共查询到19条相似文献,搜索用时 76 毫秒
1.
为提高林木生长状态测量的准确性,克服传统测量方法的不足。从视差处理的角度出发,将图像处理技术与视觉理论有机结合,根据不同时间点采集到的树木图像信息,判断出一段时间内树木生长状态的变化情况。试验过程中,将待采集图像的树木上标出红色的矩形信息点,并利用双摄像机针对标出的特征点进行采集,然后将2幅树木图像进行对比研究, 分别计算出在一定时间间隔内树木上信息点空间信息,从而确定该段时间内信息点的位置变化。试验结果表明,针对标定的信息点,传统测量方法在高度和粗度分别增长5.63 mm和5.75 mm,二者数值相近,与林木生长实际不符;而基于视觉技术的测量,高度和粗度分别增长2.4 mm和1.5 mm,高度变化是粗度变化的1.6倍,与林木的实际增长过程是一致的。所以,基于视觉技术的测量方法,能够很好地实现对树木的无损测量研究,判断出树木的生长状态变化情况。 相似文献
2.
[目的]设计基于双目视觉与深度学习的番茄本体特征检测系统,实现番茄本体特征的自动无损检测,为水肥一体化和智慧农业提供技术支持.[方法]采集4000张番茄图像作为研究样本,利用基于深度学习SSD_MobileNet卷积神经网络的番茄主要器官检测算法,对番茄植株、茎、花、果实和叶进行检测.基于双目视觉的图像测量算法对各器官目标区域中株高、茎直径、果径和叶面积进行特征提取.[结果]利用SSD_MobileNet网络模型对研究样本进行训练和测试,调用训练好的模型对番茄各器官进行识别和定位,对番茄植株、茎、花、果实和叶的检测准确率分别为98.5%、99.0%、99.5%、99.5%和98.0%.利用基于双目视觉的图像测量算法对番茄本体特征进行测量,通过实践证明该系统对株高、茎直径、果径和叶面积测量的相对误差可分别控制在1.5%、1.0%、1.2%和1.3%以内,可实现番茄本体特征的精确检测,较常见系统的鲁棒性和精度有了明显提升;整套系统在番茄大棚中已稳定运行半年,完成了对番茄全生命周期的本体特征检测,并可将数据保存于数据库,实现对番茄本体特征的自动、无损监测.[建议]优化番茄特征遮挡问题,丰富训练数据集,优化网络模型,提高识别率和鲁棒性;建立番茄特征数据共享云平台,实现番茄疫病的提前预警;确定本体特征与番茄长势的关系,以快速判断施肥量,实现大棚番茄自动精确施肥. 相似文献
3.
树木参数是林业调查的重要指标。依据双目视觉原理和图像处理技术提出一种基于双目视觉的测树方法研究,利用经纬仪和CCD代替双CCD,减少计算误差,再经图像处理和识别提取出树木参数。 相似文献
4.
树木参数是林业调查的重要指标。依据双目视觉原理和图像处理技术提出一种基于双目视觉的测树方法研究,利用经纬仪和CCD代替双CCD,减少计算误差,再经图像处理和识别提取出树木参数。 相似文献
5.
基于双目视觉技术,研究一种适用于无人补料设备的目标检测及测距技术,设计了高精度的目标检测识别和双目测距方法,并进行了相关仿真实验。实验结果表明,使用改进后的识别定位算法平均准确率为99.53%,双目相机在距离补料装置40~90 cm时,测距相对误差为0.59%~1.26%,可以有效辅助近距离定位补料装置,较好地满足了补料装置与料仓的对接功能要求,对提高补料装置的自动化水平具有积极意义。 相似文献
6.
搭建了一个便利有效地双目视觉系统,结合深度信息,精准地提取手势信息。采用模板标定法对双目相机进行标定,精确地获取了相机的参数,标定的像素误差为0.67个像素;在立体匹配阶段,利用BM算法快速准确地实现了左右相机图像的匹配,获得被测手势的视差;结合三角测距原理,从而生成较为稠密的深度图;最后将深度信息重新映射到原彩色图像上,实现三维重建,生成三维云图,根据云图信息双目视觉系统能有效地从复杂背景中分割手势,并换一种手势进一步验证了所搭建的双目视觉系统从复杂背景中分割手势的可行性。 相似文献
7.
基于双目立体视觉的草坪植株高度测量 总被引:2,自引:0,他引:2
计算机视觉现已被广泛应用于诸多农业领域,有助于精准农业的发展,提高劳动生产效率.针对坐骑式零转弯半径(ZTR)割草机刀盘高度无级调节问题,利用双目立体视觉对草坪植株高度进行测量可推动其智能化发展.首先对地毯草灰度图像中的V分量进行图像增强、形态学处理、阈值分割等预处理提取出植株图像.本研究提出一种结合高通滤波与Foer... 相似文献
8.
9.
利用数码相机实现对植物叶片形态的无损测量,是掌握植物生长规律、科学指导生产以及实现植物生长柜智能化控制的关键技术之一.针对叶片弯曲以及拍照过程中容易出现的几何失真等问题,提出了利用两个相互垂直的数码相机来采集图像,从侧面图像分析叶片的弯曲角度,对正面图像进行失真校正;然后根据投影原理统计出叶片的像素数目,从而得到对应的形态数据.结果表明,该方法能够有效地解决图像的二维图像失真问题,降低叶片数据计算的误差,对于促进农业科技进步、加快现代化发展具有十分重要的意义. 相似文献
10.
11.
给出一种基于图像的人体参数自动测量方法,并设计与实现人体参数测量系统.通过2个数码相机拍摄人体的正视图和侧视图,运用图像分割和特征提取等图像处理方法提取2幅图像上的人体特征点;利用三维标定架标定相机的内外参数;利用双目视觉原理从2幅图像上的特征点计算出人体的测量点,完成人体尺寸参数计算.试验结果表明:与传统手工测量相比,本方法能实现自动测量,缩短了测量时间,提高测量的精度和效率;与三维非接触测量相比,本方法测量设备简单和便携,测量速度更快,操作更加方便. 相似文献
12.
为实现自动化精准喷雾,设计了一种基于双目视觉的喷雾定位系统,实现了单株目标作物点云化三维坐标的获取.针对目标作物冠层无规则几何外形的特殊性,提出了网格划分法和引入方差分量的改进SAD(sum of absolute differences)匹配算法.算法在抑制田间背景噪声和提高匹配算法计算效率上取得了较好的效果. 相似文献
13.
杨灿;范习健;张九于 《北京林业大学学报》2025,47(2):132-142
14.
针对目前玻璃空瓶回收再生产过程中造成瓶口缺陷破损的在线实时检测难题,提出一种基于极限学习机(Extreme Learning Machine, ELM)的检测算法。首先对采集的瓶口进行预处理,通过研究表面缺陷,提取灰度方差等6种表面特征。然后运用遗传算法对极限学习机的输入层层的阈值和权值进行优化,提高算法的检测精度。最后现场选取569个样本对所设计ELM分类器进行训练学习与测试,并与LVQ算法、BP分类器对比实验。结果表明该算法能够满足对机器视觉检测系统缺陷检测高速高精度的要求。 相似文献
15.
提出一种利用隐马尔可夫模型建立目标特征匹配库来识别图像中局部遮挡目标的新方法。该方法首先通过SIFT算法提取目标SIFT特征,然后采用隐马尔可夫模型对目标所有的SIFT特征进行训练,得到目标SIFT特征对应的模型输出概率范围,将该概率范围作为目标特征匹配库。在对图像中的目标进行识别时,利用目标特征匹配库可以把目标特征从图像所有特征中识别出来,即使目标遮挡比例为60%时,该方法仍能识别出目标。实验结果表明,新方法可以精准地识别出图像中被遮挡目标,能够很好地解决遮挡情况下的目标识别问题。与现有局部遮挡目标识别算法相比,新方法所取得的目标识别率均有所提高。 相似文献
16.
目前苹果分级自动化程度较低,为了实现苹果品质自动、快速、准确分级设计了一套苹果智能在线检测分级系统。以寒富苹果为测试对象,采用机器视觉技术对苹果分级进行研究。采用阈值分割的方法分割苹果正面图像,逐像素遍历法提取苹果外部轮廓,通过计算其各点到重心的距离提取苹果大小特征,同时计算苹果横径与纵径比提取果形特征。采用支持向量机方法分割侧面苹果图像,计算苹果红色像素占苹果像素的比例提取颜色特征,利用Fisher统计识别的方法提取苹果缺陷。实现了整个分级系统的硬件搭建以及软件的功能,利用该系统对400个苹果样本进行了分级试验,结果表明该系统分级的苹果总体正确率达到95%。设计的基于机器视觉的苹果智能在线检测分级系统克服了传统分级方法的不足,加快了苹果品质分级自动化速度,对水果品质分级等领域有重要研究意义。 相似文献
17.
18.
介绍了农业机械自动化的发展历史与现状,从农村劳动力不足、人口老龄化和社会经济发展的需求等几方面阐述了农业机械自动化的必要性,提出要根据农业生产的现实条件和技术水平,选择合理的自动化模式,阶段式推进自动化进程,把农业机械自动化的发展重点放在开发农用传感器的提高自动化装置的耐久性和可靠性上。 相似文献