首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Frost resistance and ice formation in different developmental states of needles of P. canariensis seedlings were assessed. Regrowth after frost damage was used to determine the overall frost survival capacity. Two distinct freezing exotherms (E1, E2) were registered. E1 was between ?1.7 and ?2.0 °C. Initial frost damage (LT10) was 1.5–2.7 °C below E1. E2 was between ?5.6 and ?6.0 °C, and either corresponded with LT50 or occurred in between LT10 and LT50. Current year needles were less frost resistant than 1-year-old needles. The overall recuperation capacity of seedlings revealed that frost survival may be underestimated when only needle damage is assessed. Freezing of seedlings with or without roots had no effect on the frost resistance of needles but recuperation capacity was significantly affected. Seedlings survived ?10 °C during summer indicating that they withstand the lowest naturally occurring frosts in Tenerife.  相似文献   

2.
We studied the influence of two irradiances on cold acclimation and recovery of photosynthesis in Scots pine (Pinus sylvestris L.) seedlings to assess mechanisms for quenching the excess energy captured by the photosynthetic apparatus. A shift in temperature from 20 to 5 degrees C caused a greater decrease in photosynthetic activity, measured by chlorophyll fluorescence and oxygen evolution, in plants exposed to moderate light (350 micromol m(-2) s(-1)) than in shaded plants (50 micromol m(-2) s(-1)). In response to the temperature shift, maximal photochemical efficiency of photosystem II (PSII), measured as the ratio of variable to maximal chlorophyll fluorescence (Fv/Fm) of dark-adapted samples, decreased to 70% in exposed seedlings, whereas shaded seedlings maintained Fv/Fm close to initial values. After a further temperature decrease to -5 degrees C, only 8% of initial Fv/Fm remained in exposed plants, whereas shaded plants retained 40% of initial Fv/Fm. Seven days after transfer from -5 to 20 degrees C, recovery of photochemical efficiency was more complete in the shaded plants than in the exposed plants (87 and 65% of the initial Fv/Fm value, respectively). In response to cold stress, the estimated functional absorption cross section per remaining PSII reaction center increased at both irradiances, but the increase was more pronounced in exposed seedlings. Estimates of energy partitioning in the needles showed a much higher dissipative component in the exposed seedlings at low temperatures, pointing to stronger development of non-photochemical quenching at moderate irradiances. The de-epoxidation state of the xanthophyll cycle pigments increased in exposed seedlings at 5 degrees C, contributing to the quenching capacity, whereas significant de-epoxidation in the shaded plants was observed only when temperatures decreased to -5 degrees C. Thermoluminescence (TL) measurements of PSII revealed that charge recombinations between the second oxidation state of Mn-cluster S2 and the semireduced secondary electron acceptor quinone Q(B)- (S2Q(B)-) were shifted to lower temperatures in cold-acclimated seedlings compared with control seedlings and this effect depended on irradiance. Concomitant with this, cold-acclimated seedlings demonstrated a significant shift in the S2 recombination with primary acceptor Q(A)- (S2Q(A)-) characteristic TL emission peak to higher temperatures, thus narrowing the redox potential gap between S2Q(B)- and S2Q(A)-, which might result in increased probability for non-radiative radical pair recombination between the PSII reaction center chlorophyll a (P680+) and Q(A)- (P680+)Q(A)-) (reaction center quenching) in cold-acclimated seedlings. In Scots pine seedlings, mechanisms of quenching excess light energy in winter therefore involve light-dependent regulation of reaction center content and both reaction center-based and antenna-based quenching of excess light energy, enabling them to withstand high excitation pressure under northern winter conditions.  相似文献   

3.
Photosynthetic O(2) evolution and chlorophyll a fluorescence were measured in 1-year-old needles of unfertilized and fertilized trees of Norway spruce (Picea abies (L.) Karst.) during recovery of photosynthesis from winter inhibition in northern Sweden. Measurements were made under laboratory conditions at 20 degrees C. In general, the CO(2)-saturated rate of O(2) evolution was higher in needles of fertilized trees than in needles of unfertilized trees over a wide range of incident photon flux densities. Furthermore, the maximum photochemical efficiency of photosystem (PS) II, as indicated by the ratio of variable to maximum fluorescence (F(V)/F(M)) was higher in needles of fertilized trees than in needles of unfertilized trees. The largest differences in F(V)/F(M) between the two treatments occurred before the main recovery of photosynthesis from winter inhibition in late May. The rate of O(2) evolution was higher in needles of north-facing branches than in needles of south-facing branches in the middle of May. Simultaneous measurements of O(2) exchange and chlorophyll fluorescence indicated that differences in the rate of O(2) evolution between the two treatments were paralleled by differences in the rate of PS II electron transport determined by chlorophyll fluorescence. We suggest that, during recovery of photosynthesis from winter inhibition, the balance between carbon assimilation and PS II electron transport was maintained largely by adjustments in the nonphotochemical dissipation of excitation energy within PS II.  相似文献   

4.
ORLANDER  G. 《Forestry》1993,66(1):27-36
Two-year-old cuttings of Norway spruce were subjected to nightfrosts in spring on an exposed site in southern Sweden. Shadingwas used to assess the influence of sunlight on the extent ofdamage resulting from night frost. Chlorophyll fluorescencewas measured in needles in flushing shoots, and in shoots atthe stage of bud burst. The Fv:Fm ratio was significantly lowerfor plants exposed to light, compared with shaded plants onthe days following the night frost (minimum temperature –6°C).The effect was similar both in 1-year-old and current year needles.The low Fv:Fm ratios indicate damage to photosystem H, causedby an interaction between sub freezing temperatures and highlight intensity. Shading also increased the survival of flushingshoots. It is suggested that regeneration of Norway spruce onsites exposed to frost should be carried out in partial shade,for example under a shelterwood.  相似文献   

5.
Chrysomyxa rhododendri (DC.) De Bary is a needle rust with a host shift between Rhododendron sp. and Norway spruce (Picea abies (L.) Karst.), penetrating only the new developing flushes of the conifer. Because little is known about its effects on trees, we investigated several parameters related to photosynthesis in artificially infected 3-year-old Norway spruce seedlings. The potential efficiency of photosystem II (PSII; derived from chlorophyll fluorescence measurements) was reduced in infected current-year needles as soon as disease symptoms were visible, about three weeks after inoculation. Two weeks later, photosynthetic O(2) evolution (P(max)) of infected needles was less than 20% of control needles, whereas respiratory O(2) uptake (R(D)) was about three times higher than that of control needles. Nonstructural carbohydrate concentrations were about 60% of control values in all parts of the shoots of infected trees. Photosynthetic inhibition was associated with marked decreases in chlorophyll concentration and chlorophyll a/b ratio but only a small reduction in carotenoid concentration. In infected trees, P(max) of noninfected 1-year-old and 2-year-old needles was 50 and 80% higher than in the corresponding age class of needles of control trees. Estimation of potential daily net dry mass production, based on P(max), R(D), specific leaf area, carbon content and needle biomass, indicated that seedlings infected once were able to produce 60%, and those infected twice only 25%, of the dry mass of controls. We conclude that afforestation and regeneration of Norway spruce is seriously impaired in regions where seedlings are frequently attacked by Chrysomyxa.  相似文献   

6.
Photosynthesis in evergreen conifers is characterized by down-regulation in autumn and rapid up-regulation in spring. This seasonal pattern is largely driven by temperature, but the light environment also plays a role. In overwintering Scots pine (Pinus sylvestris L.) trees, PSII is less down-regulated and recovers faster from winter stress in shaded needles than in needles exposed to full sunlight. Because the effect of light on the seasonal acclimation of PSII has not been quantitatively studied under field conditions, we used the rate constants for sustained thermal energy dissipation and photochemistry to investigate the dynamics and kinetics of the seasonal acclimation of PSII in needles exposed to different light environments. We monitored chlorophyll fluorescence and needle pigment concentration during the winter and spring in Scots pine seedlings growing in the field in different shading treatments, and within the crowns of mature trees. The results indicated that differences in acclimation of PSII in overwintering Scots pine among needles exposed to different light environments can be chiefly attributed to sustained thermal dissipation. We also present field evidence that zeaxanthin-facilitated thermal dissipation and aggregation of thylakoid membrane proteins are key mechanisms in the regulation of sustained thermal dissipation in Scots pine trees in the field.  相似文献   

7.
Operational stock-testing facilities that estimate overwinter storability of seedlings (ability to survive and grow after storage) need a reliable method that provides fast results to forest nurseries. We compared three methods using container-grown seedlings of Douglas-fir, interior spruce, lodgepole pine, and western larch from forest nurseries in British Columbia. On three to nine dates in autumn, frost hardiness at −18°C was estimated using visible injury of foliage or stems (VI), electrolyte leakage from needles or stems (EL), and chlorophyll fluorescence of shoots (CF). Seedlings were placed into overwinter cold storage (−2°C). In the spring, stored seedlings were planted in nursery beds; survival and growth were assessed after one growing season. There were close correlations (r ≥ 0.93) between the assessment methods. Seedlings lifted after they reached thresholds of 69% or higher for CF and 25% or lower for EL and VI had over 90% survival at harvest and doubled shoot dry weight compared with seedlings lifted earlier. Measuring CF was the fastest and most easily replicated method to estimate successful storability, and reduced testing time by 6 days relative to VI tests.  相似文献   

8.
The objective of this study was to compare the survival and volume of conifer stands at 26 years of age with their status at planting. Survival, growth and damage were studied in eight clear felled stands regenerated in 1972. Five of the areas were planted with Norway spruce (Picea abies (L.) Karst.) and three with Scots pine (Pinus sylvestris L.). The plantings were examined in 1972 and 1974. In 1974, the number of living undamaged planted seedlings was low (10–15%). However, the number of undamaged seedlings was supplemented by naturally regenerated conifer and birch seedlings. The total number of undamaged seedling in 1974 was equivalent to 20–30% of the number of seedlings planted. In 1998, the main species in three stands had changed from Norway spruce to Scots pine, and in one stand from Norway spruce to birches. Actual volume in 1998 for the stands was compared to stand volume generate according to five scenarios based on recommended and actual seedling number in 1972 and 1974. The actual volume was 64% of that expected if the recommended number of trees had been planted. Naturally regenerated Scots pine and Norway spruce increased stand density in 1998. The actual volume was 37% higher than the average volume in the surrounding county. On average, 36% of the trees were damaged. More than 50% of the total damage was caused by moose (Alces alces L.). For Scots pine, moose or other browsing animals damaged 30% of the trees. The results of this study indicate that the 1998 volume was higher than expected, considering the low number of undamaged seedlings in 1974. This was mainly due to the large amount of naturally regenerated plants. In addition, the results indicate that the volume could have been higher if the initial conditions had been better. Despite the low number of undamaged seedlings in 1974, seven of the eight studied stands produced a higher volume than the average stand for the region. In practise, high numbers of seedlings should be planted on scarified areas. In most cases there will be a supply of naturally regenerated seedlings.  相似文献   

9.
Strand M 《Tree physiology》1997,17(4):221-230
Photosynthetic O(2) evolution at high irradiances (approximately 600-1000 micro mol m(-2) s(-1)) and O(2) uptake in darkness were measured in needles of control, irrigated and irrigated-fertilized trees of Norway spruce (Picea abies (L.) Karst.). Measurements were made at 20 degrees C and at high CO(2) concentrations. The results suggest that, at given times of the year, a major part of the variation in gross photosynthesis of current-year and one-year-old needles across treatments is associated with differences in needle N content. Furthermore, the rate of O(2) uptake measured after 5 or 10 min in darkness was positively correlated with both the preceding rate of gross O(2) evolution and the N content in fully expanded current-year needles. Measurements of chlorophyll a fluorescence, taken simultaneously with measurements of O(2) evolution in current-year sun needles, showed that Stern-Volmer quenching of minimum fluorescence and the ratio of variable to maximum fluorescence in the dark- and light-adapted state were strongly correlated with the gross rate of O(2) evolution. This suggests that the increased rate of gross photosynthesis in needles of irrigated-fertilized trees was associated with adjustments in the thermal energy dissipation within photosystem II.  相似文献   

10.
【目的】研究叶型对马尾松幼苗生长及叶绿素荧光特征的影响,以期为马尾松苗木选择及栽培提供参考。【方法】以出圃时呈现为全初生条形叶、全次生针形叶和中间型的马尾松1年生幼苗为试验材料,分析其生长指标、光合色素含量及叶绿素荧光参数,研究初生叶和次生叶叶绿素荧光特征差异及对幼苗生长的影响。【结果】全次生叶幼苗出圃时苗木质量指数(QI)、干物质积累量及造林1年后净生长量均显著高于全初生叶幼苗;次生叶的叶长、体积和表面积等指标均显著大于初生叶;初生叶中叶绿素a、叶绿素b和总叶绿素含量均显著高于次生叶,两者间的类胡萝卜素含量无显著差异。初生叶的F_m、F_v/F_m、F_v/F_o均显著高于次生叶,F_o在2种叶型间无显著差异;初生叶的PSⅡ反应中心参数Y(Ⅱ)和F_v’/F_m’、淬灭参数q_P和NPQ、能量耗散参数Y(NPQ)和Y(NO)及光响应参数ETRmax、α、β和I_k也均高于次生叶,在高光强条件下,初生叶的非光化学淬灭和调节性能量耗散能力增强。由于次生针叶叶长、体积和表面积等形态指标均显著大于初生叶,因而具有次生针叶的幼苗的光合作用面积更大,干物质量积累较多,出圃时的苗木质量以及造林后的生长表现均高于全初生叶的幼苗。【结论】与次生叶相比,初生叶拥有较高的叶绿素含量,较耐光抑制,有较高的光能转化效率,但高光强条件下会通过热耗散的形式来减少多余光能对光合系统的损害;拥有次生叶的幼苗表现出较好的苗木质量及生长特性。  相似文献   

11.
Damage by radiative frosts is a major limiting factor for coffee cultivation in southern Brazil (south of 20° S latitude). The use of Mimosa scabrella (bracatinga) as a shade tree, to modify the local energy balance and thus prevent damage to the coffee plants, has been evaluated from 1986 to 1994. The study was carried out near Londrina, Parana State (23°23' S, 51°11′ W). During the experimental period, several radiative frosts with intensity ranging from moderate to very severe occurred at the site. Minimum coffee leaf temperatures during these events were 2 to 4 °C higher in the shaded plots. Due to frost protection, coffee bean yields on the average of 7 harvests were higher on the shaded plots. The potential of this system for frost protection in southern Brazil is discussed.  相似文献   

12.
Effects of chilling-dependent photoinhibition on gas exchange, chlorophyll fluorescence, growth and nutrition of Eucalyptus nitens (Deane and Maiden) Maiden seedlings were assessed for 70 weeks after transplanting 9-month-old seedlings in early winter. One month before transplanting, the seedlings were assigned to fertilized or nutrient-deprived treatments. Immediately after transplanting, half the seedlings in each nutrient treatment were placed in shadecloth tree shelters. The experimental site was at an altitude of 700 m, which is considered marginal for the establishment of E. nitens plantations in Tasmania because of low mean annual minimum temperatures. Overnight frosts followed by sunny morning conditions in the first 20 weeks after transplanting (early June to early October) caused severe photoinhibition. Predawn maximal photochemical efficiency (Fv/Fm) and maximum net photosynthesis (Amax) were depressed in nutrient-deprived seedlings compared with fertilized seedlings, although shading partially alleviated this difference. Neither Fv/Fm nor Amax recovered to values observed before transplanting until > 20 weeks after transplanting. During this period, non-photochemical quenching (NPQ) was high in seedlings in all treatments, although NPQ was lower in shaded, fertilized seedlings than in seedlings in the other treatments. Total foliar nitrogen (N) concentration increased up to 42 weeks after transplanting in the nutrient-deprived seedlings in parallel with increasing relative growth rate (RGR). Fractionation of N- and phosphorus (P)-containing compounds indicated that differences in protein N accounted for the treatment differences in total seedling N. Nucleic acid P increased and inorganic P decreased during growth periods, although total seedling P remained constant. Among treated seedlings, height growth was greatest in shaded seedlings: this was probably a result of apical dominance effects because RGR was higher in unshaded seedlings than in shaded seedlings. Thus, the shade treatment alleviated chilling-dependent photoinhibition and maximized growth during winter, but limited growth during warmer periods and therefore overall growth.  相似文献   

13.
Effects of artificial frosts on light-saturated photosynthesis (A(max)) and ground, maximal and variable fluorescence variables (F(o), F(m), and F(v) and F(v)/F(m)) were monitored on 1-year-old foliage of black spruce seedlings (Picea mariana (Mill.) BSP) grown at high (25 degrees C), moderate (15 degrees C) and low (5 degrees C) temperatures and moderate (240 &mgr;mol m(-2) s(-1)) and low (80 &mgr;mol m(-2) s(-1)) irradiances. Photoinhibition of 1-year-old foliage was greater in seedlings grown in moderate light than in seedlings grown in low light. Photoinhibition increased with decreasing growth chamber temperature at both irradiances. Most changes in F(v)/F(m) were caused by changes in F(v). Exposure to -4 degrees C decreased both F(v)/F(m) and A(max) compared with control values. The effect of the -4 degrees C frost treatment was greater in seedlings grown in low light than in seedlings grown in moderate light, probably because seedlings grown in moderate light were already partially photoinhibited before the frost treatment. Following -4 degrees C treatment, neither F(v)/F(m) nor A(max) recovered in seedlings grown in low light. Light-saturated photosynthesis decreased with decreasing growth chamber temperature. Light-saturated photosynthesis was more sensitive to the -3 and -4 degrees C frost treatments in seedlings grown at 25 degrees C than in seedlings grown at 15 and 5 degrees C. The A(max) of seedlings grown at 15 degrees C was sensitive only to the -4 degrees C frost treatment, whereas A(max) of seedlings grown at 5 degrees C was not sensitive to any of the frost treatments. Recovery of A(max) following frost took longer in seedlings grown at high temperatures than in seedlings grown at low temperatures. For seedlings grown at the same temperature but under different irradiances, both A(max) and F(v)/F(m) reflected damage to the photosynthetic system following a moderate frost. However, for seedlings grown at the same irradiance but different temperatures, A(max) provided a more sensitive indicator of frost damage to the photosynthetic system than F(v)/F(m) ratio.  相似文献   

14.
In a 14-week study, 1-year-old Aleppo pine seedlings were grownin two growth chambers. Seedlings were artificially hardenedby decreasing photoperiod and temperature. In each chamber halfof the seedlings were fertilized with nitrogen (8.4 mg seedling–1).In order to determine the relative importance of the hardeningenvironment versus fertilization, each chamber was programmedto decrease night temperatures down to a low of 8 or 4°C.Chlorophyll fluorescence and frost hardiness was measured fivetimes during the experiment. A sample of seedlings from eachtreatment was exposed to an artificial frost at –5°Cand the freezing effects were assessed by measurements of chlorophyllfluorescence and visual evaluation of needle damage. Seedlingsincreased their frost hardiness during the experiment in allthe treatments but the ratio of variable to maximal chlorophyllfluorescence (Fv/Fm) measured before freezing did not vary duringthe experiment. This indicates that Aleppo pine maintains itsphotosynthetic ability during hardening in contrast to otherconiferous species from colder climates. The effect of nitrogenfertilization on frost hardiness was small in comparison withchamber effect. Nitrogen fertilization slightly delayed theacquisition of hardening in the coldest chamber. Seedlings inthe warmest chamber did not become fully resistant to –5°C,but in the coldest chamber, where night temperature reached4°C, all the seedlings were resistant to the frost. Severedamage caused by frost could be related to a rapid rise of minimalfluorescence (F0) but the best index of damage was the dropof Fv/Fm after freezing.  相似文献   

15.
Eastern larch (Larix laricina [du Roi] K. Koch) container seedlings were tested to determine shoot frost hardiness development under short or long days and warm (15 to 25 °C) or cool (10/5 °C, day/night) temperatures, to aid in the development of greenhouse hardening strategies. Seedlings were sampled sequentially over time (25 seedlings per week) from a population of 1000 trees. Frost hardiness increased significantly after one week of fluctuated over the next 6 weeks, and increased thereafter through week 14. Seven weeks of warm, intermittent short days, followed by 6 weeks of cool, continuous short days, resulted in greater frost hardiness than 13 weeks of warm, intermittent short days. In contrast, seedlings exposed to 7 weeks of warm, intermittent short days, followed by six weeks of warm, long days were significantly less frost hardy. Stems with needles attached had lower Index of Injury than stems without needles.  相似文献   

16.
In the context of climate change, an increased frequency of drought stresses might occur at a regional scale in boreal forests. To assess photosynthetic responses to drought treatment, seedlings of 12 open-pollinated families of white spruce (Picea glauca (Moench) Voss) differing in their growth performance were grown in a controlled environment. Gas exchange and chlorophyll fluorescence parameters as well as shoot xylem water potential (WP) were measured for 21 successive days after watering was stopped. Net photosynthesis decreased as stomatal conductance decreased. Net photosynthesis was not affected by drought until WP reached –2.0 MPa when stomata were closed. Initial fluorescence (F and basic fluorescence after induction (F00) were not affected by drought. A progressive decrease in maximal (Fm) and variable fluorescences (Fv), maximum photosystem II (PS II) efficiency (Fv = Fm), effective quantum yield of PS II (FII), photochemical efficiency of open PS II (Fp), and photochemical quenching (qP) was observed at WP < - 1.0 MPa, whereas non-photochemical quenching (qN) remained high throughout the drought treatment. White spruce families with inferior growth performance showed higher values of Fm, Fv, Fv = Fm, Fp, and qN at WP< - 2.0MPa. The results indicated that chlorophyll fluorescence variables can be used as drought markers in relation to present or predicted climate conditions. These could be used for selecting planting stock adapted to drought periods or dry environments. These markers showed that slow-growing genotypes are better adapted to drought conditions than intermediate or fast-growing genotypes in present and predicted drought conditions.  相似文献   

17.
Photosynthetic response to water stress was analyzed in 1-year-old interior spruce (Picea glauca (Moench) Voss x P. engelmanni Parry hybrid complex) seedlings and emblings produced from somatic embryogenesis. Carbon dioxide uptake, oxygen evolution and chlorophyll fluorescence at 20 degrees C were monitored as predawn shoot water potential (Psi) decreased. Concurrently with stomatal closure, carbon assimilation declined rapidly as Psi decreased to -1.0 MPa. Oxygen evolution at 10,000 micro l CO(2) l(-1) declined continuously as Psi decreased to -1.6 MPa. At photon flux densities (PFD) above 50 micro mol m(-2) s(-1), photochemical efficiency of photosystem (PS) II observed during actinic light exposure (Phi(II), calculated as DeltaF/F(m)') decreased as Psi decreased. At the same PFDs, photochemical quenching (q(P)) declined with decreasing Psi and nonphotochemical quenching (q(N)) increased steadily. At PFDs below 50 micro mol m(-2) s(-1), major decreases in q(N) were not observed until Psi decreased below -1.6 MPa. We identified three phases of photosynthetic response to progressive water stress in interior spruce: a pronounced decline in gas exchange, subsequent photoprotective changes in chlorophyll fluorescence as primary photochemistry was down-regulated, and a decline in photochemical efficiency of dark-adapted needles.  相似文献   

18.
This study examined the variation in the development of naturally regenerated and planted seedlings of Sitka spruce (Picea sitchensis (Bong.) Carr.) within gaps cut in a 32-year-old stand of the same species. The circular gaps were 20 m in diameter and designed to allow sunlight into only half of the gap floor at midsummer given the latitude of 56°45′N. Eight plots (8 m × 3 m) were laid out along a north–south transect through each gap (four within the gap and two each under the closed canopy north and south of the gap). Each plot was sub-divided and seedlings were planted into one part and the other part was left to naturally regenerate. In subsequent seasons, plots were further subdivided into ‘weed free’ and ‘vegetation left untouched’. Results showed that while the two central plots within the gaps had the highest value of canopy openness, the highest accumulated temperature and lowest soil moisture were recorded in plots that received direct sunlight. However, level of germination was significantly higher in the shaded area of the gap than in the part that received direct sunshine suggesting that higher moisture levels in shaded areas are important to successful germination. Minimal germination was recorded in the plots beneath the canopy. Seedling survival was significantly influenced by the influx of competing vegetation, but only in the part of the gaps that received direct sunlight. The success of Sitka spruce regeneration within gaps appears to depend on sufficient moisture and light to support regeneration and early growth, but not too much light to encourage the development of competing vegetation. The permanently shaded areas of the gaps appeared to offer ground conditions with sufficient moisture and light to ensure successful germination and early growth of seedlings, but without excessive competition from other vegetation.  相似文献   

19.
Browsing by large herbivores on planted and naturally regenerated conifer seedlings (Picea abies and Pinus sylvestris) was recorded in 104 clear‐cuts in east‐central Sweden during 1990 and in 47 clear‐cuts in 1991. The number of seedlings browsed and the browsing patterns were analysed in relation to seedling type. Browsing frequencies were also compared between forest stands with different site productivities and subjected to different management practices. The variation in the number of seedlings browsed in 1990 was explained mainly by seedling category. Among both planted and naturally regenerated seedlings, pine was browsed more than spruce. Two‐year‐old containerized seedlings of spruce was browsed more than 4‐yr‐old bare‐rooted spruce. In 1991, browsing was more equal among species and seedling types. Number of seedlings with their leader browsed and the amount of biomass left after browsing differed significantly between seedling types. Seedlings that had been browsed in 1990 experienced significantly higher browsing frequencies in 1991 when compared with unbrowsed seedlings. The effects of stand characteristics were not found to be significant.  相似文献   

20.
Photoinhibition of photosynthesis and photosynthetic recovery were studied in detached needles of cypress (Cupressus sempervirens L.) Clones 52 and 30 under controlled conditions of high irradiation (about 1900 micromol m(-2) s(-1) for 60 min; HL treatment), followed by 60 min in darkness. The degree of photoinhibition was determined based on the ratio of variable to maximum chlorophyll fluorescence (Fv/Fm), which is a measure of the potential efficiency of photosystem II (PSII), and on electron transport measurements. The Fv/Fm ratio declined in needles of both clones in response to the HL treatment. Minimal fluorescence (Fo) increased in HL-treated needles of both clones. The HL treatment decreased rates of whole-chain and PSII activity of isolated thylakoids more in Clone 52 than in Clone 30. In needles of both clones, PSI activity was less sensitive to photoinhibition than PSII activity. In the subsequent 60-min dark incubation, fast recovery was observed in needles of both clones, with PSII efficiencies reaching similar values to those in non-photoinhibited needles. The artificial exogenous electron donors diphenyl carbazide (DPC), hydroxylamine (NH2OH) and manganese chloride (MnCl2) failed to restore the HL-induced loss of PSII activity in needles of Clone 30, whereas DPC and NH2OH significantly restored PSII activity in photoinhibited needles of Clone 52. Quantification of the PSII reaction center protein D1 and the 33-kDa protein of the water-splitting complex following HL treatment of needles revealed pronounced differences between Clone 52 and Clone 30. The large decrease in PSII activity in HL-treated needles was caused by the marked loss of D1 protein and 33-kDa protein in Clone 30 and Clone 52, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号