187)Os, and (142,143)Nd isotopic data indicate that the mantle source of the Kostomuksha komatiites included material from a primordial reservoir that represents either a deep mantle region that underwent metal-silicate equilibration or a product of large-scale magmatic differentiation of the mantle. The preservation, until at least 2.8 billion years ago, of this reservoir-which likely formed within the first 30 million years of solar system history-indicates that the mantle may have never been well mixed.  相似文献   

15.
The CUO molecule, formed from the reaction of laser-ablated U atoms with CO in a noble gas, exhibits very different stretching frequencies in a solid argon matrix [804.3 and 852.5 wave numbers (cm(-1))] than in a solid neon matrix (872.2 and 1047.3 cm(-1)). Related experiments in a matrix consisting of 1% argon in neon suggest that the argon atoms are interacting directly with the CUO molecule. Relativistic density functional calculations predict that CUO can bind directly to one argon atom (U-Ar = 3.16 angstroms; binding energy = 3.2 kilocalories per mole), accompanied by a change in the ground state from a singlet to a triplet. Our experimental and theoretical results also suggest that multiple argon atoms can bind to a single CUO molecule.  相似文献   

16.
Data from mid-ocean ridge basalt glasses indicate that the short-lived radionuclide plutonium-244 that was present during an early stage of the development of the solar system is responsible for roughly 30 percent of the fissiogenic xenon excesses in the interior of Earth today. The rest of the fissiogenic xenon can be ascribed to the spontaneous fission of still live uranium-238. This result, in combination with the refined determination of xenon-129 excesses from extinct iodine-129, implies that the accretion of Earth was finished roughly 50 million to 70 million years after solar system formation and that the atmosphere was formed by mantle degassing.  相似文献   

17.
Eucrites are a group of meteorites that represent the first planetary igneous activity following metal-silicate differentiation on an early planetesimal, similar to Asteroid 4 Vesta, and, thus, help date geophysical processes occurring on such bodies in the early solar system. Using the short-lived radionuclide (182)Hf as a relative chronometer, we demonstrate that eucrite zircon crystallized quickly within 6.8 million years of metal-silicate differentiation. This implies that mantle differentiation on the eucrite parent body occurred during a period when internal heat from the decay of (26)Al and (60)Fe was still available. Later metamorphism of eucrites took place at least 8.9 million years after the zircons crystallized and was likely caused by heating from impacts, or by burial under hot material excavated by impacts, rather than from lava flows. Thus, the timing of eucrite formation and of mantle differentiation is constrained.  相似文献   

18.
Measurements of noble gas (helium, neon, argon, krypton, and xenon) partitioning between silicate melt and iron melt under pressures up to 100 kilobars indicate that the partition coefficients are much less than unity and that they decrease systematically with increasing pressure. The results suggest that the Earth's core contains only negligible amounts of noble gases if core separation took place under equilibrium conditions.  相似文献   

19.
Two of the most important agents of geological change, solar energy and internal heat from the mantle, meet and battle for dominance in propelling aqueous and related fluids in the earth's upper crust. Which prevails and how they interact are subjects of active research. Recent work has demonstrated that both agents can propel fluids over nearly continental-scale distances in a fashion that influences a host of important geological processes and leaves a record in chemical alteration, mineral deposits, and hydrocarbon resources.  相似文献   

20.
The mantle of a gas lantern contains about 600 micrograms of toxic beryllium metal. Most of the beryllium is volatilized and becomes airborne during the first 15 minutes of use of a new mantle. The inhalation of this quantity of beryllium can be hazardous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号