首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
有机无机肥长期施用对潮土团聚体及其有机碳含量的影响   总被引:9,自引:1,他引:9  
耿瑞霖  郁红艳  丁维新  蔡祖聪 《土壤》2010,42(6):908-914
用湿筛法和密度分级相结合的方法,将土壤区分为不同粒径团聚体,并进一步把团聚体细分成不同组分,系统比较了有机无机肥长期施用对潮土及其团聚体中有机C含量的影响。结果表明,潮土团聚体以53~250μm为主,有机肥长期施用显著提高了250~2000μm团聚体数量,降低了53~250μm团聚体的比例。无机肥施用增加了各粒径团聚体有机C含量,但没有改变团聚体的比例。团聚体中有机C以细颗粒有机C(fine iPOM)为主,有机肥施用显著增加了矿物态有机C含量,并通过增加250~2000μm团聚体中细颗粒有机C(fine iPOM)和矿物态有机C比例来提高土壤有机C含量。无机肥则通过比较均匀地增加团聚体中各组分有机C含量来提高土壤有机C水平。因此,有机肥和无机肥在潮土上增加土壤有机质含量的机制存在明显差异。  相似文献   

2.
Agricultural management practices are known to influence soil organic C. While changes in total organic C (TOC) are relatively less discernible over short to medium-term, some extractable pools of TOC are considered early indicators of changes in TOC. Therefore, to devise nutrient management practices that can lead to C sequestration, it is important to study their effect on soil organic C pools that may respond rapidly to management. We studied the impact of balanced (NPK) and imbalanced (N, NP, NK and PK) application of fertilizer nutrients without and with farmyard manure (FYM) on total and labile pools of organic C viz. water soluble (WEOC), potassium permanganate oxidizable (KMnO4-C), microbial biomass (MBC) and fractions of decreasing oxidizability after 5-cycles of rice-wheat cropping. Integrated use of NPK and FYM significantly increased TOC and extractable C pools in both surface (0–7.5 cm) and sub-surface (7.5–15 cm) soil. Majority of TOC (72%) was stabilized in less labile and recalcitrant fractions; the magnitude being higher under balanced (NPK+FYM) than imbalanced nutrient management (N+FYM). The results showed that balanced fertilizer application conjointly with FYM besides enlarging TOC pool favorably impacts soil organic matter composition under rice-wheat system.  相似文献   

3.
Sandy‐textured Mediterranean soils are invariably depleted in organic matter and supply only small amounts of N to crops. To compensate for these deficiencies, we tested the N supply from six organic wastes applied to a Cambic Arenosol in pots growing ryegrass. The results showed that the behaviour of the wastes in supplying N to a ryegrass crop grown in this soil can be predicted by observing their performance in laboratory aerobic incubations. The N made available during these incubations fitted well to a one‐pool kinetic model.  相似文献   

4.
Current concern for soil quality has stimulated research on soil biological and chemical properties. In contrast, the mechanical behaviour of soil is somewhat neglected. We have examined the effects on soil mechanical properties of more than 100 years of contrasting fertilization employing three treatments from the Askov long‐term experiment: UNF (unfertilized), NPK (mineral fertilized) and AM (animal manured). We have measured tensile strength of aggregates when air‐dry and when adjusted to ?10, ?30 and ?100 kPa pressure potential. Four aggregate size classes were investigated (1–2, 2–4, 4–8 and 8–16 mm diameter). Soil fragmentation was characterized in the field using a drop‐shatter test. Bulk soil strength was determined in the field using a shear vane and a torsional shear box. Soil texture, pH, cation exchange capacity and microbial biomass were measured. The unfertilized soil has little soil organic matter and microbial biomass and is dense. Its aggregates were strong when dry and weak when wet. In contrast, the manured soil had strong aggregates when wet and rather weak ones when dry. The NPK soil generally had intermediate properties. The differences between the soils when dry seem to be related to differences in dispersible clay content, whereas the differences when wet are related to differences in the amount of organic binding and bonding material. The optimal water content for tillage as well as the tolerable range in water content was largest in the manured soil and smallest in the unfertilized soil. Our results indicate that soil mechanical properties should be measured over a range of water regimes to determine the effects of various long‐term fertilization treatments.  相似文献   

5.
The study examined the influence of compost and mineral fertilizer application on the content and stability of soil organic carbon (SOC). Soil samples collected from a long-term field experiment were separated into macroaggregate, microaggregate, and silt + clay fractions by wet-sieving. The experiment involved seven treatments: compost, half-compost N plus half-fertilizer N, fertilizer NPK, fertilizer NP, fertilizer NK, fertilizer PK, and control. The 18-year application of compost increased SOC by 70.7–121.7%, and mineral fertilizer increased by 5.4–25.5%, with no significant difference between control soil and initial soil. The C mineralization rate (rate per unit dry mass) in microaggregates was 1.52–2.87 mg C kg−1 day−1, significantly lower than in macroaggregate and silt + clay fractions (P < 0.05). Specific C mineralization rate (rate per unit SOC) in silt + clay fraction amounted to 0.48–0.87 mg C g−1 SOC day−1 and was higher than in macroaggregates and microaggregates. Our data indicate that SOC in microaggregates is more stable than in macroaggregate and silt + clay fractions. Compost and mineral fertilizer application increased C mineralization rate in all aggregates compared with control. However, compost application significantly decreased specific C mineralization rate in microaggregate and silt + clay fractions by 2.6–28.2% and 21.9–25.0%, respectively (P < 0.05). By contrast, fertilizer NPK application did not affect specific C mineralization rate in microaggregates but significantly increased that in silt + clay fractions. Carbon sequestration in compost-amended soil was therefore due to improving SOC stability in microaggregate and silt + clay fractions. In contrast, fertilizer NPK application enhanced SOC with low stability in macroaggregate and silt + clay fractions.  相似文献   

6.
The CO2 released in soil respiration is formed from organic matter which differs in age and stability, ranging from soluble root exudates to more persistent plant remains. The contribution of roots, a relatively fast component of soil cycling, was studied in three experiments. (1) Willows were grown in a greenhouse and CO2 fluxes from the substrate soil (milled peat) and from control peat were measured. (2) CO2 fluxes from various peatland sites were measured at control points and points where the roots were severed from the plants. (3) CO2 fluxes in cultivated grassland established on peatland were measured in grassy subsites and in subsites where the growth of grass was prevented by regular tilling. The root-derived respiration followed the typical annual phenology of the vegetation, being at its maximum in the middle and late summer. All the experiments gave similar results, root-derived respiration accounting for 35–45% of total soil respiration in the middle and late summer at sites with an abundant vegetation. The root-derived respiration from the virgin peatland sites correlated well with the tree biomass, and also partly with the understorey vegetation, but in the drained sites the root effect was greater, even in the presence of less understorey vegetation than at virgin subsites.  相似文献   

7.
Information on which management practices can enhance soil organic matter (SOM) content and quality can be useful for developing sustainable crop production systems. We tested the influence of 12 years of no-till (NT) versus conventional tillage (CT), and four crop sequences on the organic C pools of a Grey Luvisolic sandy loam soil in northwestern Alberta, Canada. The crop sequences were: continuous wheat (Triticum aestivum L.), field pea (Pisum sativum L.)–wheat–canola (Brassica rapa L.)–wheat, red clover (Trifolium pratense L.) green manure–wheat–canola–wheat/red clover and fallow–wheat–canola–wheat. Soil samples from 1992, when the study was initiated, and 1996, 2000 and 2004 were analyzed for total organic C (TOC), the light fraction (LF) and its C content, and water-soluble and mineralizable C. Total organic C in the top 15 cm of soil was higher in the red clover rotation than either the pea or fallow rotation by 1996. The tillage effect became significant only in 2004 with NT having a higher TOC than CT. The LF dry matter (DM) increased from 6.9 g kg−1 soil in 1992 to a range of 10–13 g kg−1 in 2000 and 2004. It was higher under NT than CT in 2 of 3 years and in the red clover rotation than the pea or fallow rotation in 1 of 3 years. The LF C content exhibited a similar trend as LF DM. The water-soluble and mineralizable C pools were not affected by tillage but decreased with time. Among crop rotations, the red clover rotation tended to result in higher levels of hot water-soluble and mineralizable C. It is concluded that tillage had a greater influence than crop rotation on the LF DM and LF C (as indicators of C storage), whereas the converse effect applied to mineralizable C and, to a lesser degree, hot water-soluble C (as indicators of SOM quality).  相似文献   

8.
Purpose

Humic substances, which are integral components of total organic carbon (TOC), influence soil quality. The study aimed to investigate whether humic and non-humic fractions exhibit early, consistent, and measurable changes and affect TOC sensitivity and storage in a tropical sandy loam soils amended with corn cob biochar.

Materials and methods

There were four treatments with four replicates established in a randomized complete block design. Composite soil samples were taken from plots without biochar (CT), from plots incorporated with 15 t biochar ha?1 (BC-15), and 30 t biochar ha?1 without or with phosphate fertilizer (BC-30 and BC-30+P). The TOC, and humin, humic acid (HA), and fulvic acid (HA) fractions of soil organic carbon were determined for each treatment. The optical densities (400–700 nm) were measured on the soil-free extracts by spectrophotometry; the densities measured at 465 and 665 nm were used to calculate the E465/E665 ratios.

Results and discussion

The BC-30 and BC-30+P plots recorded the highest TOC, humin, humic acid (HA), and fulvic acid (FA) contents with respect to the lowest in the CT. The total exchangeable carbon stratification was significantly higher in all the biochar-treated plots relative to the CT. Spectral analysis showed higher values of E465/E665 (5.02 and 5.15) in the CT and BC-15-treated soils, respectively, compared with the BC-30 and BC-30+P-amended soils with E465/E665 ratios of 2.76 and 2.98, respectively.

Conclusions

Corn cob biochar applied to a tropical sandy loam:

? increased the concentrations of HA and FA and led to increased stratification of TOC, with a stronger effect on HA compared with FA;

? significantly lowered E465/E665 at the high biochar application rate of 30 t ha?1, implying the dominance of high molecular weight humic acid-like substances, and increased degree of aromaticity of the TOC.

  相似文献   

9.

Purpose  

Recently, pharmaceuticals and personal care products (PPCPs) have been identified in the environment. Concerns on the occurrence and fate of these compounds in soil and sediment have significantly increased. It is believed that these PPCPs sorb to soil and sediment; however, information on sorption of PPCPs is still limited. In this study, the sorption of estrone (E1), 17β-estradiol (E2), estriol (E3), 17α-ethynylestradiol (EE2), triclosan, and caffeine to two loam soils and Ottawa sand was assessed.  相似文献   

10.
The effects of organic manure, mineral fertilizer (NPK), and P-deficiency fertilization (NK) on the individual biomass of young wheat plants, arbuscular mycorrhizal (AM) colonization in wheat root systems, population sizes of soil organic phosphorus mineralizing bacteria (OPMB) and inorganic phosphate solubilizing bacteria (IPSB) as well as soil P-mineralization and -solubilization potential were investigated in a long-term (18-year) fertilizer experiment. The experiment included five treatments: organic manure, an equal mixture of organic manure and mineral fertilizer, fertilizer NPK, fertilizer NK, and the control (without fertilization). Plant biomass, population sizes of soil OPMB and IPSB were greatly increased (P<0.05) by the application of organic manure and slightly increased by the balanced application of mineral fertilizer, while undiminished AM colonization in wheat root system was only observed in the case of the NK treatment. Compared to balanced fertilization, P-deficiency fertilization resulted in a significant increase (P<0.05) of OPMB-specific mineralization potential (soil P-mineralization potential per OPMB cell) and highest IPSB-specific solubilization potential (soil P-solubilization potential per IPSB cell), suggesting that OPMB and IPSB are likely more metabolically active in P-deficiency fertilized soils after long-term fertilizer management, and mycorrhizal plants are more dependent on AM in P-poor soils than in P-fertilized soils. Our results also showed the different effects of mineral fertilizer versus organic manure on soil P-mineralization and -solubilization potentials, as well as specific potentials of OPMB and IPSB in arable soils.  相似文献   

11.
Abstract

A Typic Ustochrept sandy loam was dried under constant evaporation (Eo) of 4, 8, and 16 mm/day. The soil dried more uniformly with depth under lower than under higher Eo. Downward movement of isohydral fronts could be adequately described by equations of the type, D = a + b t0.5 (where ‘D’ is the depth of isohydral front in cm, Y is the drying time in days and ‘a’ and ‘b’ are constants). Rates of their advance were influenced by the Eo and water content of the front. Higher Eo caused earlier deviation of the cumulative evaporation (CE) from the cumulative Eo. Equations of the type, CE = m tn (where ‘t’ is the drying time in days and ‘m’ and ‘n’ are constants), gave an excellent fit for all the three Eo's. Falling‐rate stage evaporation rates were sensitive to Eo during its earlier stages.  相似文献   

12.

Purpose  

Organic and inorganic fertilizers are used primarily to increase nutrient availability to plants. Monitoring balanced versus unbalanced fertilization effects on soil microbes could improve our understanding of soil biochemical processes and thus help us to develop sound management strategies. The objective of this study was to investigate the effects of long-term fertilization regimes on soil microbial community functional diversity, metabolic activity, and metabolic quotient and to find out the main factors that influence these parameters.  相似文献   

13.
The relative contributions of litter and humified organic matter as the source of dissolved organic carbon (DOC) leached from organic layers of forest soils are poorly understood. In the present investigation, 13C labelled spruce litter was used to study the role of recent litter in the leaching of DOC from a coniferous forest floor in southern Sweden, while litterbags were used to quantify the total loss of C from the labelled litter. The labelled litter applied on bare lysimeters released considerable amounts of DOC during the first weeks, but the concentration of DOC originating from labelled litter decreased gradually from 176 mg litre−1 during the first sampling period in May to 5 mg litre−1 in the last sampling period in October. Only a moderate flush of DOC from the labelled litter occurred under the Oe and Oa horizons, with concentrations of 20 and 6 mg litre−1 from labelled litter, equal to 19 and 9% of the total DOC flux, respectively, during the first sampling period. Total flux of DOC from labelled litter from May to September was 16 g m−2, whereas only 2.2 and 0.9 g m−2 were captured under the Oe and Oa horizons, respectively. The almost complete loss of new DOC implies that DOC leached from the Oe and Oa horizons consists not of recent litter‐derived carbon, but of DOC produced in these two horizons themselves. Water‐extractable organic carbon from labelled litter left in litterbags in the field for 4 months consisted of about one‐third native carbon from external sources at the experimental site and two‐thirds of the labelled litter. In contrast, the 13C content of the bulk litter from the litterbags was not changed by the incubation in the field. We suggest that the soluble native carbon in water extracts originated from throughfall DOC that had been assimilated by microorganisms in the litterbags.  相似文献   

14.
The sequestration of carbon (C) in soil is not completely understood, and quantitative information about the amounts of organic carbon in the various fractions and their rates of turnover could improve understanding. We aimed (i) to quantify the amounts of C derived from maize at various depths in the soil in a long‐term field experiment with and without fertilization using 13C/12C analysis, (ii) to model changes in the organic C, and (iii) to compare measured and modelled pools of C. The organic C derived from the maize was measured in soil samples collected to a depth of 65 cm from four plots, two of which had been under continuous maize and two under continuous rye during long‐term field experiments with NPK and without fertilization. The fractionation procedures included particle‐size fractionation and extractions in water and in pyrophosphate solution. We used the Rothamsted Carbon Model to model the dynamics of the carbon from 13C data. The amounts of C derived from maize in the Ap horizon after 39 years of continuous maize cropping were 9.5% of the total organic C (where unfertilized) and 14.0% where NPK had been applied. Fertilization did not affect the residence time of carbon in the soil. The amounts of C derived from maize in water extracts were 21% of the total organic C (where unfertilized) and 22% where NPK had been applied. The extracts that were soluble in pyrophosphate and insoluble in acid were depleted in C from maize (the amounts were 5% and 7% of the total organic C, respectively). The results of the 13C natural abundance technique were used to model the dynamics of the organic C. Both the total organic C and the C derived from maize in the particle‐size fraction 0–63 μm agreed well with the total and maize‐derived sums of the model pools ‘inert organic matter’, ‘humified organic matter’ and ‘microbial biomass’. The model suggested that 64% (unfertilized) or 53% (NPK) of the organic C in the Ap horizon were inert. Only one of three published equations to determine the size of the inert pool agreed well with these model results.  相似文献   

15.
长期施用有机肥对稻麦轮作体系土壤有机碳氮组分的影响   总被引:4,自引:1,他引:4  
【目的】 以湖北武汉地区长期稻麦轮作制度下施肥试验地作为研究对象,研究了长期不同施肥处理对耕层土壤有机碳、全氮及活性碳氮组分的影响,为优化稻麦轮作体系下施肥措施,实现土壤固碳减排,培肥土壤提供理论依据。 【方法】 长期施肥试验开始于1981年,试验处理包括不施肥 (CK)、施化学氮肥 (N)、施化学氮磷肥 (NP)、施化学氮磷钾肥 (NPK)、单施有机肥 (M) 及有机无机肥配施处理 (NPKM)。收集2017年小麦收获后耕层 (0—20 cm) 土壤,测定各小区土壤中的有机碳 (SOC)、全氮 (TN)、微生物量碳氮 (MBC、MBN)、水溶性碳 (DOC)、热水溶性有机碳 (HWSC)、颗粒有机碳氮 (POC和PON)、轻组有机碳氮 (LFOC和LFON) 及氯化钾浸提氮 (KEN,即水溶性无机氮) 的含量并分析各指标间的关系。 【结果】 1) 除KEN外,长期施用有机肥显著增加耕层土壤的各碳氮组分含量,特别是有机无机肥配施处理。2) 各活性有机碳组分占SOC的百分比由高到低排序为POC > LFOC > HWSC > MBC > DOC,各氮组分占TN的百分比由高到低排序为PON > LFON > MBN > KEN,其中POC占SOC的24.04%~37.64%,PON占TN的12.09%~20.24%,且有机肥处理下POC/SOC、PON/TN显著高于其余处理。3) 通过对土壤有机碳及各活性有机碳的对施肥的敏感性分析可得,各活性碳敏感性指数均显著高于SOC,且DOC的敏感性最高。4) 通过各组分间相关性分析可知,除KEN外,各碳、氮组分间显著正相关,其中DOC与SOC、PON与TN关系更为紧密,表明DOC及PON可较好地反应出SOC、TN的变化情况。 【结论】 在湖北稻麦轮作地区,长期有机无机肥配施处理显著增加了土壤碳库及氮库,促进了土壤碳、氮的积累,尤其是颗粒有机碳和有机氮 (POC和PON)。水溶性碳 (DOC) 对施肥反应最为敏感,可作为指示该地区有机物早期变化的指示物。   相似文献   

16.
Maintaining and/or conserving organic carbon (C) and nitrogen (N) concentrations in the soil using management practices can improve its fertility and productivity and help to reduce global warming by sequestration of atmospheric CO2 and N2. We examined the influence of 6 years of tillage (no-till, NT; chisel plowing, CP; and moldboard plowing, MP), cover crop (hairy vetch (Vicia villosa Roth.) vs. winter weeds), and N fertilization (0, 90, and 180 kg N ha−1) on soil organic C and N concentrations in a Norfolk sandy loam (fine-loamy, siliceous, thermic, Typic Kandiudults) under tomato (Lycopersicon esculentum Mill.) and silage corn (Zea mays L.). In a second experiment, we compared the effects of 7 years of non-legume (rye (Secale cereale L.)) and legume (hairy vetch and crimson clover (Trifolium incarnatum L.)) cover crops and N fertilization (HN (90 kg N ha−1 for tomato and 80 kg N ha−1 for eggplant)) and FN (180 kg N ha−1 for tomato and 160 kg N ha−1 for eggplant)) on soil organic C and N in a Greenville fine sandy loam (fine-loamy, kaolinitic, thermic, Rhodic Kandiudults) under tomato and eggplant (Solanum melogena L.). Both experiments were conducted from 1994 to 2000 in Fort Valley, GA. Carbon concentration in cover crops ranged from 704 kg ha−1 in hairy vetch to 3704 kg ha−1 in rye in 1999 and N concentration ranged from 77 kg ha−1 in rye in 1996 to 299 kg ha−1 in crimson clover in 1997. With or without N fertilization, concentrations of soil organic C and N were greater in NT with hairy vetch than in MP with or without hairy vetch (23.5–24.9 vs. 19.9–21.4 Mg ha−1 and 1.92–2.05 vs. 1.58–1.76 Mg ha−1, respectively). Concentrations of organic C and N were also greater with rye, hairy vetch, crimson clover, and FN than with the control without a cover crop or N fertilization (17.5–18.4 vs. 16.5 Mg ha−1 and 1.33–1.43 vs. 1.31 Mg ha−1, respectively). From 1994 to 1999, concentrations of soil organic C and N decreased by 8–16% in NT and 15–25% in CP and MP. From 1994 to 2000, concentrations of organic C and N decreased by 1% with hairy vetch and crimson clover, 2–6% with HN and FN, and 6–18% with the control. With rye, organic C and N increased by 3–4%. Soil organic C and N concentrations can be conserved and/or maintained by reducing their loss through mineralization and erosion, and by sequestering atmospheric CO2 and N2 in the soil using NT with cover crops and N fertilization. These changes in soil management improved soil quality and productivity. Non-legume (rye) was better than legumes (hairy vetch and crimson clover) and N fertilization in increasing concentrations of soil organic C and N.  相似文献   

17.
长期施肥对土壤有机碳和无机碳的影响   总被引:14,自引:2,他引:14  
利用18年长期定位试验,研究了在不同施肥条件下,土壤有机碳和无机碳在0~50 cm土层分布特征。结果表明,施肥对土壤有机碳的影响随着土层深度的增加而下降,0~7.5 cm土层的土壤有机碳比7.5~15 cm、15~30 cm、30~50 cm分别增加了4.6%、22.0%、63.1%,而无机碳含量随着土层深度的增加而增加,与有机碳的变化规律正好相反。不同种类的肥料对土壤有机碳的影响也不相同,化肥、有机肥长期配合施用和长期施用有机肥可以在0~30 cm土层增加土壤有机碳含量,降低土壤中的无机碳含量,而长期单施化肥对土壤的有机碳和无机碳含量无明显差异。  相似文献   

18.
In most arid and semiarid soils, naturally occurring phosphorus(P) is a major yield-limiting plant nutrient. In this study, to investigate the effects of organic(OP) and inorganic P(IP) sources on P fractionation, a calcareous sandy loam alkaline soil was fertilized with OP and IP fertilizers at low(80 mg P kg~(-1) soil) and high(160 mg P kg~(-1) soil) application rates. Three combinations of OP and IP(i.e., 75% OP + 25% IP, 50% OP + 50% IP, and 25% OP + 75% IP) were applied at low and high application rates,respectively, followed by soil aging for 21 d. Soil samples were collected after 1, 2, 3, 7, and 21 d and subjected to sequential extraction to analyze soluble and exchangeable, Fe-and Al-bound, Ca-bound, and residual P fractions. The soluble and exchangeable P fraction significantly increased up to 24.3%, whereas the Ca-bound fraction decreased up to 40.7% in the soils receiving 75% OP + 25% IP and 50% OP + 50% IP, respectively, compared with the control(receiving no P fertilizer). However, the transformation of P fractions was influenced by aging time. Addition of P sources caused instant changes in different P fractions, which then tended to decline with aging time. Change in soil p H was the limiting factor in controlling P availability. At high application rate, the OP source significantly increased soil P availability compared with the IP source with soil aging. Depending on P fractionation, a proper combination of OP and IP fertilizers, as long-term slow and instant P-releasing sources for plant uptake, respectively, may be a sustainable strategy to meet crop P requirements in the arid and semiarid soils.  相似文献   

19.
Wheat plants were grown in an atmosphere containing 14CO2 at temperatures of 10°C or 18°C for periods from 3–8 weeks. The plant roots were maintained under sterile or non-sterile conditions in soil contained in sealed pots which were flushed to displace respired 14CO2. The 14C content of the shoots, roots and soil was measured at harvest. The loss of 14C from the roots, expressed either in terms of total 14C recovered from the pots or 14C translocated to the roots, ranged from 14.3–22.6%, mean 17.3% or 29.2–44.4%, mean 39.2%, respectively. The presence of soil microorganisms significantly increased 14CO2 release from the rhizosphere but had no effect on the 14C content of the soil. Fractionation of 6 m HC1 hydrolysates from sterile and non-sterile soils showed the presence in all soils of material behaving as neutral sugars and amino acids, in quantities representing 5.9–9.2% and 13.4–17.2% of the soil 14C content for the sugar and amino acid fractions respectively. It is proposed that a major loss of root carbon resulted from autolysis of the root cortex. Root lysis was increased by soil microorganisms, apparently without penetration of the plant cell walls.  相似文献   

20.
长期施肥对红壤性水稻土团聚体稳定性及固碳特征的影响   总被引:21,自引:2,他引:21  
施用有机肥是提高土壤有机碳(SOC)含量、促进土壤团聚体形成和改善土壤结构的重要措施。本研究旨在探讨长期作物残留和投入有机物料对水稻土团聚体分布及稳定性的影响,分析不同粒级团聚体的固碳特征及其与团聚体形成的相关性,以及土壤和不同粒级团聚体对累积碳投入的响应。长期定位施肥试验始于1986年,设不施肥(CK)、单施化肥(CF)、秸秆化肥混施(RS)、低量粪肥配施化肥(M1)和高量粪肥配施化肥(M2)5个处理。2009年采集0~10 cm土壤样品,测定总土以及大团聚体(LM,2 mm)、较大团聚体(SM,0.25~2 mm)、微团聚体(MA,0.25~0.053 mm)和黏粉粒(SC,0.053 mm)的质量比例及其SOC浓度,并分析闭蓄于SM内部的颗粒有机物(POM)、微团聚体(MA-SM)和黏粉粒(SC-SM)的质量含量和SOC浓度。结果表明,与CK和CF比较,有机肥混施化肥处理(RS、M1和M2)均显著提高了LM和SM的质量比例和平均当量直径(MWD),降低了SC质量含量;两个粪肥配施化肥处理(M1和M2)的效果优于秸秆化肥混施(RS),但是M1和M2间差异不显著;单施化肥则降低了稳定性团聚体的比例。团聚体的SOC浓度没有随粒级增大而增加,各处理均为LM和SM结合的SOC浓度最高,其次为SC,最小为MA。与CK比较,有机肥混施化肥处理均显著提高了各粒级团聚体的SOC浓度。总土SOC的增加主要取决于SM的SOC含量,而MA-SM组分决定了SM固持SOC的能力。总土、LM和SM的SOC含量以及从SM分离出的POM、MA-SM和SC-SM的SOC含量均与累积碳投入量呈显著正相关,但总土分离出的MA和SC的SOC含量对累积碳投入量反应不敏感,表现出碳饱和迹象。因此,尽管长期大量施用有机物料促进了红壤性水稻土大团聚体的形成和团聚体稳定性,增加了其SOC的固持,但有机质可能不是该土壤水稳性团聚体形成的最主要黏结剂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号