首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Absorption of four triazine herbicide analogs [ametryn (2-(ethylamino)-4-(isopropylamino)-6-(methylthio)-s-triazine), atrazine (2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine), atratone (2-methoxy-4-(ethylamino)-6-(isopropylamino)-s-triazine), and hydroxyatrazine (2-hydroxy-4-(ethylamino)-6-(isopropylamino)-s-triazine)] was compared using excised corn (Zea mays L.) root segments and isolated corn root protoplasts. The tissue absorbed ametryn, atrazine, and atratone for only 20 min. Ametryn and atrazine permeated tissue to passive equilibrium with the ambient solution in 10 min. Atratone permeated to 65 and 82% of passive equilibrium in 10 and 30 min, respectively. In contrast, hydroxyatrazine concentration in tissue was only 15 and 70% of the ambient concentration at 30 min and 24 hr, respectively. However, hydroxyatrazine permeated frozen/thawed tissue to 90% of passive equilibrium in 10 min. Protoplast absorption of ametryn and atratone was complete in 10 sec; hydroxyatrazine absorption by protoplasts did not reach a plateau until 5 min. Protoplasts absorbed the triazines to greater than passive equilibrium. Three kinetically homogeneous pools were detected for ametryn, atrazine, and atratone, whereas elution of hydroxyatrazine produced four pools. The three pools for atrazine were confounded by metabolism of atrazine to hydroxyatrazine. Pools for the triazines could not be identified as the free space, cytoplasm, and vacuole as proposed previously for mineral ions. Although the plasma membrane impeded diffusion of hydroxyatrazine, all analogs penetrated into the symplast.  相似文献   

2.
Summary. The herbicides studied were 2,4-D, 2,4-DB, dicamba and orthoarsenic acid. Herbicide content in the roots was taken as an overall measure of penetration into and absorption by the leaves, and of translocation to the roots.
A significantly greater 2,4-D content resulted from foliar application at pH 3–5 than at higher values, though at pH 8–5 the inclusion of triethanolamine significantly increased the 2,4-D content. No evidence was obtained that a greater 2,4-D content should result from foliage applications of 2,4-DB than from 2,4-D. Dicamba gave a greater herbicide content than 2,4-D when applied at high concentration at 20° C but not at 25° C, probably because of less injury at the lower temperature.
Concentrations of Tween 20 up to 2% had no deleterious effect on the 2,4-D content; on the other hand 2,4-D content was lowered by 0–25% or more of cetyltrimethyl-ammonium bromide. Poor wetting is not the cause of the variable herbicide contents sometimes obtained.
Orthoarsenic acid, which has given better control of the weed than 2,4-D, was very poorly translocated; its effectiveness is due to its high intrinsic toxicity.
Etudes sur la teneur en herbicide des racines de Chondrilla juncea L. á la suite d'applications sur les feuilles  相似文献   

3.
Experiment conducted in the glasshouse with water hyacinth plants in pots revealed that 3h.after spraying parquet or 2.4-D at recommendeb herbicida rates, 43 to 53, of the herbicide is found in the plants and the rest is present in the water culture Out of the total [14Clparaquat applied,38,9,8·8. 32 and 0.9% was found in the leaf blads. petioles, underwater foliage and roots respectively. The corresponding values for [14C]2, 4-D were 320. 94. 13 and 0.2% As the time interval after spraying increased, a greater accumulation of herbicide in the under-water parts was evident A net loss of 14 and 60%. of the applied 2,4-D was recorded 1 and 2 weeks after spraying respectively the rate of paraquat loss from the plant water system was similar to 2,4-D. Absorption of [14C]2,4-D from the culture solution by the roots and the floats of the water hyacinth was. evident Translocation of root-absorbed 2, 4-D into the meristematic folrar parts was dernonstrated If the substrates was treated with 2,4-D.a minimal concentration of 1 p. p. m. was required for water hyacinth death In another experiment glyphosite at 2 to 6 kg a 1 ha and 2.4-D.amine at 0–75 2.25 kg a ha gave complete control of water hyacinth Asulam was found to be unsatis factory even at 6 kg a.1 ha the highest rate tried.  相似文献   

4.
The purpose of this study was to examine the differential activities of proso millet (Panicum miliaceum L.) and corn (Zea mays L.) with respect to atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-S-triazine] and EPTC (S-ethyldipropyl thiocarbamate) metabolism. GSH-S-transferase was isolated from proso millet shoots and roots. When assayed spectrophotometrically using CDNB (1-chloro 2,4-dinitrobenzene) as a substrate, the shoot enzyme had only 10% of the activity of corn shoot enzyme while the root enzyme had 33% the activity of corn root enzyme. However, when proso millet shoot GSH-S-transferase was assayed in vitro using 14C-ring-labeled atrazine, it degraded the atrazine to water-soluble products at the same rate as the corn shoot enzyme. Incubation of excised proso millet and corn roots with [14C]EPTC indicated that uptake of EPTC was similar in both plants. However, proso millet metabolized the EPTC to water-soluble products at only half the rate of corn. Glutathione levels of proso millet roots were 35.9 μg GSH/g fresh wt, compared with 65.4 μg GSH/g fresh wt for corn. However, a 2.5-day pretreatment with R-25788 (N,N-diallyl-2-2-dichloroacetamide) elevated proso millet GSH levels to 62.7 μg GSH/g fresh wt. R-25788 did not elevate the activity of proso millet GSH-S-transferase, in contrast to its effects on corn. We conclude that differences in response to atrazine and EPTC in proso millet and corn are a result of their differential metabolism.  相似文献   

5.
The transformations of eight herbicides (atrazine, simazine, terbutryn, pendimethalin, carbetamide, 2,4-D, metsulfuron-methyl and dimefuron) in soil after compost addition were monitored during long-term laboratory incubations. The herbicides were applied to soil, compost and soil-compost mixtures. Herbicide sorption, their kinetics of mineralisation and the extractability of residues were compared in the different treatments. Compost addition to soil generally decreased herbicide mineralisation and favoured the stabilisation of herbicide residues. A fraction of the stabilised residues remained extractable and potentially available. However, most of them were unextractable and formed bound residues. Sorption could be at the origin of a kinetically limited biodegradation, mainly for the most highly-sorbed herbicides (atrazine, simazine, terbutryn, pendimethalin and dimefuron). Compost addition had little effects on the less sorbed herbicides (carbetamide, 2,4-D and metsulfuron- methyl). © 1997 SCI.  相似文献   

6.
Experiments were conducted to examine the up take, translocation and metabolism by S. vulgaris of two distinctly different herbicides: 2,4-D, a phenoxyalkanoic acid with growth regulator activity to which this species exhibits complete tolerance, and chlorsulfuron, a sul-fonylurea to which S. vulgaris is highly sensitive. Despite their structural dissimilarities 2,4-D and chlorsulfuron was readily absorbed by S. vulgaris with 65 and 69%, respectively, of the applied dosage being absorbed within 72 hours after treatment. Approximately 35% of the 2,4-D and 10% of the chlorsulfuron label was translocated out of the treated leaf after 72 hours. Neither herbicide accumulated in the terminal bud. Seventy-two hours after treatment 63% of the recovered 14C remained as unaltered 2,4-D in S. vulgaris, while in tomato, a 2,4-D sensitive species, 65% of the recovered 14C remained as intact herbicide. In S. vulgaris approximately 86% of the radioactivity remained as intact chlorsulfuron 72 hours after treatment compared to 12% in the tolerant wheat. The tolerance of S. vulgaris to 2,4-D could not be accounted for by limited absorption, translocation nor metabolic degradation of the herbicide. The sensitivity of S. vulgaris to chlorsulfuron would appear to be related to the inability of this species to metabolize the herbicide molecule.  相似文献   

7.
The persistence of [14C]2,4-D at a rate equivalent to 1 kg/ha was studied in the laboratory on a heavy clay and a sandy loam at 85%of field capacity and 20°C both alone and in the presence of 1 kg/ha dicamba, dichlorprop, difenzoquat, TCA, and 2,4,5-T. The persistence of 2,4,5-T was also monitored in both soils under the same conditions in the presence and absence of [14C]2,4-D. All soils were extracted at weekly intervals using aqueous acidic acetonitrile and analysed for [14C]2,4-D remainining radiochemical techniques. The extracts containing 2,4.5-T were additionally analysed gas chromatographically for that herbicide. In each soil type the half-life of the 2,4-D was similar regardless of whether applied singly or in combination with the five herbicides tested. Similarly, [14C]2,4-D did not affect the breakdown of 2,4,5-T in either soil type. The persistence of tri-allate (1·5 kg/ha) and trifluralin (0·75 kg/ha) both singly and in combination were compared using small field plots at two locations in Saskatchewan. Applications were made during May of 1977 and 1978 and the plots were sampled and analysed for herbicide(s) remaining after 10 and 20 weeks, respectively. The results indicate that within experimental error the loss of both tri-allate and trifluralin from the plots treated with the mixture was the same as from plots treated with the individual compounds.  相似文献   

8.
Palmer amaranth is a problematic weed in grain sorghum production in central United States. Due to limited herbicide options available and ever increasing herbicide-resistant weed species, there is a demand for new mode-of-action herbicides for use in grain sorghum. Fluthiacet-methyl is a relatively new active ingredient that inhibits the enzyme protoporphyrinogen oxidase in target plants. Field studies were conducted at three sites in central United States in 2010 and 2011 to evaluate crop response and Palmer amaranth control with postemergence application of fluthiacet-methyl in grain sorghum. Treatments included fluthiacet-methyl at 4.8 and 7.2 g active ingredient (a.i.) ha?1 alone and tank-mixed with 2,4-D amine at 260 g acid equivalent (a.e.) ha?1 or atrazine at 840 g a.i. ha?1. Carfentrazone at 8.8 g a.i. ha?1, atrazine at 840 g ha?1, and a non-treated control were also included. Fluthiacet-methyl treatments caused 9–38% crop injury at 4 ± 1 days after treatment. Tank-mixing atrazine with fluthiacet-methyl seldom affected crop injury, while mixing 2,4-D with fluthiacet-methyl often reduced crop injury. Generally, injury caused by fluthiacet-methyl alone or in combination with atrazine or 2,4-D disappeared within 3 weeks after treatment. Grain yields were reduced in one trial, when 2,4-D mixed with 4.8 or 7.2 g ha?1 of fluthiacet-methyl caused 18% and 13% plant lodging and 24% and 14% grain yield loss, respectively. Across site-years, fluthiacet-methyl alone at 4.8 or 7.2 g ha?1 provided 55–95% control of Palmer amaranth. Greater Palmer amaranth control (≥75%) with fluthiacet-methyl alone was achieved when weeds were small or density was low at the time of spraying. Tank-mixing atrazine with fluthiacet-methyl increased Palmer amaranth control and sorghum yields considerably. Tank-mixing 2,4-D with fluthiacet-methyl also increased Palmer amaranth control, but to lesser extent and less consistently than with atrazine. Results indicated that fluthiacet-methyl has potential for use in grain sorghum to combat weeds resistant to acetolactase synthase-inhibitors, triazines, and synthetic auxin herbicides. Tank-mixing atrazine or 2,4-D with fluthiacet-methyl is desirable for effective Palmer amaranth control.  相似文献   

9.
The average endogenous GSH content of eight lines of inbred corn was almost twofold greater than ten varieties of hybrid corn. When inbred and hybrid corn lines were treated with R-25788, the average GSH content increased by 56 and 95%, respectively. R-25788 protected two special inbred corn lines, GT 112 (atrazine susceptible) and GT 112 RfRf (atrazine resistant) from EPTC injury by increasing the GSH content and GSH S-transferase activity in roots. Most of the radiolabel from [14C]R-25788-treated plants remained in the root tissues whereas the radiolabel in [14C]EPTC-treated plants was evenly distributed between foliar and root tissues. From radiolabel experiments, hybrid corn seedlings were found to absorb more R-25788 from soil than EPTC. There was no difference between inbred and hybrid corn in the amounts of R-25788 or EPTC taken up or in the enhancement of GSH S-transferase activity caused by R-25788.  相似文献   

10.
A. J. SANAD 《Weed Research》1971,11(4):215-223
Studies of the uptake and translocation of 14C-labelled 2, 4-D, MCPA and aminotriazole in Agrostemma githago L. and Tussilago farfara L. clarified the behaviour of the herbicides in both species. In A. githago, MCPA was more freely mobile than 2,4-D after application to the leaf; it was distributed in the plant more rapidly and in greater quantity. Similarly, following root uptake MCPA was transported in the shoot in greater amounts than was 2,4-D. There is a clear relationship between the susceptibility of A. githago to MCPA and the mobility of the herbicide in the plant. In T. farfara, 2,4-D and aminotriazole applied to the leaves were equally well absorbed and relatively rapidly translocated. During the period up to 72 h the amounts of herbicide in the plant increased to similar levels; after that, 14C activity in plants treated with 2,4-D fell slightly whereas there was further accumulation of aminotriazole. Following uptake through the roots, translocation and accumulation in the leaves were considerably greater with aminotriazole than with 2,4-D. The lack of accumulation of 2,4-D could be a factor in the resistance of T. farfara to this herbicidie. Recherches sur l'absorption et la migration d'herbicides marqués au 14 C dans Agrostemma githago L. et Tussilago farfara L.  相似文献   

11.
Impacts of pH and sorption-desorption of ‘Pegosperse’ 100-O (PEG. 100-O; diethylene glycol monooleate, containing 15% diester) surfactant by apple (Malus pumila M.) leaf cuticles on surfactant-enhanced cuticular penetration of 2,4-D [(2,4-dichlorophenoxy)acetic acid] were studied. Glass cylinders were affixed to enzymatically isolated adaxial apple leaf cuticles after the cuticle segments had been soaked in 10 ml liter?1 PEG 100-O solution and washed for 20 and 120 min, respectively. Quantities of [14C]2,4-D in the glass-cuticle chambers passing through the cuticles at pH values from 1 to 6 5 were determined. PEG 100-O significantly increased cuticular penetration of dissociated 2,4-D at pH 4–5; the surfactant had no effect on penetration of undissociated 2,4-D at pH 10. Surfactant-enhanced penetration of 2,4-D occurred only when the surfactant was in the cuticles, while the process of surfactant sorption-desorption alone had no effect on penetration. These results support a ‘hydrophilic channel’ hypothesis, i.e. that surfactants may create hydrophilic channels or increase the area of the channels in the cuticle and, consequently, enhance the passing of polar molecules like dissociated 2,4-D through the cuticle.  相似文献   

12.
The present work concerns atrazine absorption and metabolism by corn (Zea mays.) seedlings immersed in an aqueous medium in comparison with Acer pseudoplatanus cell cultures. At the point of equilibrium, the apparent concentration inside the A. pseudoplatanus cells (with a moderate lipid content: 0·17% of dry weight) was about twice that of the medium. This equilibrium was probably due to a simple partition process; part of the atrazine was dissolved in the cell water and reached the same concentration as in the external medium while the rest was concentrated inside the cellular lipids. The theoretical calculation of the lipid/water partition, taking into account the value of log P measured not with the lipids but with octanol (log P=2·5), gave a value of 1·5 for concentration inside the plant material. Such an equilibrium, resulting from a partition process between water and lipids, was also obtained in non-living corn seedlings. In living seedlings, an over-concentration of radioactivity due to [14C]atrazine derivatives was rapidly obtained inside roots and shoots giving concentrations respectively 7- and 12-fold higher than that of atrazine in the external medium. This was due to very rapid chemical transformation of atrazine into its hydroxy derivatives, especially hydroxyatrazine. This hydrolysis of atrazine in corn was due to the presence of high levels of benzoxazinone derivatives in corn seedling cells. The hydroxylated metabolites were able to concentrate in the cells very rapidly and were unable to diffuse freely into the external medium. As a consequence, this process facilitated the penetration of large quantities of atrazine which became rapidly hydroxylated, allowing therefore the passive penetration of atrazine to be further improved, since the concentration C1 in the receiver compartment was always close to zero. The passive transfer of atrazine, following Fick's law: dq/dt=-Pa (C0C1), was therefore optimized. © 1997 SCI.  相似文献   

13.
The objective of this study was to investigate the effects of commercial formulation of herbicide 2,4-D on metabolic parameters, acetylcholinesterase (AChE) activity and liver histological evaluation of silver catfish (Rhamdia quelen) exposed for 96 h. AChE activity increased in brain (600 and 700 mg L−1) and decreased in all concentrations tested in muscle tissue. Hepatic glycogen was reduced after 2,4-D exposure ranging from 47.67% (400 mg L−1) until 59.3% (700 mg L−1). Hepatic tissue showed lactate reduction at all 2,4-D concentrations tested and glucose was reduced only at 700 mg L−1. In the highest concentration tested hepatic glycogen and glucose reduced instead plasma glucose levels increased. White muscle tissue showed glycogen reduction in fingerlings exposed to all herbicide concentrations and glucose reduction at 700 mg L−1. Muscle lactate levels increase at all 2,4-D concentrations tested. Vacuolation of hepatocytes and changes in its arrangement cords were observed by histologic analysis in group treated with 700 mg/L of 2,4-D. These results suggest that silver catfish exposed to concentrations of 2,4-D near of CL50 showed metabolic and histological response to compensate some stress caused by herbicide exposure. Taken together parameters measured can be used as biomarkers to monitor herbicide contaminated water.  相似文献   

14.
Proteins extracted from suspension-cultured soybean (Glycine max (L.) Merr. Corsoy 79) cells contained O- and N-glucosyltransferases (GTs; EC 2.4.1) that catalyzed glucosylation of several xenobiotic compounds including (a) the hydroxylated herbicide metabolites 6-hydroxybentazone (B-6-OH), 8-hydroxybentazone and 5-hydroxydiclofop (b) the herbicide chloramben and (c) the environmental contaminants 2,4-dichlorophenol and 3,4-dichloroaniline. The O-GT that catalyzes B-6-OH glucosylation, UDP-glucose: B-6-OH glucosyltransferase (B6GT), was chosen for further study. A rapid and sensitive B6GT assay was developed that uses ethyl acetate extraction to separate the product 6-O-[14C]glucosylbentazone from the glucose donor uridine[5′]diphospho-[1]-α-D -[U-14C]glucose. B6GT, recovered in the soluble protein fraction, was extracted in consistently high amounts from Corsoy 79 cells cultured for one to seven days. 2-Mercaptoethanol in the extraction buffer increased B6GT activity as did sodium, potassium, calcium, magnesium or manganese(II) chlorides in the assay buffer. B6GT activity in an ammonium sulfate fraction (30–50% saturation pellet) displayed two pH optima, one at pH 5.5 and another at pH 10 to 11. Apparent Km values for UDP-glucose and B-6-OH in the ammonium sulfate fraction were 90 and 4.5μM, respectively. Thus, we have partially characterized glucosylation of B-6-OH, one example of the several xenobiotic GT activities present in Corsoy 79 soybean.  相似文献   

15.
Ring- and carboxyl-labelled [14C]2,4-D were incubated under laboratory conditions, at the 2 g/g level, in a heavy clay, sandy loam, and clay loam at 85% of field capacity and 20 1C. The soils were extracted at regular intervals for 35 days with aqaeous acidic acetonitrile, and analysed for [14C]2,4-D and possible radioactive degradation products. Following solvent extraction, a portion of the soil residues were combusted in oxygen to determine unextracted radioactivity as [14C]carbon dioxide. The remaining soil residues were then treated with aqueous sodium hydroxide, and the radioactivity associated with the fulvic and humic soil components determined. In all soils there was a rapid decrease in the amounts of extractable radioacitivity, with only 5% of that applied being recoverable after 35 days. All recoverable radioactivity was attributable to [14C]2,4-D, and no [14C]-containing degradation products were observed. This loss of extractable radioactivity was accompanied by an increase in non-extractable radioactivity. Approximately 15% of the applied radioactivity, derived from carboxyl-labelled [14C]2,4-D, and 30% from the ring-labelled [14C]2,4-D was associated with the soil in a non-extractable form, after 35 days of incubation. After 35 days, less than 5% of the radioactivity from the carboxyl-labelled herbicide, and less than 10% of the ringlabelled material, was associated with the fulvic components derived from the three soils. Less than 5% of the applied radioactivities were identifiable with any of the humic acid components. It was considered that during the incubation [14C]2,4-D did not become bound or conjugated to soil components, and that non-extractable radioactivity associated with the three soil types resulted from incorporation of radioactive degradation products, such as [14C]carbon dioxide, into soil organic matter.  相似文献   

16.
Solatium karsensis Symon, an Australian native perennial, has become an important weed in irrigated summer crops in far western New South Wales. A screening trial of 14 herbicides showed that atrazine was the most effective treatment, though 2,4-D also suppressed S. karsensis in grain sorghum (Sorghum bicolor L. cv. Rico) for the duration of the crop. Grain sorghum yields were higher in plots treated with atrazine at 2–5 kg (a.i.) ha?1 than for any other herbicide treatment or the untreated control. Because the root system remained viable annual herbicide application would be necessary for the continued control of 5. karsensis.  相似文献   

17.
Research was conducted to determine the mechanism(s) responsible for safening winter wheat to postemergence-applied saflufenacil when mixed with 2,4-D amine or bentazon. Less than 10% of applied saflufenacil was absorbed when mixed with bentazon whereas absorption peaked at 16% at 14 days after treatment when saflufenacil was applied alone. Wheat plants absorbed 2.8- to 3.5-times more saflufenacil when saflufenacil was applied with 2,4-D amine compared to saflufenacil alone. Regardless of herbicide treatment and harvest timing, <10% of absorbed saflufenacil was translocated from the treated leaf to other plant parts. Safening of saflufenacil with bentazon is likely due to reduced absorption of saflufenacil into winter wheat plants. In the presence of crop oil concentrate, saflufenacil absorption was enhanced by 2,4-D amine. The influence of bentazon and 2,4-D amine on saflufenacil absorption in wheat plants likely explains the differences in wheat response observed in previous research.  相似文献   

18.
Adsorption–desorption characteristics of 2,4-dichlorophenoxyacetic acid (2,4-D) on pure montmorillonite and synthetic chlorite-like complexes [Al(OH)x-montmorillonite complexes, obtained by coating montmorillonite surfaces with different amounts of Al(OH)x] were investigated. The equilibrium adsorption of 2,4-D was described by both Langmuir and Freundlich type isotherms. The extent of adsorption as well as the type of interaction between adsorbate and adsorbent was affected by the nature of incubation buffer and the charge characteristics of supports. At pH 5·6 and in acetate buffer, 2,4-D was negatively adsorbed by montmorillonite and herbicide adsorption capacity increased with increasing amounts of Al(OH)x species loaded on montmorillonite surfaces. When adsorption experiments were performed at the same pH but in phosphate buffer, strong reductions of both the amount of adsorbed pesticide and its affinity for the adsorbents were measured. Evidently, phosphate anions competed strongly with 2,4-D anions for the sorption site on chlorite-like complexes. Furthermore, desorption tests revealed that a large amount (about 60%) of the pesticide was firmly bound to the clay and was not removed even after repeated washings or 24 h exposure to desorption solution. Both electrostatic interactions between the negative COO- moieties of 2,4-D and the positive sites on clays, and ligand exchanges of COO- groups with -OH or water at the clay surface were probably involved in the adsorption process. ©1997 SCI  相似文献   

19.
Study was carried out to investigate the chronic response of cyanobacteria, Anabaena fertilissima to chlorophenoxy herbicide 2,4-dichlorophynoxyacetic Acid (2,4-D) ethyl ester at different concentrations 15, 30 and 60 ppm. The influence of 2,4-D on growth (pigments), release of metabolites such as carbohydrates, protein, amino acid, phenols and nitrate reductase and glutamine synthetase activities was analyzed. The test concentrations caused a concentration-dependent decrease in pigments. Depletion in carbohydrate and protein content was registered with rise in herbicide concentrations. However, phenols were found to rise with increased herbicide concentrations but amino acids were reported to decline. The inhibition of nitrate reductase and glutamine synthetase activity was also concentration-dependent and showed more sensitivity for substituted phenoxy herbicide. This study therefore suggests that decrease in metabolite content and enzyme activity can be used as a signal of herbicide toxicity in cyanobacteria.  相似文献   

20.
The antagonism of haloxyfop-ethoxyethyl (HE) by selected phenoxy herbicides was evaluated through studies of the foliar absorption and translocation of 14C]HE in oat (Avena sativa L.). Uptake of [14C]HE, from simultaneous application in mixture with a phenoxy herbicide, was inhibited by the latter in the order MCPB MCPA2,4-D. In mixtures, the foliar absorption of [14C]HE was reduced more by salts of the phenoxy herbicides than by the corresponding butyl esters. 2,4-D-butyl enhanced uptake of [14C]HE. The application rate of phenoxy herbicides (from 0.5 to 1.5 kg a.e. ha?1) did not affect the uptake of [14]HE, but did influence translocation. Movement of [14C]herbicide out of the treated leaf was less than 5% of the total 14C applied; translocation was significantly reduced by all phenoxy herbicides and was antagonized most by 2,4-D-salt and least by MCPB-butyl. Phenoxy salts invariably reduced [14C]HE translocation more than the corresponding butyl esters. Prior application of phenoxy salts reduced uptake of [14C]HE, but this antagonism was reduced as the time interval between spray applications increased. Translocation of 14C out of the treated leaf was antagonized most by prior application of 2,4-D, and by phenoxy salt formulations. When applied up to 2 days after HE, phenoxy salts reduced uptake, but translocation of 14C was generally unaffected. Les effets antagonistes du 2,4-D, du MCPA et du MCPB sur la pénétration et la migration de l'haloxyfop-éthoxyéthyl dans l'avoine (Avena sativa L.) L'effet antagoniste de plusieurs herbicides de type phénoxy à l'égard de l'haloxyfopéthoxyéthyl (HE) a étéétudié dans des études de pénétration foliaire et de migration du [14C]HE chez l'avoine (Avena sativa L.) Lorsqu'il est appliqué en mélange avec un herbicide phénoxy, la pénétration du [14C]HE est inhibée dans l'ordre suivant: MCPB MCPA 2,4-D. La pénétration foliaire du [14C]HE était davantage réduite par les sels d'herbicides phénoxys que par les esters butyles correspondants. Le 2,4-D butyle augmentait la pénétration du [14C]HE. La dose d'herbicides phénoxys (de 0,5 à 1,5 kg m.a. ha?1) n'affectait pas la pénétration de [14C]HE mais modifiait sa migration. La migration d'herbicide 14C hors de la feuille traitée était inférieure à 5 % de la radioactivité appliquée. Elle était significativement réduite par tous les herbicides phénoxys, le plus par le sel de 2,4-D et le moins par le MCPB-butyle. Les phénoxys sous forme de sels diminuaient toujours la migration du [14C]HE davantage que les esters butyles correspondants. Si l'application de phénoxys sous forme de sel précédait celle de [14C]HE, sa pénétration était réduite mais cet antagonisme était réduit lorsque l'intervalle de temps entre les deux applications était augmenté. La migration de 14C hors de la feuille traitée était le plus diminuée par le 2,4-D et par les phénoxys sous forme de sels. Quand ils étaient appliqués jusqu'à deux jours après [14C]HE, les phénoxys sous forme de sel réduisaient sa pénétration, mais la migration de 14C n'était généralement pas affectée. Antagonistische Wirkung von 2,4-D, MCPA und MCPB auf die Aufnahme und Translokation von Haloxyfop-ethoxyethyl in Hafer (Avena sativa L.) Die antagonistische Beeinflussung von Haloxyfop-ethoxyethyl (HE) durch ausgewählte Phenoxy-Herbizide wurde anhand der Blattaufnahme und Translokation von [14C]HE in Hafer (Avena sativa L.) untersucht. Die Aufnahme von [14C]HE bei gleichzeitiger Anwendung in Mischung mit einem Phenoxy-Herbizid wurde durch die letztgenannten Stoffe in der Reihenfolge MCPB MCPA 2,4-D gehemmt, wobei die Salz-Verbindungen stärker wirkten als die entsprechenden Butylester. 2,4-D-butyl förderte die Aufnahme von [14C]HE. Die Aufwandmenge der Phenoxy-Herbizide (0,5 bis 1,5 kg AS ha?1) blieb ohne Einflus auf die Aufnahme von [14C]HE, beeinflußte aber die Translokation. Aus den behandelten Blättern wurde weniger als 5 % der gesamten [14C]Menge transloziert; die Translokation wurde durch alle PhenoxyHerbizide signifikant reduziert, am meisten durch 2,4-D-Salz, am wenigsten durch MCPB-butyl. Die Salz-Verbindungen verminderten die [14C]HE-Translokation mehr als die entsprechenden Butylester. Eine vorausgehende Behandlung mit den Salz-Verbindungen senkte die Aufnahme von [14C]HE, aber mit zunehmender Zeit zwischen den Anwendungen nahm dieser Antagonis mus ab. Hierbei war der Einfluß von 2,4-D und von den Salz-Verbindungen am stärksten. Wurden diese Stoffe bis zu 2 Tagen nach HE ausgebracht, beeinträchtigten sie die Aufnahme, jedoch im allgemeinen nicht die Translokation von 14C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号