首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Indoxacarb (DPX-MP062) is a recently introduced oxadiazine insecticide with activity against a wide range of pests, including house flies. It is metabolically decarbomethoxylated to DCJW. Selection of field collected house flies with indoxacarb produced a New York indoxacarb-resistant (NYINDR) strain with >118-fold resistance after three generations. Resistance in NYINDR could be partially overcome with the P450 inhibitor piperonyl butoxide (PBO), but the synergists diethyl maleate and S,S,S-tributyl phosphorothioate did not alter expression of the resistance, suggesting P450 monooxygenases, but not esterases or glutathione S-transferases are involved in the indoxacarb resistance. Conversely, the NYINDR strain showed only 3.2-fold resistance to DCJW, and this resistance could be suppressed with PBO. Only limited levels of cross-resistance were detected to pyrethroid, organophosphate, carbamate or chlorinated hydrocarbon insecticides in NYINDR. Indoxacarb resistance in the NYINDR strain was inherited primarily as a completely recessive trait. Analysis of the phenotypes vs. mortality data revealed that the major factor for indoxacarb resistance is located on autosome 4 with a minor factor on autosome 3. It appears these genes have not previously been associated with insecticide resistance.  相似文献   

2.
The mechanisms of resistance to the chitin synthesis inhibitor diflubenzuron were investigated in a diflubenzuron-selected strain of the house fly (Musca domestica L.) with > 1000 × resistance, and in an OMS-12-selected strain [O-ethyl O-(2,4-dichlorophenyl)phosphoramidothioate] with 380 × resistance to diflubenzuron. In agreement with the accepted mode of action of diflubenzuron, chitin synthesis was reduced less in larvae of the resistant (R) than of a susceptible (S) strain. Cuticular penetration of diflubenzuron into larvae of the R strains was about half that of the S. Both piperonyl butoxide and sesamex synergized diflubenzuron markedly in the R strains, indicating that mixed-function oxidase enzymes play a major role in resistance. Limited synergism by DEF (S,S,S-tributyl phosphorotrithioate) and diethylmaleate indicated that esterases and glutathione-dependent transferases play a relatively small role in resistance. Larvae of the S and R strains exhibited a similar pattern of in vivo cleavage of 3H- and 14C-labeled diflubenzuron at N1C2 and N1C1 bonds. However, there were marked differences in the amounts of major metabolites produced: R larvae metabolized diflubenzuron at considerably higher rates, resulting in 18-fold lower accumulation of unmetabolized diflubenzuron by comparison with S larvae. Polar metabolites were excreted at a 2-fold higher rate by R larvae. The high levels of resistance to diflubenzuron in R-Diflubenzuron and R-OMS-12 larvae are due to the combined effect of reduced cuticular penetration, increased metabolism, and rapid excretion of the chemical.  相似文献   

3.
The mechanisms of resistance and cross resistance to the juvenoids methoprene and R-20458 in the house fly, Musca domestica, were examined. Radiolabeled methoprene was found to be metabolized faster in resistant and cross-resistant house fly larvae than in susceptible larvae, and methoprene and R-20458 penetrated more slowly into larvae of the resistant strain. In vivo and in vitro metabolism of methoprene was largely by oxidative pathways followed by conjugation in all strains examined, and little or no ester change of methoprene was noted in vitro. In vitro oxidative metabolism of methoprene, R-20458, juvenile hormone I, and several model substrates was higher in resistant and cross-resistant larvae than in susceptible larvae. Juvenoid functionalities susceptible to metabolic attack by resistant strains are indicated.  相似文献   

4.
Neonicotinoids play an essential role in the control of house flies Musca domestica. The development of neonicotinoid resistance was found in two field populations. 766b was 130- and 140-fold resistant to imidacloprid and 17- and 28-fold resistant to thiamethoxam in males and females, respectively. 791a was 22- and 20-fold resistant to imidacloprid and 9- and 23-fold resistant to thiamethoxam in males and females, respectively. Imidacloprid selection of 791a increased imidacloprid resistance to 75- and 150-fold in males and females, respectively, whereas selection with thiamethoxam had minimum impact. Neonicotinoid resistance was in all cases suppressed by PBO. The cytochrome P450 genes CYP6A1, CYP6D1 and CYP6D3 were constitutively over-expressed in resistant strains and CYP6D1 and CYP6D3 differentially expressed between sexes. The highest level of CYP6A1 expression was observed in both gender of the imidacloprid-selected strain after neonicotinoid exposure. CYP6D1 expression was increased after neonicotinoid exposure in resistant males. CYP6D3 expression was induced in both sexes upon neonicotinoid exposure but significantly higher in females.  相似文献   

5.
A housefly strain, originally collected in 1998 from a dump in Beijing, was selected with beta-cypermethrin to generate a resistant strain (CRR) in order to characterize the resistance and identify the possible mechanisms involved in the pyrethroid resistance. The resistance was increased from 2.56- to 4419.07-fold in the CRR strain after 25 consecutive generations of selection compared to a laboratory susceptible strain (CSS). The CRR strain also developed different levels of cross-resistance to various insecticides within and outside the pyrethroid group such as abamectin. Synergists, piperonyl butoxide (PBO) and S,S,S-tributyl phosphorotrithioate (DEF), increased beta-cypermethrin toxicity 21.88- and 364.29-fold in the CRR strain as compared to 15.33- and 2.35-fold in the CSS strain, respectively. Results of biochemical assays revealed that carboxylesterase activities and maximal velocities to five naphthyl-substituted substrates in the CRR strain were significantly higher than that in the CSS strain, however, there was no significant difference in glutathione S-transferase activity and the level of total cytochrome P450 between the CRR and CSS strains. Therefore, our studies suggested that carboxylesterase play an important role in beta-cypermethrin resistance in the CRR strain.  相似文献   

6.
The field strain of Anopheles stephensi, the main malaria vector in south of Iran, was colonized in laboratory and selected with DDT and dieldrin in two separate lines for 3 generations to a level of 19.5- and 14-fold for DDT and dieldrin resistance, respectively. Synergist tests with chlorofenethol (DMC) and piperonyl butoxide (PBO) on the selected strains indicated that dehydrochlorination and oxidative detoxification might be the underlying mechanisms involved in the resistance to dieldrin and DDT in selected strains. DDT selection decreased susceptibility to DDT and pyrethroids including lambdacyhalothrin, permethrin deltamethrin and cyfluthrin. The result also showed that selection with dieldrin caused negative and positive cross-resistance to pyrethroid and fipronil, respectively. Based on these results, it can be concluded that besides metabolic resistance mechanisms, other factors such as mutation in γ aminobutyric acid (GABA) and voltage-gated sodium channels (Kdr) might be involved.  相似文献   

7.
Glutathione transferases have been purified to a high degree of homogeneity from three strains of house fly by a procedure involving affinity chromatography on glutathione-sulfobromophthalein conjugate immobilized on Sepharose 4B, followed by preparative isoelectrofocusing. The affinity chromatography yielded purifications of between about 10- and 100-fold, depending on the strain and the substrate with which activity was measured. Each strain was shown to possess several proteins with glutathione S-transferase activity which fell into two clearly defined groups. The first group, of relatively low isoelectric point, showed activity with CDNB but little with DCNB, p-nitrobenzylchloride, or 1,2-epoxy-3-(p-nitrophenoxy)propane, whereas the second group, of higher isoelectric points, showed substantial activity with all substrates tested. Studies on the subunit structure of these enzymes demonstrated the existence of three different sized subunits of Mr 20,000, 22,000, and 23,500. From the experimental evidence recorded here, the existence of at least three functionally different glutathione transferases is inferred.  相似文献   

8.
To assess the feasibility of pyrethroids for rice insect control, we examined susceptibilities of six field populations of rice stem borer Chilo suppressalis (Walker) to 10 pyrethroids using the topical application method in laboratory in 2004 and 2005. Our results showed that the seven pyrethroids with high fish-toxicity (i.e., β-cyfluthrin, λ-cyhalothrin, β-cypermethrin, deltamethrin, S-fenvalerate, α-cypermethrin, and fenpropathrin) were more effective against C. suppressalis than the three compounds with low fish-toxicity (i.e., cycloprothrin, etofenprox, and silafluofen). The results also showed that all 10 of the pyrethroids were much more effective than methamidophos and monosultap for C. suppressalis control. In addition, we found that susceptibilities of some field populations of C. suppressalis to some high fish-toxicity pyrethroids were significantly reduced, and our results indicated that a Ruian (RA) field population showed a year-to-year variation in susceptibility to most tested pyrethroids between 2004 and 2005. Our data indicated that the tolerance levels increased dramatically in RA population, especially to β-cyfluthrin and deltamethrin. This study provided the first assessment of resistance to pyrethroids in field populations of C. suppressalis. In addition, a close correlation between resistance ratios to the 10 compounds and differences of the structures of these compounds was established in the RA05 population, which was resistant to most of the pyrethroids tested while it was still very susceptible to fenvalerate with no cross resistance. Finally, the feasibility and precaution were discussed in selecting pyrethroids as alternatives to replace high toxicity organophosphates for C. suppressalis control and insecticide resistance management.  相似文献   

9.
The kinetics of accumulation and elimination of lethal doses of [14C]carbofuran in the hemolymph of the house fly suggest a one-compartment open model. Carbofuran in the hemolymph appeared to be in equilibrium with that in the tissues very soon after treatment.Following topical application of carbofuran, the rate of onset of symptoms of poisoning was correlated with the amount of carbofuran in the hemolymph, and the onset of convulsions only occurred after the concentration of carbofuran in the hemolymph reached μM levels. This value correlated well with neurobioassays of known concentrations of carbofuran perfused in saline onto the isolated thoracic ganglion.Following topical doses, carbofuran concentration in the hemolymph reached a peak within an hour and then gradually declined. At an LD60 dose, the initial decline in carbofuran concentration in the hemolymph over time was significantly slower than the decline after an LD10 dose, suggesting saturation kinetics.Hemolymph was collected from house flies for up to 3 hr following topical application of toxic amounts of carbofuran. Thereafter, hemolymph volume decreased and blood samples could not be collected. Curiously, hemolymph samples could be collected for 5 hr from house flies that were injected with toxic doses of carbofuran.  相似文献   

10.
The characteristics of a new high-level, field-derived resistance to pyrethroids in Tribolium castaneum (Herbst) were investigated using impregnated-paper and treated-grain assays. Piperonyl butoxide almost completely suppressed the resistance, suggesting that the major resistance mechanism was microsomal oxidation. Resistance extended to all pyrethroids tested and to carbaryl but not to organophosphorus insecticides or to methoprene. Resistance was strongest against α—CN phenoxybenzyl cyclopropanecarboxylate pyrethroids and was correlated with structural modifications of the pyrethroid molecule, results also consistent with oxidative resistance. This resistance will ultimately result in failures to control T. castaneum if pyrethroids, such as deltamethrin, cypermethrin or cyfluthrin, are used in the field, even if they are synergised with piperonyl butoxide. The resistance does not jeopardise organophosphorus materials (e.g. fenitrothion, chlorpyrifos-methyl, pirimiphos-methyl, methacrifos) or methoprene.  相似文献   

11.
12.
Samples of 24 house fly (Musca domestica L.) populations were collected from animal farms in Hungary in 1990 and kept in the laboratory to determine their susceptibility to different types of insecticide: organochlorines, organophosphates, carbamates, pyrethroids, macrocyclic lactone and insect growth regulators. The adulticides were tested with topical bioassay in all 24 populations, the larvicides were studied with treated larval medium in 16 populations. The data were expressed as LD50 and LC50 values (ng fly ?1 and mg kg ?1 larval medium respectively). The percentages of populations which had resistance ratios > 10 at LD50 or LC50 were: 63% to DDT, 50% to methoxychlor, 13% to lindane, 83% to malathion, 63% to trichlorfon, 4% to propetamphos, 96% to dioxacarb, 46% to propoxur, 4% to methomyl, 13% to pyrethrum, 96% to bioresmethrin, 63% to permethrin, 58% to cypermethrin, 79% to SK-80, 79% to deltamethrin, 38% to invermectin, 0% to diflubenzuron, 0% to cyromazine. Correlation analysis showed a high degree of positive correlation among the adulticides except for ivermectin, bioresmethrin and SK-80. No cross-resistance was found between the larvicides and the conventional adulticides. Differences of insecticide resistance levels among the populations surveyed were studied by principal component and factor analysis. A fairly good relationship between resistance status and control practices used on farms was revealed. The populations originating from those farms where the application of adulticides had been frequent or regular and where high resistance was shown to most chemicals could be separated from the others.  相似文献   

13.
14.
Insecticides have been extensively used for house fly control in China, with dichlorvos and deltamethrin being widely used. Knowledge about the current status of insecticide resistance and the underlying genetic changes is crucial for developing effective fly control strategies. The susceptibility to dichlorvos and deltamethrin, and the frequencies of genetic mutations involved in insecticide resistance were studied in five field populations of the house fly collected across China. Bioassay results show that flies exhibit 14- to 28-fold resistance to dichlorvos and 41- to 94-fold resistance to deltamethrin, indicating that dichlorvos and deltamethrin resistance are common in house fly populations in China. Molecular analysis reveals that flies from the five various locations carry resistance alleles at multiple loci and have diverse allelic types, different relative frequencies and combinations of each allele. Four non-synonymous single nucleotide polymorphisms (SNPs) (i.e. V260L, G342A/V, F407Y) in acetylcholinesterase (Ace) and two mutations (W251L/S) in a carboxylesterase (MdαE7) were commonly present in the field house flies. The L1014H rather than L1014F mutation in the voltage sensitive sodium channel gene (Vssc) was widely distributed in Chinese house flies. CYP6D1v1, which confers pyrethroid resistance, was found in all the five tested populations in China, although its frequency in house fly from Shandong province was very low. Our results suggest that resistance monitoring and management of house flies should be customized for a given location.  相似文献   

15.
Knockdown resistance (kdr) is a target-site resistance mechanism that confers nerve insensitivity to DDT and pyrethroid insecticides. In the housefly, Musca domestica, molecular cloning of the para-type sodium channel gene has revealed two amino acid mutations that are associated with kdr and super-kdr resistance phenotypes. Both mutations are located in the domain II region of the channel; Leu1014 to Phe in the hydrophobic segment IIS6 and Met918 to Thr in the IIS4-IIS5 linker. To investigate whether these mutations also occur in other insects, we have designed degenerate primers based on conserved sequences in the domain II region of the sodium channel and used these to PCR amplify this region from insecticide-susceptible strains of eight diverse insect species representing four different insect Orders: Helicoverpa armigera, Plutella xylostella, Spodoptera littoralis (Lepidoptera), Blattella germanica (Dictyoptera), Tribolium castaneum (Coleoptera), Myzus persicae, Aphis gossypii and Phorodon humuli (Hemiptera). The primers amplified closely related para-type sodium channel sequences from each insect with a minimum of 85% amino acid identity between species. All of the sequences contained ‘susceptible’ Leu and Met residues at the positions associated with kdr and super-kdr resistance in the housefly. Recent results detailing the presence of a kdr-type Leu to Phe mutation in pyrethroid-resistant strains of two important agricultural pests, P. xylostella and M. persicae, are discussed. ©1997 SCI  相似文献   

16.
17.
The extensively studied para gene encodes a α-subunit of the voltage-activated sodium channel in Drosophila melanogaster, which is the documented target site of DDT and pyrethroid insecticides. The parats-1 fruit fly line carries a recessive sex-linked insecticide-resistance trait (parats-1 allele) that has been defined on the basis of the behavioral phenotype of temperature-sensitive paralysis. We have determined that parats-1 confers hyper-susceptibility to deltamethrin in addition to the previously annotated resistance to DDT, revealing the presence of negative cross-resistance. We investigated the potential use of negative cross-resistance shifting parats-1 gene frequencies in D. melanogaster populations. After five generations of selection, the parats-1 allele, respectively, became more or less frequent whether Drosophila populations were selected with DDT or deltamethrin.  相似文献   

18.
Pollen beetle, Meligethes aeneus F. (Coleoptera: Nitidulidae) is a major univoltine pest of oilseed rape in many European countries. Winter oilseed rape is cultivated on several million hectares in Europe and the continuous use of pyrethroid insecticides to control pollen beetle populations has resulted in high selection pressure and subsequent development of resistance. Resistance to pyrethroid insecticides in this pest is now widespread and the levels of resistance are often sufficient to result in field control failures at recommended application rates. Recently, metabolic resistance mediated by cytochrome P450 monooxygenases was implicated in the resistance of several pollen beetle populations from different European regions. Here, we have also investigated the possible occurrence of a target-site mechanism caused by modification of the pollen beetle para-type voltage-gated sodium channel gene. We detected a single nucleotide change that results in an amino acid substitution (L1014F) within the domain IIS6 region of the channel protein. The L1014F mutation, often termed kdr, has been found in several other insect pests and is known to confer moderate levels of resistance to pyrethroids. We developed a pyrosequencing-based diagnostic assay that can detect the L1014F mutation in individual beetles and tested more than 350 populations collected between 2006 and 2010 in 13 European countries. In the majority of populations tested the mutation was absent, and only samples from two countries, Denmark and Sweden, contained pollen beetles heterozygous or homozygous for the L1014F mutation. The mutation was first detected in a sample from Denmark collected in 2007 after reports of field failure using tau-fluvalinate, and has since been detected in 7 out of 11 samples from Denmark and 25 of 33 samples from Sweden. No super-kdr mutations (e.g. M918T) known to cause resistance to pyrethroids were detected. The implications of these results for resistance management strategies of pollen beetle populations in oilseed rape crops are discussed.  相似文献   

19.
Genetic and biochemical factors leading to resistance to various organophosphate (OP) based insecticides were studied in lines selected for OP-resistance in the oriental fruit fly Bactrocera dorsalis. Lines were separately selected for resistance to naled, trichlorfon, fenitrothion, fenthion, formothion, and malathion. Overall, these lines showed increased resistance ratios ranging from 13.7- to 814-fold relative to a susceptible (S) line. Also, in these newly selected lines the same three point mutations in the ace gene, previously identified in resistance studies and designated as I214V, G488S and Q643R, were found. As expected, the enzyme from the resistant lines showed lower overall activity and reduced sensitivity to inhibition by fenitrothion, methyl-paraoxon and paraoxon compared to the wild type acetylcholinesterase (AChE) enzyme. The apparent Vmax values for esterase from the resistant lines were 1.2-3.69 times higher than that of the S line. Although only the naled-, trichlorfon- and fenthion-r lines showed lower esterase affinities (based on apparent Km values) compared with the S line, all of the Vmax/Km ratios were higher in the resistant lines compared to that of the S line. The OP-resistant lines also displayed an overall similar pattern of isozyme expression, except for one additional band found only in the naled-r line and one band that was absent in the trichlorfon-, malathion-, and fenthion-r lines. Our results also show that overall, multiple examples of high OP resistance in selected lines of B. dorsalis exhibiting the same genetic alterations in the ace gene seen previously resulted in different effects on esterase enzyme activity in relation to various OP compounds.  相似文献   

20.
δ-Aminolevulinic acid synthetase (ALA synthetase EC 2.3.1.37) is the initial and rate-limiting enzyme in the biosynthetic pathway leading to heme and cytochrome formation in animals. The occurrence of ALA synthetase in house fly mitochondria was established and its possible relationship to oxidative resistance to insecticides was investigated.Levels of ALA synthetase in five house fly strains were measured and compared with levels of microsomal oxidases and cytochrome P-450 in the same strains. ALA synthetase was elevated in those strains with elevated levels of microsomal oxidases and cytochrome P-450 and was highest in the strain with the highest levels of microsomal oxidases and P-450. A possible regulatory role for ALA synthetase in relation to oxidative resistance to insecticides in the house fly is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号