首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In a detailed study of the relation between the deflection caused by shear force and the constitution of a laminated material beam, we derived an equation for calculating the shear modulus of a laminated material beam from the shear moduli of individual laminae. The validity of the derived equation was investigated using crosslaminated wood beams made with five species. The calculated shear moduli parallel to the grain of face laminae ranged from 48.3 MPa to 351 MPa, while those perpendicular to the grain of face laminae ranged from 58.0 MPa to 350 MPa. The calculated shear moduli increased markedly with increasing shear modulus in a cross section of perpendicular-direction lamina of a cross-laminated wood beam. The calculated apparent modulus of elasticity (MOE) of cross-laminated wood beams agreed fairly well with the measured apparent MOE values. This fact indicated that the apparent MOE of cross-laminated wood beam was able to be calculated from the true MOE values and shear moduli of individual laminae. The percentage of deflection caused by shear force obtained from the calculated apparent MOE (Y sc) was close to that obtained from the measured apparent MOE (Y s) and there was a high correlation between both values. From the above results, it was concluded that the derived equation had high validity in calculation of shear modulus of a cross-laminated wood beam.  相似文献   

2.
To improve the performance of cross-laminated woods, 30 types of three-ply parallel-laminated and cross-laminated woods were prepared from five species with various densities and shear compliances in cross section, and their bending creep performances were investigated on the basis of our previous research in cross-laminated wood made with sugi (Japanese cedar). The creep deformation perpendicular to the grain was decreased by cross laminating. The creep deformation perpendicular to the grain of parallel-laminated woods (P type), that perpendicular to the grain of face laminae of cross-laminated woods (C type), and also that parallel to the grain of face laminae of cross-laminated woods (C type) tended to decrease with increasing density of species used for perpendicular-direction lamina. It was found that the extent of the decrease was greater in creep deformation than in initial deformation. The degrees of anisotropy for both deformations of laminated wood were markedly decreased by cross laminating. The extent of the decrease was much greater in creep deformation than in initial deformation and considerably smaller in buna with higher density than in sugi with lower density. The measured values of initial deformation and creep deformation of C type were almost equal to the calculated values obtained from the measured values of parallel-laminated woods, whereas the measured values of both deformations of C type were much greater than their calculated values and increased markedly with increasing shear compliance in cross section of perpendicular-direction lamina used for core. The ratios of the average of measured values to the calculated value of C type ranged from 1.05 (katsura) to 1.50 (sugi) in initial deformation and from 1.30 (katsura) to 3.69 (sugi) in creep deformation. This result can be explained as the effect of deflection caused by shear force.  相似文献   

3.
人工林杉木和杨树木材物理力学性质的株内变异研究   总被引:4,自引:0,他引:4  
按照中国国家标准研究杉木和I-214杨树木材的抗弯弹性模量、抗弯强度、顺纹抗压强度和密度,同时按照日本国家标准研究2个树种的顺纹抗剪强度.结果表明:杉木的抗弯强度、顺纹抗压强度和密度由胸高直径处向上呈波浪形增加,抗弯弹性模量则稳定降低,但不同高度间杉木的物理力学性质没有显著差异;近树皮处木材的物理力学性质高于近髓心处木材,并有极显著差异.对于I-214杨树,只有抗弯弹性模量从髓心到树皮逐渐增加,其他的物理力学性质,最小值在从髓心到树皮的过渡区,最大值在近树皮处,从髓心到树皮,杨树的物理力学性质有极显著的差异.杉木和杨树的径面顺纹抗剪强度从髓心到树皮有极显著差异,并且近树皮的高于近髓心的木材,而弦面顺纹抗剪强度从髓心到树皮没有显著差异.木材密度与力学性质有很好的线性相关关系,木材密度是一个很好的力学强度的预测手段.  相似文献   

4.
Mechanical property changes due to the moisture content (MC) and/or temperature changes were examined for 15 Indonesian wood species. A static bending test was carried out at 20°C, 65% relative humidity (air-dry), and water-saturated at 20°C (wet-20) and 80°C (wet-80). For individual test conditions, modulus of elasticity (MOE) and modulus of rupture (MOR) increased linearly with specific gravity regardless of wood species; however, maximum deflection did not correlate with specific gravity for any MC or temperature conditions. The relative values of MOE and MOR measured in wet-20 to air-dry conditions were variously affected from slightly to strongly depending on the wood species. However, the relative values always decreased markedly when saturated in water at 80°C, regardless of wood species. The relative MOE, MOR, and maximum deflection values due to the change in MC or MC and temperature combined were independent of specific gravity but may be dependent on wood type: softwood or hardwood.  相似文献   

5.
The bending and growth characteristics of large fresh stems from four silver fir (Abies alba Mill.) and three Norway spruce (Picea abies (L.) Karst.) trees were studied. Twenty logs taken from different stem heights were subjected to four-point bending tests. From the bending test records, we calculated stress-strain curves, which accounted for detailed log taper, shear deformation and self weight. From these curves we determined, among other parameters, the modulus of elasticity (MOE), the modulus of rupture (MOR) and the work absorbed in bending (W). No significant differences were found between species for the wood properties examined. Values of MOE, MOR and W generally decreased with stem height, with MOR in the range of 43 to 59 MPa and MOE ranging from 10.6 to 15.6 GPa. These MOE values are twice or more those reported for stems of young Sitka spruce (Picea sitchensis (Bong.) Carr.) trees. Based on the radial growth properties measured in discs from the logs, we calculated predicted values of MOE and MOR for the stem cross section. The predictions of MOE were precise, whereas those of MOR were approximate because of a complex combination of different failure mechanisms. Methods to test and calculate MOE, MOR and W for the stems of living trees are discussed with the aim of improving analyses of tree biomechanics and assessments of forest stability protection.  相似文献   

6.
人工林杉木木材力学性质对高温热处理条件变化的响应   总被引:6,自引:0,他引:6  
以人工林杉木为试材,分别用空气和菜子油为介质,在温度为180,200和220 ℃对其分别热处理1,3和5 h,研究试材的抗弯强度(MOR)、抗弯弹性模量(MOE)、顺纹抗压强度、表面硬度对高温热处理条件变化的响应,同时对处理材的主要化学成分进行分析,用扫描电镜对处理材横切面微观结构进行观察.结果表明:人工林杉木试材的4种主要力学性质对不同条件热处理的响应程度不同.无论是空气热处理还是油热处理,试材的MOR,MOE,顺纹抗压强度与对照比有不同程度的降低,且随处理温度升高、时间延长,下降幅度增大,相比于时间,温度的影响更显著;180 ℃热处理1,3和5 h时,试材的MOR,MOE与对照比未发生明显变化(降幅在3%以内),而顺纹抗压强度则明显低于对照,两介质中降低幅度分别在3.29%~9.58%和3.89%~7.18%;200 ℃以上处理时,不同时间处理的3种主要力学性质不仅显著或极显著低于对照,且各性质问的差异也达显著或极显著水平;对硬度的测试结果表明:180 ℃热处理时,试件的径面硬度和弦面硬度均随时间的延长而增大;200 ℃热处理3 h时,试件的硬度达最大,与对照差异达显著水平;随后热处理试件的硬度开始降低,220 ℃热处理5 h后试件的硬度又明显低于对照.在隔氧的油介质中进行热处理,4种主要力学性质的变化程度低于空气介质处理材,当温度高于200 ℃时,两介质处理间的差异达显著水平.而热处理过程中木材主要化学组成与横切面微观结构变化的差异,反映了4种主要力学性质对不同条件热处理时表现出的响应差异.  相似文献   

7.
This study presents three-point bending test results of Norway spruce clear wood specimens loaded on the radial-longitudinal plane in two different load cases. The tested samples were graded as resonance wood for instrument making and were characterised by narrow annual rings and relatively low density. The modulus of elasticity (MOE) and the corresponding modulus of rupture (MOR) are illustrated separately for the samples with straight grain and the group showing the specific growth pattern of indented rings (‘hazel growth’). With the longitudinal wood anatomical direction parallel to span width, the fibre deviation caused by the indents reduces MOE and MOR values, whereas a ‘reinforcing’ effect of the indents could be observed for the load case with span width parallel to the radial direction. Both aspects lead to a reduction in anisotropy for hazel-growth Norway spruce (anisotropy MOE: indented rings 11.6, straight grain 14.7, anisotropy MOR: indented rings 6.9, straight grain 8.9), which partly explains the exceptional position of this growth pattern for the construction of high-class musical instruments with outstanding mechanical and acoustical performance.  相似文献   

8.
The present study is aimed at investigating the effect of heat treatment of nano-silver-impregnated Populus nigra on weight loss, modulus of rupture (MOR), modulus of elasticity (MOE), and compression parallel to grain. Specimens were impregnated with 200 PPM water-based solution of nano-silver particles at 2.5 bar in a pressure vessel. For heat treatment, both nano-silver-impregnated and simple specimens were kept for 24 h at 45°C and then further for 24 h at 145°C and finally for 4 h at 185°C. MOR decreased from 529 to 461 kg/cm2 in heat-treated specimens; MOE and compression parallel to grain were though improved. Also, comparison between heat-treated and nano-silver-impregnated heat-treated specimens showed that there was a decrease in MOR and MOE in nano-silver-impregnated heat-treated specimens. This shows that nano-silver impregnation facilitates transfer of heat in wood and it may increase the process of degradation and pyrolysis of wood structures in deeper parts of specimens.  相似文献   

9.
对江汉平原人工林落羽杉物理力学性能进行了研究,结果表明:落羽杉的气干密度为0.413 g/cm3,气干密度等级为轻;综合强度为74 MPa,强度等级为Ⅰ级;径向横纹抗压强度略大于弦向横纹抗压强度;端面硬度最高,弦面硬度与径面硬度差别不大。落羽杉南北面近树皮处木材的密度、抗弯强度、弹性模量、顺纹抗压强度均大于近髓心处,南北方向对落羽杉的密度、顺纹抗压强度在5%水平上差异均不显著,而对其抗弯强度、弹性模量在1%水平上差异显著。  相似文献   

10.
对江汉平原水杉、池杉、落羽杉人工林物理力学性能进行了研究,结果表明:落羽杉的密度和硬度最大;落羽杉、水杉、池杉的抗弯强度差异不大;水杉的弹性模量最大,约为落羽杉的2.3倍,落羽杉的弹性模量与池杉的比较接近。南北方向对水杉、池杉、落羽杉的密度、顺纹抗压强度在5%水平上差异均不显著,对池杉、水杉抗弯强度在5%水平上差异不显著,对落羽杉抗弯强度在1%水平上差异显著,对落羽杉、池杉的弹性模量在1%水平上差异显著,对水杉的弹性模量在5%水平上差异不显著。三杉南北面近树皮处木材的密度、抗弯强度、弹性模量、顺纹抗压强度均大于髓心处。对水杉、池杉、落羽杉物理力学性能比较研究,旨在为其培育及合理利用提供依据。  相似文献   

11.
With emphasis on tree breeding for wood quality in Picea jezoensis, we aimed to evaluate radial and between-family variations in the microfibril angle (MFA) of the S2 layer in the latewood tracheids in 10 open-pollinated families of 43-year-old P. jezoensis trees. In addition, the relationships between MFA/wood density with the modulus of elasticity (MOE) or modulus of rupture (MOR) were investigated. Significant differences in MFA between families were found from the pith toward the bark. MFA showed higher values around the pith area, although some families showed relatively lower values than others around this area. In addition, due to a larger coefficient of variations of MFA near the pith, the potential for juvenile wood MFA improvement may be greater compared with mature wood. MOE was correlated with MFA in juvenile wood and with wood density in mature wood, whereas MOR was mainly correlated with wood density at radial positions in both woods. Therefore, to improve the MOE and MOR of P. jezoensis wood, both MFA and wood density would be factors to consider in both juvenile and mature woods. On the other hand, there are indications that, only wood density would be an important criterion for improving mature wood properties.  相似文献   

12.
Changes in the modulus of elasticity (MOE), modulus of rupture (MOR), and stress relaxation in the radial direction of wood (hinoki:Chamaecyparis obtusa) moisture-conditioned by the adsorption process from a dry state and by the desorption process from a moisture content slightly below the fiber saturation point were investigated. The MOE and MOR of wood conditioned by the adsorption process showed significant increases during the later stages of conditioning when the moisture content scarcely changed. However, with the desorption process they did not increase as much during later stages of conditioning, though they increased during early stages of conditioning when the moisture content greatly decreased. The stress relaxation of wood decreased with an increase in the conditioning period with both the adsorption and desorption processes. These results suggest that wood in an unstable state, caused by the existing state of moisture differed from that in a true equilibrium state shows lower elasticity and strength and higher fluidity than wood in a true equilibrium state. Furthermore, the present study demonstrates that the unstable states of wood induced during the course of drying, desorption, and possibly adsorption of moisture are slowly modified as wood approaches a true equilibrium state.  相似文献   

13.
The objective of this study was to investigate the physical and mechanical performance of flakeboard reinforced with bamboo strips. The study investigated three different bamboo strip alignment patterns and an experimental control. All panels were tested in static bending both along parallel and perpendicular to the lengths of the bamboo strips. Internal bond strength (IB), thickness swelling (TS), linear expansion (LE), and water absorption (WA) were also examined. As expected, modulus of rupture (MOR) and modulus of elasticity (MOE) were substantially greater for all three experimental panel types as compared to the control group. LE was also improved for all three experimental panel groups. The bamboo strip alignment patterns had no significant effect on TS, WA and IB. The sample means for MOR, MOE and LE tested perpendicular to the bamboo strip lengths yielded slightly lower mean values than corresponding samples tested parallel to the bamboo strips lengths. This difference in mechanical properties is largely attributed to low panel density in the failure zones.  相似文献   

14.
Load sharing between the stringers in gravel-decked log bridges is an important design factor when small- diameter stringers are used with thin gravel decks. In order to estimate the load sharing between the stringers, it is necessary to consider the deflection of the stringers; therefore, accurate estimates of the apparent modulus of elasticity (MOE) for full-size log stringers are required. In this paper, load and displacement data from the full- size bending tests are used to demonstrate that taper near midspan has the greatest effect on the MOE used in common log bridge design methods, where the logs are assumed to have constant cross sections. This paper proposes a method to estimate a MOE that can be used in a constant cross-section model given the geometry of the particular log of interest, and the MOE from full-size bending tests calculated when considering actual log geometry.  相似文献   

15.
Genetic- and environmental variation and correlation patterns were characterized for modulus of elasticity (MOE), modulus of rupture (MOR) and related wood traits: latewood proportion, wood density, spiral grain, microfibril angle and lignin content in five full-sib families of Norway spruce. The families were evaluated on the basis of clearwood specimens from the juvenile -mature wood transition zone of 93 sampled trees at age 30 year from seed. Family-means varied significantly (p < 0.05) for all wood traits studied except lignin content. MOE varied between 7.9–14.1 GPa among trees and 9.4–11.0 GPa among families. MOR varied between 47–87 MPa among trees and 61–71 MPa among families. Families remained significantly different in an analysis of specific MOE (MOE/density) and MOR (MOR/density). Hence, solely relying on wood density as a wood quality trait in tree breeding would not fully yield the potential genetic gain for MOE and MOR. Correlations between wood structural traits and specific MOE and MOR are presented and discussed.  相似文献   

16.
ABSTRACT

The main goal of this study was to investigate the visual characteristics, recovery rate, and flexural properties of sawn boards from a fibre-managed plantation Eucalyptus globulus resource as a potential raw material for structural building applications. The impacts of the visual characteristics, strength-reducing features, and variation in basic density and moisture content on the bending modulus of elasticity (MOE) and modulus of rupture (MOR) of the boards were investigated. The reliabilities of different non-destructive methods in predicting MOE and MOR of the boards were evaluated, including log acoustic wave velocity measurement and numerical modellings. The MOE and MOR of the boards were significantly affected by the slope of grain, percentage of clear wood, and total number of knots in the loading zone of the boards. The normal variation in basic density significantly influenced the MOE of the boards while its effect on the MOR was insignificant. The numerical models developed using the artificial neural network (ANN) showed better accuracies in predicting the MOE and MOR of the boards than traditional multi-regression modelling and log acoustic wave velocity measurement. The ANN models developed in this study showed more than 78.5% and 79.9% success in predicting the adjusted MOE and MOR of the boards, respectively.  相似文献   

17.
Genetic parameters for wood stiffness and strength properties were estimated in a 29-year-old hybrid larch stand (Larix gmelinii var. japonica × Larix kaempferi). The study included 19 full-sib larch families from Hokkaido, northern Japan. Implications of these genetic parameters in wood quality improvement are subsequently discussed. Traits included in the analyses were the dynamic modulus of elasticity of green logs (E log), the modulus of elasticity (MOE), the modulus of rupture (MOR), compression strength parallel to the grain (CS) in small clear specimens, wood density (DEN), and diameter at breast height (DBH). DEN had the lowest coefficients of variation and MOE the highest. The narrow-sense heritability estimates of E log, MOE, MOR, and CS were 0.61, 0.44, 0.60, and 0.43, respectively, and those of DEN and all mechanical properties increased from an inner to outer position within the stem. E log and DEN had high positive phenotypic (0.52–0.83) and genetic (0.70–0.92) correlations with MOE, MOR, and CS. The mechanical properties of the inner position of the stem had rather high phenotypic and genetic correlations with those of the outer position and overall mean. The predicted gains in wood stiffness (E log and MOE) were higher than those of the strength properties (MOR and CS). The predicted correlated responses in MOE, MOR, and CS when selecting for E log and DEN were 72.6%–97.8% of a gain achievable from direct selection of these traits. DBH showed an insignificant correlation with all mechanical properties, although selection of this trait had a slightly negative effect on the mechanical properties.  相似文献   

18.
Three concentrations (2.8%, 2.0%, 1.2%) of Ammoniacal Copper Quaternary (ACQ) was selected to treat Lodgepole pine wood for evaluating ACQ treatment on mechanical properties of blue-stained wood. The bending modules of elasticity (MOE), modules of rupture (MOR), toughness and shearing strength parallel to grain on tangential surface, are tested according to the criteria GB1927-1943-91. Non-treated sample were also tested according to the same procedure. The results showed that the three groups specimen impregnated by different concentrations of ACQ solution met the AWPA standard 2003 of America (UC4A 6.4g/cm^3). There were significant difference of toughness between treated wood and non-treated wood (p=0.01), but there were no statistically significant differences among three concentrations in terms of toughness, and toughness of treated wood was approximately 20% lower than non-treated. MOR, MOE as well as sheafing strength parallel to grain were found to be not significantly different between treated wood and non-treated one, and there were no statistically significant difference among three concentrations of ACQ too. Toughness, MOR, MOE and sheafing strength parallel to grain increased with decrease of concentration of ACQ, but they were hardly affected by ACQ preservatives.  相似文献   

19.
Development of optimal ways to predict juvenile wood stiffness, strength, and stability using wood properties that can be measured with relative ease and low cost is a priority for tree breeding and silviculture. Wood static modulus of elasticity (MOE), modulus of rupture (MOR), radial, tangential, and longitudinal shrinkage (RS, TS, LS), wood density (DEN), sound wave velocity (SWV), spiral grain (SLG), and microfibril angle (MFA) were measured on juvenile wood samples from lower stem sections in two radiata pine test plantations. Variation between inner (rings 1–2 from pith) and outer (rings 3–6 from pith) rings was generally larger than that among trees. MOE and MOR were lower (50%) in inner-rings than in outer-rings. RS and TS were higher (30–50%) for outer-rings than inner-rings, but LS decreased rapidly (>200%) from inner-rings to outer-rings. DEN had a higher correlation with MOR than with MOE, while MFA had a higher correlation with dry wood MOE than with MOR. SLG had higher significant correlation with MOE than with MOR. DEN and MOE had a weak, significant linear relationship with RS and TS, while MOE had a strong negative non-linear relationship with LS. Multiple regressions had a good potential as a method for predicting billet stiffness (R 2 > 0.42), but had only a weak potential to predict wood strength and shrinkage (R 2 < 0.22). For wood stiffness acoustic velocity measurements seemed to be the most practical, and for wood strength and stability acoustic velocity plus core density seemed to be the most practical measurements for predicting lower stem average in young trees.  相似文献   

20.
采用慈竹为原料制造竹帘胶合板,以三种不同的方式进行组坯,研究组坯方式对慈竹竹帘胶合板纵横方向静曲强度、弹性模量、压缩强度与水平剪切强度的影响。结果表明:组坯方式对胶合板的弹性模量与静曲强度影响较为显著。Ⅲ型板纵向各项力学性能最优,Ⅲ型板横向各项力学性能最弱。Ⅰ型板和Ⅱ型板的静曲强度和弹性模量均达到了汽车车厢用竹篾胶合板的A类标准。三种方式组坯板件的主要力学性能均达到了结构用竹木复合板国家A级标准与混凝土模板用胶合板主要物理力学性能指标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号