首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 78 毫秒
1.
黑土区坡耕地施加生物炭对土壤结构与大豆产量的影响   总被引:2,自引:0,他引:2  
为探明黑土区施加生物炭对土壤结构、土壤肥力和作物产量及其可持续性的影响,以东北黑土区3°坡耕地田间径流小区为研究对象,进行了为期4年的观测。2015年按照生物炭的施加量共设置C0(0 t/hm2)、C25(25 t/hm2)、C50(50 t/hm2)、C75(75 t/hm2)、C100(100 t/hm2) 5个处理,2016—2018年分别连续施加等量的生物炭。结果表明:连续4年随施炭量的增加土壤容重呈逐渐降低趋势、孔隙度呈逐渐升高趋势,且施用年限越长,作用越明显;连续4年广义土壤结构系数(GSSI)随施炭量的增加呈先增大后减小的变化趋势,土壤三相结构距离指数(STPSD)呈先减小后增大的变化趋势,均在第2年C50处理取得最大(小)值(98. 31、4. 87),同时土壤三相比最接近理想状态;连续4年大于0. 25 mm的土壤团聚体含量(R0. 25)、平均质量直径(MWD)、几何平均直径(GMD)随施炭量的增加均呈先增大后减小的变化趋势,均在第2年C50处理取得最大值;连续4年土壤速效钾、有机质含量随施炭量的增加逐渐升高,土壤碱解氮和有效磷含量先增加后减小,各年份土壤碱解氮和有效磷含量提高最多的分别为C50(46. 1%、76. 6%)、C50(46. 4%、85. 4%)、C25 (33%、100. 7%)、C25 (23. 9%、103. 2%);连续4年施加生物炭均可提高大豆产量、单株荚数、单株粒数和百粒质量,在第2年C50处理增产最大,增产率为33. 3%,同时产量可持续性最强,产量可持续性特征指数(SYI)为0. 871。  相似文献   

2.
连年施加生物炭对黑土区土壤改良与玉米产量的影响   总被引:1,自引:0,他引:1  
为研究连年施加生物炭对黑土区坡耕地的土壤结构、持水性能、玉米产量及可持续性的影响,从2015年开始,在黑土区3°坡耕地径流小区内,将玉米作为试验作物连续进行4年生物炭效应试验。共设置C0(0 t/hm2)、C25(25 t/hm2)、C50(50 t/hm2)、C75(75 t/hm2)和C100(100 t/hm2) 5种生物炭的施用量处理。结果表明:4年中土壤容重随生物炭的增加有减小的倾向,孔隙度有逐渐增加的倾向;适量生物炭可有效降低土壤固相比例,提高气相和液相比例,除2015年外,连续3年广义土壤结构指数(GSSI)随施炭量的增加先增大后减小,土壤三相结构距离指数(STPSD)随施炭量的增加先减小后增大,均在第3年C50处理达到最优(99.96、0.63),同时土壤三相比偏离值R最小(1.03),三相比最接近理想状态;连续4年大于0.25 mm团聚体含量R0.25、平均质量直径(MWD)和几何平均直径(GMD)随着生物炭的增加有先增加后减小的倾向;连...  相似文献   

3.
黑土区坡耕地连年施加生物炭的最佳模式研究   总被引:1,自引:0,他引:1  
为探讨东北黑土区连续多年施加生物炭的应用效果及其综合影响,寻找最佳的施碳量以及施加年限,于2015年在位于黑龙江省北安市的红星农场开展了生物炭最佳施用模式的研究。按照生物炭的施加量设置Y0(0 t/hm~2)、Y25(25 t/hm~2)、Y50(50 t/hm~2)、Y75(75 t/hm~2)、Y100(100 t/hm~2) 5个处理,每个处理重复两次,连续施加4年(2015—2018年),对土壤理化性质、水土保持效应以及节水增产效应等指标进行观测,建立基于优化遗传算法的投影模型,对指标进行了综合评价。结果表明:随着生物炭施加量、施加年限的增加,土壤容重呈现降低趋势,土壤p H值、土壤碳氮比则呈现上升趋势,且生物炭的累积施加量越大,这种趋势就越明显。Y25、Y50处理下的田间持水率随着施加年限的增加呈现逐年升高趋势,Y75处理则呈现出先升高、后降低的趋势,Y100处理则呈现逐年下降趋势,其中2018年Y25处理下的田间持水率为37. 33%。径流系数与土壤侵蚀量均与施炭量呈现先降低、后升高的趋势,连续施加两年50 t/hm~2生物炭的径流减少效果与抗侵蚀效果最优。连续施加4年25 t/hm2生物炭的玉米产量在所有处理中最高,为10 350 kg/hm~2。水分利用效率(WUE)的最优处理为2015年的Y50,为32. 85 kg/(mm·hm~2)。通过综合评价模型得出,连续3年施加32. 63 t/hm~2生物炭为东北黑土区最佳生物炭施用模式。该研究结果可为生物炭对黑土区土壤改良提供理论依据。  相似文献   

4.
黑土区坡耕地施加生物炭对水土流失的影响   总被引:7,自引:0,他引:7  
为了探索生物炭对黑土区坡耕地的水土保持作用效果,于2015年在东北黑土区典型黑土带上的黑龙江省北安市红星农场3°坡耕地上的径流小区内,开展了不同生物炭施用量(0、25、50、75、100 t/hm~2)对土壤结构、持水性能、径流泥沙控制等影响的试验研究。结果表明:生物炭可有效改善黑土区土壤结构,随着生物炭添加量的增加,土壤容重随之减小,而土壤孔隙度则会明显提高;土壤饱和含水率、田间持水量和土壤储水能力均随生物炭施用量的增加而增加;适当施加生物炭对黑土区坡耕地降雨径流及水土流失具有较好的控制作用,75 t/hm~2处理具有最好的径流泥沙控制效果,其中径流控制效果好于泥沙控制;施加生物炭还可以不同程度地减少黑土区坡耕地土壤养分流失,并可以改善养分的空间分布,4种生物炭用量处理的养分含量不仅在数量上高于对照处理,而且在均匀程度上有较大的改善,减缓了坡度对土壤养分造成的坡上与坡下的差异。研究结果为东北黑土区秸秆资源的高效、绿色、循环利用提供了一条新的途径,可为黑土区坡耕地水土流失防治提供理论依据和技术支撑,对该区农业可持续发展具有重要意义。  相似文献   

5.
黑土坡耕地连续施加生物炭的土壤改良和节水增产效应   总被引:3,自引:0,他引:3  
东北黑土区土壤肥沃、性状优良、适宜作物生长,然而大面积坡耕地的水土流失问题严重威胁着区域生态环境和国家粮食安全。为探明施加生物炭对该区域坡耕地的节水增产效应,以及最优施加量与施加年限,基于田间径流小区进行为期两年的观测试验。2015年,试验根据生物炭施加量设置为C0(0 t/hm2)、C25(25 t/hm2)、C50(50 t/hm2)、C75(75 t/hm2)和C100(100 t/hm2)5个处理;2016年,各处理分别连续施加等量生物炭。试验结果表明:施加两年生物炭均降低了土壤容重、提高了孔隙度和有机碳密度,且随施加量的增加效果越显著;2015年实测田间持水量随生物炭施加量呈上升的趋势,2016年则呈先升后降的趋势,上升至C50处理达到最佳;2016年C50处理土壤三相比较合理,广义土壤结构指数(GSSI)高于其他处理;连续两年施加生物炭均减少了3°坡耕地的年径流量,各年份年径流系数降低最多的分别为C75(15.44%)和C50(17.27%)处理。适量生物炭也可增加单次降雨后雨水蓄积量和其随时间下降的速率和幅度;2015年和2016年大豆产量最高的处理分别是C75和C50,增产率分别为27.16%和28.17%。比较2015年和2016年试验结果,连续两年施加50 t/hm2生物炭时,大豆水分利用效率较对照处理增幅最高,为27.67%,节水增产效果最佳。  相似文献   

6.
施加生物炭对黑土区坡耕地改土培肥效应的持续影响   总被引:8,自引:0,他引:8  
为探明施加生物炭对黑土坡耕地的持续影响,以东北黑土区1.5°、3°、5°的坡耕地田间径流小区为研究对象,对土壤结构及其养分进行为期4年的观测。于2016年试验开始前,按75 t/hm2一次性施加玉米秸秆生物炭,各坡度均设置不施加生物炭的对照组,共计6个小区,后续年份不再施加生物炭。结果表明,单次施加生物炭能够提高土壤气相、液相比例,提高通气性和持水能力,改善土壤三相比例,较对照组土壤孔隙度提高2.83%~5.56%,土壤容重降低1.89%~3.62%。施炭后土壤中有机质、铵态氮、速效钾含量显著提高,分别提高9.54%~18.21%、21.35%~28.02%、11.99%~22.71%。各项指标均随着时间的推移有所降低。采用随机森林回归模型评估得出综合肥力等级指数,并拟合回归方程预测2020—2022年等级指数,比较肥力变化情况得出单次施用生物炭对培肥土壤作用的有效年限为6~7年。  相似文献   

7.
生物炭对黑土区坡耕地水土保持及大豆增产效应研究   总被引:1,自引:0,他引:1  
针对东北黑土区坡耕地水土流失严重,农业用水量不足的问题,研究生物炭对该地区的水土保持及作物增产效应,并寻求最优生物炭施用量。2015年,以黑龙江农垦北安分局红星农场3°坡耕地为研究对象,研究不同生物炭施用量对大豆生育期土壤水分动态、表径流、土壤侵蚀、产量和作物水分利用效率的影响。结果表明,生物炭对坡耕地水土保持及大豆节水增产有较好的效果,其中对于水土保持方面,生物炭施用量越高,水土保持效果越好;而对于大豆产量与水分利用效率方面,则生物炭施用量为75 t/hm~2的处理效果最为明显。  相似文献   

8.
为了研究黑土区施加生物炭的施用模式,以东北黑土区3°坡耕地田间径流小区为研究对象,进行了为期3年的观测。2015年按照生物炭的施加量共设置C0(0 t/hm~2)、C25(25 t/hm~2)、C50(50 t/hm~2)、C75(75 t/hm~2)、C100(100 t/hm~2)5个处理,2016、2017分别连续施加等量的生物炭。分析了黑土区连续3年施加生物炭后土壤理化性质、水土保持效应、节水增产效应等指标的变化规律,并建立改进的TOPSIS模型对生物炭的施用模式进行综合评价。结果表明:土壤有机碳密度、p H值与施炭量均呈线性递增趋势,土壤容重与施炭量呈线性递减趋势,且使用年限越久,作用越明显;施用1年时田间持水量与施炭量呈线性递增趋势,C100处理田间持水量最大,为35.48%,连续施用2年、3年时田间持水量与施炭量呈先增后减的二次抛物线变化,均在C50处理达到最大,分别为36.20%、36.24%;3年的年径流量和年土壤侵蚀量与施炭量均呈先减后增的二次抛物线变化,连续施加2年50 t/hm~2的生物炭减流效果和抗土壤侵蚀效果最优;连续3年施加生物炭均提高了大豆产量和水分利用效率,各年份产量和水分利用效率提高最大的分别为C75(27.16%、25.3%)、C50(33.3%、27.6%)、C50(24.1%、19.8%);在不同施炭量和施用年限的条件下,改进的TOPSIS模型能客观、清晰地描述土地生产力变化过程,并总结出建议的生物炭施用模式,即连续施加2年50 t/hm~2的生物炭对土地生产能力的提升最优,其次是施加1年75 t/hm~2的生物炭。研究结果可为实际生产提供理论依据。~2  相似文献   

9.
为探究黑土区坡耕地不同生物炭应用模式(不同生物炭施用量和施用年限)的综合效益,以东北黑土区坡度为3°耕地径流小区为研究对象,于2015—2018年,设置不加生物炭的常规处理(C0)和生物炭施加量分别为25 t/hm2(C25)、50 t/hm2(C50)、75 t/hm2(C75)、100 t/hm2(C100)共5个处理,分析不同施炭量以及施炭年限的综合效益,结果表明:在生态效益方面,生物炭能够有效改善土壤结构、增强土壤肥力、提高土壤蓄水保土能力,在施炭量为50 t/hm2时,连续施用2年,土壤蓄水保土效果最佳;连续施用3年,土壤结构最为理想;施炭量为100 t/hm2时,连续施用4年,土壤肥力最佳。在经济效益方面,生物炭能够有效提高作物节水增产性能及其经济产值,施用1年、施炭量为75 t/hm2时,水分利用效率最大;连续施用2年、施炭量为25 t/hm2时,生物炭边际生产力最大,施炭量每增加1 t,产量增加1...  相似文献   

10.
生物炭对黑土区土壤水分及其入渗性能的影响   总被引:8,自引:0,他引:8  
为探究黑土区施用生物炭对土壤水分及其入渗性能影响的持续性,2016—2018年连续3年在东北黑土区进行了单次施加生物炭(75 t/hm~2,BC处理)和不施加生物炭(CK处理)的室内外对比试验,分析各土层土壤含水率及土壤水分入渗过程。结果表明:施加生物炭可增加各土层土壤含水率,使其极值比K_a和变异系数C_v减小,且土壤含水率、K_a、C_v的变化幅度均随生物炭施用年限增加而减弱,2016—2018年苗期耕层土壤含水率增加最多,分别增加了14.54%、11.48%和7.08%;施加生物炭明显增大了土壤累积入渗量、土壤入渗速率,增强了土壤入渗能力,促进了湿润锋的运移,各年份BC处理土壤累积入渗量由大到小依次为2016年、2017年、2018年,初始入渗速率f_1分别增加了70.48%、58.98%和48.41%,土壤稳定入渗速率f_c由大到小依次为2016年BC处理(1.65 mm/min)、2017年BC处理(1.22 mm/min)、2018年BC处理(1.17 mm/min)、2016年CK处理(0.46 mm/min)、2017年CK处理(0.43 mm/min)和2018年CK处理(0.38 mm/min);2016—2018年中,2016年BC处理湿润锋运移距离最深(32.24 mm),各表征土壤入渗性能的指标均于生物炭施用当年效果最优,而后逐年减弱;土壤累积入渗量与时间具有幂函数关系,湿润锋运移距离与时间具有三次函数关系,R~2均在0.963~0.998之间;Philip、Kostiakov、Horton 3个入渗模型拟合对比结果表明,Kostiakov模型R~2最高(0.946~0.991)、RMSE最小(0.516~1.941 mm/min),拟合参数与实际情况相符,故本研究中Kostiakov模型拟合的土壤水分入渗过程最优。本研究可为东北黑土区施加生物炭后改良土壤水分入渗过程提供理论依据。  相似文献   

11.
生物炭对坡耕地土壤肥力和大豆产量的影响与预测   总被引:2,自引:0,他引:2  
为探究施用生物炭对东北黑土区不同坡度坡耕地土壤肥力和大豆产量影响的持续性,于2016—2018年在3种典型坡度的坡耕地上开展生物炭持续效应试验,分析施加生物炭对土壤团聚体及其稳定性、土壤养分指标、大豆产量及其构成要素影响的持续性,并采用改进的灰色理论预测模型对大豆产量进行预测,进而确定生物炭一次性施入后的增产作用年限。结果表明:施用生物炭使土壤团聚体直径d 0. 25 mm的土壤团聚体含量明显减少、d 0. 25 mm的土壤大团聚体含量显著增加;施用生物炭使大于0. 25 mm的水稳性团聚体含量比例R0. 25、平均质量直径(MWD)和几何平均直径(GMD)增加,使土壤不稳定团LT粒指数E_(LT)减小,即土壤团聚体稳定性提高,该稳定性增强幅度随坡度增大、施炭后时间延长而减小;施加生物炭使土壤pH值、铵态氮、速效钾、有机质含量这4个指标显著增加(P 0. 05),最大增长率分别为17. 88%、27. 23%、20. 31%、17. 51%,施炭后土壤养分等级有所上升,土壤肥力增强,增强效果与施炭后年限呈负相关,但生物炭对有效磷含量并无明显影响;施加生物炭后,大豆单株荚数、单株粒数、百粒质量、产量均显著提高(P 0. 05),增产率高达26. 29%,并且坡度越大、施炭年限越长,各指标增加幅度越小,各因素对大豆产量影响由大到小依次为施炭与否、坡度、施炭后年限;改进的多变量灰色预测模型精度较高,预测单次施用生物炭后大豆增产有效时间为5~6年。研究结果可为东北黑土区生物炭应用提供理论依据。  相似文献   

12.
通过盆栽实验,研究了黑土中施加不同含量生物炭对大豆生长状况、产量及土壤肥力的影响,实验共设5个处理:不添加生物炭(CK),每1kg干土加生物炭10g(C10)、20g(C20)、30g(C30)、40g(C40)和50g(C50)。结果表明:适量生物炭可促进大豆生长并提高大豆产量,提高水分利用效率,与CK相比,C10处理苗期对株高、茎粗的增幅最大,C20处理花期、结荚期和鼓粒期株高、茎粗及叶面积的增幅最大,C10、C20和30处理产量分别提高11%、28%和11%,其中C20处理的产量增幅最大。施加生物炭处理可增大黑土pH值,并提高土壤肥力,随着生物炭含量的增大,土壤肥力有增高趋势,C50处理的有机质、碱解氮、有速磷、速效钾增幅最大,分别为42%、45%、285%和363%。综合看来,C20处理对大豆生长有利,C50对土壤肥力提高幅度最大。  相似文献   

13.
为探究一次性施加生物炭后对黑土区坡耕地生产力的可持续效应,以东北黑土区3°坡耕地径流小区为研究对象,设置CK(不施用生物炭)和BC(2016年施用75 t/hm~2生物炭,2017、2018年不再施用生物炭)两个处理,于2016—2018年开展了试验研究。结果表明:一次性施入生物炭3年内,土壤容重显著降低(P0.05),第1年降低最明显,为3.87%,孔隙度和总有机碳、铵态N、有效P、速效K含量显著提高(P0.05),p H值则是施炭后前两年显著提高(P_(2016)=0.034、P_(2017)=0.038),分别提高了0.9、0.6,第3年与未施炭处理无显著差异(P_(2018)=0.067);施用生物炭显著提升了土壤的持水能力和保水保土性能,土壤饱和含水率、田间持水率、凋萎系数均显著提高(P0.05),最大增长率分别为5.58%、4.78%、7.29%,年径流深和土壤侵蚀量显著降低(P0.05),年径流深最大减少量为4.92 mm,土壤侵蚀量最大减小率为5.71%;大豆产量和水分利用效率显著提高(P0.05),最大增长率分别为29.01%、16.92%。但生物炭对土地生产力的持续效应逐年减弱,随着生物炭施用年限的延长,BC处理土壤容重线性递增,p H值和总有机碳含量呈幂函数递减,孔隙度和铵态N、有效P、速效K含量线性递减,饱和含水率、田间持水率、凋萎系数线性递减,年径流深和土壤侵蚀量线性递增,大豆产量和水分利用效率分别呈幂函数递减和线性递减。采用改进的TOPSIS(Technique for order preference by similarity to an ideal solution)模型和GM(1,1)模型测算并预测土地生产力指数,结果显示,BC处理的土地生产力指数均高于CK处理,但其值逐年下降,预计到2021年与CK处理十分接近,表明一次性施用75 t/hm~2生物炭对土地生产力的影响可持续5~6年。研究结果可为东北黑土区生物炭应用提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号