首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nature of target site or knockdown resistance (kdr) to DDT and pyrethroids was studied by investigating specific binding of [14C] DDT and [14C] cis-permethrin to the previously established membrane receptors from the heads of susceptible (sbo) and resistant (kdr) strains of the house fly, Musca domestica L. In vivo studies showed the heads from sbo flies bound two to three times more DDT than those from kdr flies at all doses tested. Reduced binding was also observed in kdr flies in in vitro [14C] DDT binding assays. Scatchard analysis indicated that kdr flies have the same affinity but fewer receptors per milligram protein in the CNS than sbo flies. Assays with [14C] cis-permethrin also showed binding was much reduced in kdr flies in comparison with sbo flies. Based on these results, the nature of the target site insensitivity of kdr flies may relate to their having a reduced number of receptors for the insecticides.  相似文献   

2.
Specific binding of [35S]t-butylbicyclophosphorothionate ([35S]TBPS) to a house fly thorax-plus-abdomen membrane preparation at 20°C is characterized by apparent Kd and Bmax values of 0.21 μM and 2.5 pmol/mg protein, respectively, an association half-time of 13 min at 2 nM, and a biphasic dissociation curve showing half-times of 15 and 35 min. Specific binding is reduced at 37°C apparently due to instability of the receptor-ligand complex and at 0°C as the result of very slow association. [35S]TBPS binding is diminished by detergents, stimulated by GABA at low ligand concentration, and inhibited by picrotoxinin and certain barbiturates, benzodiazepines, bicyclophosphorus compounds, and polychlorocycloalkane insecticides. The potency of TBPS and three related phosphorothionates in displacing [35S]TBPS parallels their toxicity on injection into house flies; the corresponding bicyclophosphates are less active in both assays. Cyclodienes of low toxicity are generally poor inhibitors of radioligand binding. α-Endosulfan and syn-12-hydroxyendrin are more potent than their β and anti isomers, respectively, both as inhibitors of TBPS binding and as toxicants. Analysis of Scatchard plots indicates that picrotoxinin and heptachlor epoxide are non-competitive inhibitors of [35S]TBPS binding. The [35S]TBPS binding site of the house fly membrane preparation differs from that extensively studied in mammalian brain with respect to their responses to many insecticides and GABAergic agents.  相似文献   

3.
[3H]Flunitrazepam ([3H]Flu) was used to identify benzodiazepine binding sites in house fly thorax muscle membranes using a filter assay. [3H]Flu bound to a finite number of sites in a concentration- and time-dependent manner, reaching equilibrium in 10 min. Scatchard plots of the binding indicated a high-affinity site at 0.2 pmol/mg protein (Kd 24.3 nM) and a low-affinity site at 8.2 pmol/mg protein (Kd994nM). Binding of [3H]Flu to the high-affinity binding site was inhibited by several benzodiazepine analogs, with Flu, diazepam, and Ro 5-4864 being more potent than β-CCE, Ro 5-3027, and Ro 5-2180. Clonazepam was least potent in inhibiting [3H]Flu binding. Thus, the drug specificity of these insect muscle benzodiazepine binding sites was quite different from both the mammalian central and peripheral benzodiazepine receptor sites, though closer to the peripheral ones. GABA (γ-aminobutyric acid) and its agonists enhanced the specific binding of [3H]Flu in a dose-dependent manner, and this effect was inhibited with the GABA antagonist bicuculline. The effect was biphasic since at high GABA concentrations this stimulation was reduced. The data suggest that house fly muscles have benzodiazepine receptors, which are coupled allosterically to GABA receptors, analogous to the GABA/benzodiazepine receptors of vertebrates, but with some differences in their drug specificities.  相似文献   

4.
A fenthion-resistant strain of the house fly (Musca domestica L.) was selected with bioresmethrin resulting in ca. 90-fold resistance to the selecting agent. This strain was subsequently selected with (1R)-trans-permethrin producing ca. 140-fold resistance to this latter insecticide. The permethrin-resistant (147-R) strain was highly cross-resistant to several other pyrethroids and demonstrated resistance to knockdown by these insecticides as well as by DDT. The sensitivity of the central nervous system to four pyrethroids was investigated. The 147-R strain was 2.6-fold less sensitive to (1R)-trans-ethanoresmethrin than the susceptible (NAIDM-S) strain, and >43-fold and >67-fold less sensitive to (1R,S)-cis, trans-tetramethrin and (1R)-trans-permethrin, respectively. It also displayed decreased penetration of (1R,S)-trans-[14C]permethrin when compared to the NAIDM-S strain. Lower nerve sensitivity and decreased cuticular penetration are potential mechanisms of resistance to pyrethroids in house flies in the United States.  相似文献   

5.
Intact mitochondria, isolated from red coxal muscle of the American cockroach (Periplaneta americana L.), were incubated in the presence of 1,1,1-trichloro-2,2-bis(4-chloro[14C]phenyl)ethane ([14C]DDT) to isolate a suspected binding site for DDT in the membrane sector of the mitochondrial ATPase. The requirements for the binding of DDT were compared with those for the binding of dicyclohexyl[14C]carbodi-imide([14C]DCCD), a potent inhibitory probe of mitochondrial ATPase activity. [14C]DDT appeared to bind to a proteolipid of the membrane sector, which also binds [14C]DCCD. Exchange experiments, with [14C]DCCD, [14C]DDT and unlabelled DDT at different concentrations, indicated that DDT and DCCD may be acting on a similar protein. This protein may act as the energy transducing protonophore required for the synthesis and hydrolysis of ATP in coupled mitochondria. Inhibition of mitochondrial ATPase activity may be a consequence of DDT and DCCD binding to this proteolipid protonophore, resulting in the disruption of energy transduction in muscle and nerve.  相似文献   

6.
Forty-two insect metabolites of [1RS,trans]-and [1RS,cis]-permethrin are tentatively identified in studies with Periplaneta americana adults, Musca domestica adults, and Trichoplusia ni larvae involving administration of 14C preparations labeled in either the alcohol or acid moieties. The less-insecticidal trans isomer is generally metabolized more rapidly than the more-insecticidal cis isomer, particularly in cabbage looper larvae, and metabolites retaining the ester linkage appear in larger amount with cis-permethrin. Although the dichlorovinyl group effectively blocks oxidation in the acid side chain, the permethrin isomers are metabolized by hydrolysis and hydroxylation at the geminal-dimethyl group (either trans- or cis-methyl substituent) and the phenoxybenzyl group (predominantly at the 4′-position in all species but also at the 6-position in house flies). The alcoholic and phenolic metabolites are excreted as glucosides, and the carboxylic acids are excreted as glucosides and amino conjugates (glycine, glutamic acid, glutamine, and serine) with considerable species variation in the preferred conjugating moiety.  相似文献   

7.
The penetration, excretion, and metabolism of topically applied [14C]permethrin and [14C]cypermethrin have been examined in larvae of the porina moth Wiseana cervinata to determine the factors which affect body levels of unchanged pyrethroids. Metabolism was by hydrolysis and to a lesser extent oxidation and the primary metabolites were quickly conjugated to water-soluble products. Little excretion occurred and body levels of unchanged pyrethroids were dependent on the interaction of penetration and metabolism. cis-Cypermethrin was more resistant to metabolism than trans-cypermethrin and cis- and trans-permethrin. trans-Permethrin most readily penetrated into larvae. The body levels of unchanged permethrin were enhanced by pretreatment of larvae with the metabolic inhibitors carbaryl or piperonyl butoxide. Tolerance of the pasture pest porina to the synthetic pyrethroids is discussed in relation to these findings.  相似文献   

8.
A Ca-ATPase highly sensitive to DDT has been found in peripheral nerves of lobster, Homarus americanus. The observed I50 for this Ca-ATPase toward DDT is on the order of 10?9M and has a low temperature quotien. The ATPase seems to work over a wide range of ATP concentrations. It is stimulated by Ca2+ (optimum 0.1 mM) and shows sensitivity to Na+ (optimum 20 mM) and K+ (optimum 20 mM) ions. The fact that it is highly sensitive to ruthenium red (I50 = 10 μM) suggests that the enzyme is a Ca-ATPase and not a Mg-ATPase. Furthermore the enzyme is not a CaMg-ATPase, since the presence of Mg2+ along with Ca2+ ion is not required for its activity. DDT is found to inhibit the process of Ca2+ binding in the axonic membrane only in the presence of ATP. The evidence suggests the important role of the Ca-ATPase in regulating Ca2+ concentrations in the membrane. The possible significance of DDT inhibition of the ATPase is discussed.  相似文献   

9.
The head of the house fly, Musca domestica L., was found to contain saturable components of specific binding of 4-n-propyl[2,3-3H]-2,6,7-trioxa-1-phosphabicyclo[2.2.2]octane 1-oxide ([3H]Pr-BP). A ratio of specific to total binding of radioreceptor assays was quite favorable, being 0.89 under the standard conditions. The apparent dissociation constant and maximal binding capacity were estimated to be about 4 nM and about 30 fmol/mg of protein, respectively, although association, dissociation, and saturation analyses suggested the presence of two or more populations of binding sites. Specific [3H]Pr-BP binding showed a marked negative temperature coefficient and was little affected by pH in incubation media. Anions which pass through chloride channels attenuated specific [3H]Pr-BP binding whereas impermeable anions enhanced it. Specific binding was selectively inhibited by insecticidal bicyclic phosphorus esters. Various neuroactive chemicals such as GABA agonists, GABA antagonists, cyclodiene insecticides, and benzodiazepines had little effect on specific binding. There was a correlation between GABA content and the density of specific Pr-BP binding sites in each part of the house fly body. In many respects, however, characteristics of the current binding site were different from those of GABA receptor-coupled sites already characterized with [3H]Pr-BP and the [35S]t-butyl thiono analog in the rat brain. Bicyclic phosphorus esters may act on site(s) apart from the GABA neurotransmission system in the house fly.  相似文献   

10.
l-[U-14C]sucrose accumulation by phloem sieve tube members (PSTM) of wheat (Triticum aestivum L. ‘Holley’) and sorghum (Sorghum bicolor L. ‘G522 DR’) was inhibited by the nonpermeant sulfhydryl inhibitor p-chloromercuribenzenesulfonic acid (PCMBS), and this inhibition was reversed by the permeant sulfhydryl protectants dithiothreitol (DTT) and dithioerythritol (DTE). S-Ethyl dipropylthiocarbamate (EPTC) (≤0.1 mM) did not inhibit [14C]sucrose accumulation by wheat or sorghum PSTM. N-N-Diallyl-2-chloroacetamide (CDAA) (1 mM) inhibited [14C]sucrose accumulation by sorghum but not by wheat PSTM. The inhibition of [14C]sucrose accumulation in sorghum PSTM by the membrane permeant CDAA was reversed by DTT. Sorghum growth was inhibited by <1 μM CDAA. Membrane permeant 2-chloroallyl diethyldithiocarbamate (CDEC) (0.1 mM) inhibited [14C]sucrose accumulation by PSTM of sorghum but not wheat. The inhibition of sucrose accumulation in sorghum PSTM by 0.1 mM CDEC was reversed by DDT.  相似文献   

11.
Solutions of tetramethrin, RU 11679, or cismethrin caused uncoupled convulsions in 30–40 min in exposed thoracic ganglia from SNAIDM house flies at concentrations down to 10?10M: whereas these same compounds at 10?6M concentrations failed to produce poisoning symptoms when perfused onto the exposed ganglia of the kdr strain of house fly. The pyrethroid analogs examined had a negative temperature coefficient of action on the exposed thoracic ganglia from SNAIDM flies. DDT and GH-74 possessed positive temperature coefficients of action on the exposed thoracic ganglion of susceptible house flies. It is concluded that the central nervous system of the kdr strain of house fly is resistant to pyrethroid action; furthermore, the resistance appears to be widespread throughout the house fly nervous system, involving sensory, motor, and central neural elements.  相似文献   

12.
A putative GABA receptor was identified in honey bee brain by virtue of its specific binding of [3H]muscimol and its drug specificity. [3H]Muscimol bound with two affinities (Kd1 of 3 nM and Kd2 of 144 nM), comparable to its affinities for binding to mammalian brain. The high-affinity binding was most sensitive to GABA agonists with the following decreasing order of potencies: muscimol>GABA>imidazole acetic acid>DL-GABOB>Zβ-guanidine propionic acid. However, it was insensitive to the antagonist bicuculline, which is potent on [3H]muscimol binding to the mammalian GABAA receptor. It was also insensitive to baclofen, which is a potent agonist of mammalian GABAB receptor, as well as to picrotoxinin, pentobarbital, flunitrazepam, and ethyl-β-carboxylate, which bind to allosteric sites in mammalian GABA receptor. The low-affinity [3H]muscimol binding was inhibited with GABA agonists with the following decreasing order of potencies: imidazole acetic acid = β-guanidine propionic acid>dl-GABOB. The two muscimol binding affinities may represent binding to two sites on the same GABA receptor or to two kinds of GABA receptor. The most potent inhibitor of the high-affinity [3H]muscimol binding to honey bee brain was avermectin B1a (AVM), whose IC50 was 0.01 nM. AVM also inhibited the low-affinity [3H]muscimol binding with an IC50 of 2 μM.  相似文献   

13.
The toxicity of topically applied DDT to adult female anautogenous mosquitoes (Culex pipiens L.) showed dramatic variations in blood-fed insects. It decreased very rapidly about twofold to a minimum at 24 hr after a blood meal, then increased within 72 hr back to values typical of non-blood fed insects. A comparison of the metabolism of [14C]DDT in vivo revealed an increase in DDT dehydrochlorination to DDE at 72 hr after a blood meal, but this increase was not responsible for the variations in DDT toxicity at 24 hr. Changes in penetration rates were not observed and changes in the distribution of DDT could likewise not be related to the short period of decreased toxicity of DDT. Fenvalerate and trans-permethrin, two pyrethroid insecticides which are believed to have a mode of action similar to that of DDT, were also significantly less toxic 24 hr after a blood meal. By contrast, the cyclodiene insecticide aldrin and the carbamate insecticide propoxur were not less toxic 24 hr after a blood meal. The results suggest that after a blood meal an unidentified and transient change in C. pipiens specifically decreases DDT/pyrethroid toxicity. A hypothesis concerning this transient change is advanced. The results illustrate the difficulties in explaining physiological changes in insecticide toxicity.  相似文献   

14.
Membranes from house fly heads were tested for the presence of mucarinic acetylcholine receptors using as a probe [3H]quinuclidinyl benzilate ([3H]QNB). Based on the presence of saturable and reversible high-affinity binding of [3H]QNB, which is inhibited by muscarinic drugs, it is suggested that these sites may be muscarinic receptors. However, these putative muscarinic receptors differ in several characteristics from the ones in mammalian brain. They have lower affinities for muscarinic drugs and lower stereoselectivity, a relatively higher affinity for the nicotinic antagonist d-tubocurarine, a lower Hill coefficient for binding of muscarinic antagonists, and a lower concentration relative to α-bungarotoxin binding sites in the same membranes. Also, unlike mammalian muscarinic receptors, they are sensitive to treatments with N-ethylmaleimide and 5,5′-dithiobis(2-nitrobenzoic acid). The effect of reduction of disulfide bonds by dithiothreitol or mercaptoethanol suggests that only the insect receptor has one or more disulfide bonds which are important to binding. On the other hand, the putative muscarinic receptors of both insect and mammalian brains have important SH group(s), whose alkylation by p-chloromercuribenzoate inhibits binding. Also, chlorobenzilate is equally effective in inhibiting [3H]QNB binding to muscarinic putative receptors of house fly and bovine brains.  相似文献   

15.
The interactions of natural pyrethrins and nine pyrethroids with the nicotinic acetylcholine (ACh) receptor/channel complex of Torpedo electric organ membranes were studied. None caused significant reduction in [3H]ACh binding to the receptor sites, but all inhibited [3H]perhydrohistrionicotoxin ([3H]H12-HTX) binding to the channel sites in presence of carbamylcholine. Allethrin inhibited [3H]H12-HTX binding noncompetitively, but [3H]imipramine binding competitively, suggesting that allethrin binds to the receptor's channel sites that bind imipramine. The pyrethroids were divided into two types according to their actions: type I, which included pyrethrins, allethrin, bioallethrin, resmethrin, and tetramethrin, was more potent in inhibiting [3H]H12-HTX binding and acted more rapidly (i.e., in <30 sec). Type II, which included permethrin, fluvalinate, cypermethrin and fenvalerate, was less potent and their potency increased slowly with time. Also, inhibition of the initial rate of [3H]H12-HTX binding by type I compounds increased greatly by the presence of the agonist carbamylcholine, but this was not so with type II compounds. The receptor-regulated 45Ca2+ flux into Torpedo microsacs was inhibited by pyrethrins and pyrethroids, suggesting that their action on this receptor function is inhibitory. There was very poor correlation between the potencies of pyrethrins and pyrethroids in inhibiting [3H]H12-HTX binding and their toxicities to house flies, mosquitoes, and the American cockroach. However, the high affinities that several pyrethroids have for this nicotinic ACh receptor suggest that pyrethroids may have a synaptic site of action in addition to their well known effects on the axonal channels.  相似文献   

16.
Strains of Culex quinquefasciatus Say, selected with biopermethrin [(1R)-trans-permethrin] or with (1R)-cis-permethrin, were examined in the larval stage for crossresistance to 30 pyrethroids, DDT, dieldrin, temephos, propoxur, and two organotin compounds. The (1R)-trans-Permethrin-R strain [resistance factor (RF) = 4100-fold] and the (1R)-cis-Permethrin-R strain (RF= 450-fold) of C. quinquefasciutus were cross-resistant to all pyrethroids tested [RF= 12-fold for an allethrin isomer to about 6000-fold for (RS,RS)-fenvalerate] as well as to DDT (RF= about 2000-fold). However, they were not significantly Cross-resistant to dieldrin, temephos, propoxur, and the two organotin compounds. Changes in the alcohol moiety, structural isomerism, and susceptibility of the cyclopropane C-3 side chain to oxidative attack are important factors in determining the level of cross-resistance to various pyrethroids. Limited synergism of the pyrethroids by S,S,S-tributyl phosphorotrithioate and piperonyl butoxide (PB), and of DDT by chlorfenethol and PB, suggested that some non-metabolic mechanism, such as kdr, may be an important component of resistance to pyrethroids as well as to DDT in this mosquito.  相似文献   

17.
The ability of o,p′DDT to bind to the 8S moiety in the uterine cytosol or to interfere with the binding of 3H-estradiol-17β (3H-E2) to that binding component was investigated utilizing a 10–30% sucrose gradient sedimentation analysis. Attempts to demonstrate the binding of radiolabeled o,p′DDT to the 8S receptor in the mouse and rabbit were not successful, presumably due to the relatively low specific activity of the radiolabeled o,p′DDT, however, binding to the “nonspecific” 4S site(s) was detected. On the other hand, the addition of nonlabeled o,p′DDT inhibited the binding of 3H-E2 to the 8S receptor. Thus, o,p′DDT (2 μM) suppressed by 58% the binding of 3H-E2 (2 nM) in the 8S region in ovariectomized adult mice. Similarly, in immature rats three concentrations of o,p′DDT (16, 32, and 96 μM) inhibited by 39.5, 52.9, and 59.7% respectively, the binding of 3H-E2 (2.8 nM). Similar results were obtained with uterine preparations from mature rats. However, the suppression of binding of 3H-E2 in the 8S region resulted in an increased binding in the 3–4S region.A Scatchard plot analysis of the binding of 3H-E2 in the presence of o,p′DDT revealed the same number of binding sites as in the absence of o,p′DDT, indicating that o,p′DDT did not “destroy” the binding capacity. Also, this analysis revealed that o,p′DDT merely caused a decrease in the ratio of the bound to free E2, indicating that o,p′DDT binds to the receptor and thus interferes with E2 binding.In addition, our observations that the administration of o,p′DDT to immature female rats causes a marked increase in the levels of the uterine nuclear binding sites (nuclear estogren receptor) is a further indication that o,p′DDT acts as a typical estrogenic compound. However, whether o,p′DDT has antiestrogenic activity as well has not been established.  相似文献   

18.
The organophosphorus pesticides profenofos, sulprofos, O-ethyl O-(4-nitrophenyl) phenylphosphonothioate (EPN), and S,S,S,-tributyl phosphorotrithioate (DEF) administered intraperitoneally to mice at 0.5 to 5 mg/kg strongly inhibit the liver microsomal esterase(s) hydrolyzing trans-permethrin. Profenofos, EPN, and DEF at 25 mg/kg increase the intraperitoneal toxicity of fenvalerate > 25-fold and of malathion > 100-fold. Topically applied profenofos, sulprofos, and DEF significantly synergize the toxicity of cis-cypermethrin to cabbage looper larvae and house fly adults but these phosphorus compounds are much less effective in synergizing the toxicity of trans-permethrin. The magnitude of synergism appears to depend on the species, organophosphorus compound, and pyrethroid involved. Profenofos, sulprofos, and EPN do not significantly alter the persistence of trans-permethrin on bean foliage.  相似文献   

19.
Separate esterase activities of rat and mouse liver microsomes hydrolyzing malathion, trans-permethrin, and cis-permethrin were differentiated on the basis of their sensitivities to inhibition by paraoxon and α-naphthyl N-propylcarbamate (NPC). In rat liver microsomes, the malathionhydrolyzing activity was more sensitive to both inhibitors and showed a different time course of NPC inhibition than the activities hydrolyzing the permethrin isomers. Paraoxon completely inhibited trans-permethrin hydrolysis, but only partially inhibited that of cis-permethrin. The paraoxonsensitive trans- and cis-permethrin-hydrolyzing activities were not differentially inhibited, but separate inhibition curves were obtained for the inhibition of trans- and cis-permethrin hydrolysis by NPC. The mouse liver esterase activity hydrolyzing trans-permethrin showed a similar paraoxon sensitivity to that of rat liver, but that the paraoxon-sensitive portion of the cis-permethrinhydrolyzing activity was 5.5-fold less sensitive to paraoxon than the corresponding rat liver activity and was clearly differentiated from the mouse liver trans-permethrin-hydrolyzing activity. The mouse liver malathion-hydrolyzing activity was 100-fold less sensitive to paraoxon and 14-fold less sensitive to NPC than the corresponding rat liver activity. Rat and mouse liver esterase activities hydrolyzed trans- and cis-permethrin at similar rates under standard assay conditions, but mouse liver esterases were 10-fold less active in hydrolyzing malathion. The higher specific activity of rat liver malathion-hydrolyzing esterases resulted from the greater apparent affinity and maximum velocity for malathion hydrolysis. These results demonstrate that the hydrolysis of malathion, trans-permethrin, and cis-permethrin by rat and mouse liver microsomal preparations involves several esterases with differing substrate specificities and inhibitor sensitivities.  相似文献   

20.
The organophosphorus insecticides, parathion and azinphos (10?5-10?4M), significantly stimulate the Ca2+-pump activity of sarcoplasmic reticulum, while malathion has a limited effect. The rates of Ca2+ translocation and ATP hydrolysis are both stimulated and, apparently, the Ca2+ATP ratio is improved. Parathion and azinphos maximally increase this ratio by 26 and 14%, respectively. The organochlorine compounds, DDT and aldrin, also stimulate the Ca2+ pump, and lindane has a reduced effect. These effects are smaller than those observed for parathion and azinphos. The order of effectiveness is similar to the toxicity of the compounds to mammals and can be described as follows: parathion > azinphos > DDT ≈ aldrin > malathion ≈ lindane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号