首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The forested Lysina catchment is situated in an area very susceptible to acid deposition. The stream water is characterized by extremely high concentrations of total dissolved Al (volume weighted mean 66 Μmol L?1) and H+ (average pH=3.87). In a simple two-component model, the surface runoff component contributes only 6% of runoff in winter and 4% of runoff in summer. During flood episodes, the direct runoff contributes up to 20% of streamflow. There is a strong positive correlation between stream acidity and stream discharge. The observed exponential increase in streamwater acidity with discharge during high flow periods cannot be explained by the simple two-component model. A three-component model used for hydrograph separation is based on chemical and18O analysis of precipitation, soil water and runoff. It incorporates a soil water component along with groundwater and rainfall components in streamwater generation. Dissociated organic acids leached during the flow of water through the uppermost soil horizon help to balance an apparent anion deficit. The apparent anion deficit was found to increase exponentially with flow rate. Low variability in streamwaterδ 18O corresponds to a high contribution of indirect components (i.e., soil and ground water) in the runoff. The soil water contribution to indirect runoff calculated from the apparent anion deficit of streamwater, varied from 0 at base flow up to 80% during floods. On average, 40% of the streamwater is derived from soil water (from 31 to 39% in winter and from 47 to 54% in summer).  相似文献   

2.
The chemistry of precipitation, throughfall, soil water, ground water, and surface water was evaluated in two forested lake-watersheds over a 4-yr period to assess factors controlling Cl? cycling. Results indicate that Cl? cycling in these watersheds is more complex than the generally held view of the rapid transport of atmospherically derived Cl? through the excosystem. The annual throughfall Cl? flux for individual species in the northern hardwood forest was 2 to 5 times that of precipitation (56 eq ha?1), whereas the Na+ throughfall flux, in general, was similar to the precipitation flux. Concentrations of soil-water Cl? sampled from ceramic tension lysimeters at 20 cm below land surface generally exceeded the Na+ concentrations and averaged 31 μeq L?1, the highest of any waters sampled in the watersheds, except throughfall under red spruce which averaged 34 μeq L?1. Chloride was concentrated prior to storms and mobilized rapidly during storms as suggested by increases in streamwater Cl? concentrations with increasing flow. Major sources of Cl? in both watersheds are the forest floor and hornblende weathering in the soils and till. In the Panther Lake watershed, which contains mainly thick deposits of till (>3 m), hornblende weathering results in a net Cl? flux 3 times greater than that in the Woods Lake watershed, which contains mainly thin deposits of till. The estimated accumulation rate of Cl? in the biomass of the two watersheds was comparable to the precipitation Cl? flux.  相似文献   

3.
I.D.L. Foster 《CATENA》1979,6(2):145-155
Monthly mean concentrations of potassium, calcium, sodium, magnesium chloride and nitrate-nitrogen were determined from samples of bulk precipitation, throughfall, soil water and streamflow collected weekly between April 1975 and September 1977 in a small catchment in Devon, England. Soil water concentrations are compared with the analysis of exchange capacity in composite soil samples. Rain contributed much sodium and chloride to total catchment output, and potassium was selectively enriched in throughfall. Calcium and magnesium concentrations were high in soil water samples and on the soil exchange complex.  相似文献   

4.
Forest fires on granitic soils often increase overland flow and erosion. Runoff generation was monitored on a small hillslope plot on Mt. Vision near Point Reyes Peninsula, California, after it had been burned by a wildfire on October 3, 1995. After the fire, the ground surface was covered with up to 2 cm of ash, which overlaid a 5–20 cm thick hydrophobic (water repellent) soil layer. We used nine recording tensiometers to monitor soil-water potentials during infiltration and runoff. Surface-runoff rates were determined by diverting the flow into a collection tank. The subsurface flow through the upper 6 cm of soil was collected and measured in a second tank. The surface runoff was diverted to a tank in order to record its rate. The initial intense rainfall infiltrated into the base of the ash-bed; here, the hydrophobicity limited deeper penetration and led to both subsurface and shallow saturation overland flow. The preferential flow paths through the ash layer contributed to deeper water penetration. As the ash was eroded and consolidated with successive rainstorms, the preferential flow paths clogged, the infiltration capacity reduced, thus preventing the storage of shallow permeable soil; therefore, the runoff generation changed to Hortonian overland flow. Correspondingly, the runoff ratio increased from approximately 0.2 during the early storms to 0.8 during intense rain bursts. These results suggest that runoff mechanisms evolve simultaneously with the eroding soil surface.  相似文献   

5.
淹水稻田氮的损失   总被引:29,自引:3,他引:29  
A field microplot experiment was conducted during the tillering stage of paddy rice to investigate nitrogen(N) Iosses from flooded rice fields following fertilizer application. After application of ammonium bicarbonate, most of nitrogen in the flood water was present as NH4-N and its concentration varied widely with time. Concentrations of both NO3-N and NO2-N in the floodwater were low due to the weakened nitrification. Under flooded anaerobic reducing conditions, soil solution concentrations of NO3-N and NH4-N were nothigh, ranging from 0.6 mg L-1 to 4.8 mg L-1, and decreased with soil depth. However, the ground water wasstill contaminated with NO3-N and NH4-N. Rainfall simulation tests showed that the N losses via runoff inrice fields were closely related to the time intervals between fertilizer applications and rainfall events. Whena large rain fell for a short period after fertilizer application, the N losses via runoff could be large, which could have a considerable effect on surface water quality. Both irrigation and N fertilizer application must be controlled and managed with great care to minimize N losses via runoff from agricultural land.  相似文献   

6.
Acid deposition is considered to be a major environmental problem in China, but information about effects on soils and waters is scarce. To contribute to increased knowledge about the problem a small catchment (about 7 ha) in the outskirts of Guiyang, the provincial capital of Guizhou in south-western China, was instrumented for collection of precipitation, throughfall, soil water and stream water. In addition soil samples have been collected and analyzed for key properties. Median pH in the precipitation is 4.40 (quartiles: 4.19 and 4.77) and the median sulfate concentration 228 µeq/L (quartiles: 147 and 334 µeq/L). The dry deposition of both SO2 and alkaline dust is considerable. The sum of wet deposition of sulfate and dry deposition of SO2 has been estimated to about 8.5 gSm-2yr-1. The total S-deposition may be somewhat higher due to dry deposition of sulfate and occult deposition. In soil water, SO4 2- is the major anion, generally ranging from 300 to 2500 µeq/L in the different plots. Calcium is an important cation, but there is also a considerable contribution of aluminum from the soil. In some of the plots the concentrations of inorganic monomeric aluminum (Ali) are typically between 200 and 400 µm. Potential harmful levels of aluminum and/or high Ali/(Ca2+ + Mg2+) molar ratios occur in the catchment, but damages to vegetation have not yet been reported. In most cases exchangeable aluminum accounts for between 75 and 95% of the total effective cation exchange capacity (CECE) in the mineral soils. The aluminum chemistry cannot easily be explained by conventional models as the Gaines-Thomas ion-exchange equation or equilibrium with an Al(OH)3 mineral phase. The stream water is generally less acidic and has considerably lower concentrations of aluminum than the soil water, even though quite acid events have been observed (pH < 4.4). The median pH values are 4.9 and 5.0 in the two first order streams and 6.3 in the dam at the lower boarder of the catchment.  相似文献   

7.
The upper Great Egg Harbor River watershed in New Jersey’s Coastal Plain is urbanized but extensive freshwater wetlands are present downstream. In 2006–2007, studies to assess levels of total mercury (THg) found concentrations in unfiltered streamwater to range as high as 187 ng/L in urbanized areas. THg concentrations were <20 ng/L in streamwater in forested/wetlands areas where both THg and dissolved organic carbon concentrations tended to increase while pH and concentrations of dissolved oxygen and nitrate decreased with flushing of soils after rain. Most of the river’s flow comes from groundwater seepage; unfiltered groundwater samples contained up to 177 ng/L of THg in urban areas where there is a history of well water with THg that exceeds the drinking water standard (2,000 ng/L). THg concentrations were lower (<25 ng/L) in unfiltered groundwater from downstream wetland areas. In addition to higher THg concentrations (mostly particulate), concentrations of chloride were higher in streamwater and groundwater from urban areas than in those from downstream wetland areas. Methylmercury (MeHg) concentrations in unfiltered streamwater ranged from 0.17 ng/L at a forest/wetlands site to 2.94 ng/L at an urban site. The percentage of THg present as MeHg increased as the percentage of forest + wetlands increased, but also was high in some urban areas. MeHg was detected only in groundwater <1 m below the water/sediment interface. Atmospheric deposition is presumed to be the main source of Hg to the wetlands and also may be a source to groundwater, where wastewater inputs in urban areas are hypothesized to mobilize Hg deposited to soils.  相似文献   

8.
百喜草覆盖和敷盖对中国南方红壤坡地径流和产沙的影响   总被引:3,自引:0,他引:3  
Rainfall,runoff (surface runoff,interflow and groundwater runoff) and soil loss from 5 m × 15 m plots were recorded for 5 years (2001-2005) in an experiment with three treatments (cover,mulch and bare ground) on sloping red soil in southern China.Surface runoff and erosion from the Bahia grass (Paspalum notatum Flugge) cover plot (A) and mulch plot (B) during the 5 years were low,despite the occurrence of potentially erosive rains.In contrast,the bare plot (C) had both the highest surface runoff coefficient and the highest sediment yield.There were significant differences in interflow and surface runoff and no significant difference in groundwater runoff among plots.The runoff coefficients and duration of interflow and groundwater runoff were in the order plot B > plot A > plot C.Effects of Bahia grass cover were excellent,indicating that the use of Bahia grass cover can be a simple and feasible practice for soil and water conservation on sloping red soil in the region.  相似文献   

9.
土壤初始含水率对坡面降雨入渗及土壤水分再分布的影响   总被引:40,自引:11,他引:40  
在防止土壤侵蚀和雨后抑制蒸发的条件下,利用室内人工降雨试验,研究了土壤初始含水率对坡面降雨入渗、湿润锋运移及土壤水分再分布规律的影响。结果表明:初始含水率越高,产流越快,平均入渗率越小,达到稳定入渗率的时间也越短;当初始含水率均匀分布时,降雨入渗和再分布过程中湿润锋面平行坡面垂直向下整体运移,坡面降雨入渗过程可以简化为一维;当初始含水率非均匀分布时,初始含水率越高,再分布过程中湿润锋的运移速率越大,但在降雨入渗过程中,湿润锋的运移速率与土体的湿润程度和范围有一定的关系;坡面上方来水(径流)虽然对湿润锋运移速率影响不大,但对入渗有一定的促进作用;再分布过程中,土壤水分有沿坡向下运移的趋势。  相似文献   

10.
Semiarid karst landscapes represent an important ecosystem surrounding the Mediterranean Basin for which little is known on runoff generation. Knowledge of the sources and patterns of variation in infiltration–runoff processes and their controls is important for understanding and modelling the hydrological functions of such ecosystems. The objectives of this paper are to determine the infiltration rates and their controls in a representative mountain karst area (Sierra de Gádor, SE Spain) at micro-plots and to investigate the integrated response of rainfall on a typical hillslope. Rainfall simulations in micro-plots and natural rainfall-runoff monitoring on a hillslope were carried out complementarily. We investigated the role of soil surface components (vegetation, rock outcrop, fracture, and soil crust), topographic position, antecedent soil moisture, and rainfall characteristics in regulating infiltration–runoff processes. Results of rainfall simulation revealed the importance of vegetation cover and the presence of rock fractures in promoting the infiltration in the limestone karst landscape, while bare patches and rock outcrops acted as sources for runoff. All plots with > 50% vegetation cover had no runoff with up to 55 mm h− 1 of simulated rain. In contrast, nearly all bare plots had runoff under the same simulated rain, with runoff coefficients ranging from 3.1 to 20.6% on dry soil surface conditions, and from 2.0 to 65.4% on wet soil surfaces. Runoff coefficients amounted to 59.0–79.5% for rock outcrops without cracks, but were drastically reduced by the presence of cracks. The surfaces with rock fragments resting on the soil (generally located in the middle of the slopes) prevented more effectively the runoff generation than those surfaces where rock fragments were embedded in the top soil. Antecedent soil moisture had significant impact on runoff generation, with wet soil having doubled runoff coefficient, shortened time to runoff, and increased runoff rate compared to the same but dry soil. Linear regressions indicated that the main controls for constant infiltration rate were the cover percentages of vegetation and litter, plus rainfall intensity; while the major controls for runoff coefficient were the bare soil and vegetation coverage, plus rainfall intensity. High infiltration rates measured at the micro-plots agreed with low intra-event runoff coefficients (mostly below 1%) observed under natural rainfalls at the hillslope. Runoff depth and coefficient at the hillslope was significantly correlated with rainfall depth, maximum hourly rainfall intensity and antecedent precipitation over 20 days (AP20). During the 1.5-year monitoring period from Sep-2003 to Mar-2005, the overall infiltration was 41% of the total rainfall amount and the maximum infiltration rate was almost 94% of the largest single rainfall event. The results from this study contribute to improved understanding of the magnitude and controls of the surface runoff in semiarid karst mountain areas.  相似文献   

11.
桂西北喀斯特峰丛不同土地利用方式坡面产流产沙特征   总被引:25,自引:7,他引:18  
由于缺乏长期定位观测资料,西南喀斯特山区坡地水土流失规律一直不明确,严重影响了该区石漠化综合治理和水土流失防治工作的成效和进程。该文基于13个大型径流小区(宽20m、投影面积>1000m2)5a(2006-2010年)的定位观测资料,分析了桂西北喀斯特峰丛洼地不同利用方式坡面降雨产流规律和地表侵蚀产沙特征。结果表明:观测期内年降雨量为1300~2000mm,无论平水年还是丰水年,不同利用方式坡面次降雨径流系数<5%,地表产流很少,降雨几乎全部入渗。不同利用方式地表侵蚀产沙模数虽有较大差异,但土壤侵蚀以微度(<30t/(km2a))为主,部分甚至只有0~5t/(km2a)。植被类型、土地利用方式对坡面降雨产流的影响较小,但人为干扰会增加地表侵蚀产沙量。该文为喀斯特坡地植被恢复重建和水土流失防治提供参考。  相似文献   

12.
This paper reports results from the analysis of the soil hydrological response to simulated rainfall in a cork oak forest in Los Alcornocales Natural Park (SW Spain). Four different soil/vegetation units were selected for the field experiments: [1] cork oak woodland, [2] heathland, [3] grassland, and [4] cork oak/olive tree mixed forest. Rainfall simulations tests were performed on circular plots of 1256.6 cm2 at an intensity of 56.5 mm h− 1 for 30 min.Marked differences in the hydrological behavior of the studied vegetation types were observed after the rainfall simulations. The soils under woodland showed low runoff rates and coefficients. The highest runoff rates were measured on the heath and grass-covered parts of the hillslope. Water repellency of the soil, measured from water drop penetration tests, reduced infiltration (especially under the heathland), and seems to be the cause of fast ponding and runoff generation during the first stages of rainstorms.The mosaic of different patterns of hydrological response to rainfall, such as runoff generation or infiltration, is governed by the spatial distribution of vegetation and its influence on the soil surface.  相似文献   

13.
Evaluating the effects of revegetation on runoff and erosion reduction is essential for studying soil and water conservation on the Loess Plateau after implementation of China's Grain for Green Project. However, quantifying the influence of revegetation on the erosion caused by concentrated runoff in extreme rainstorms is still challenging. To evaluate this influence, scouring-erosion experiments were implemented in situ on the vegetated hillslope plots (GR) and bare hillslope plots (CK). The runoff-reducing effects of grass (GRR) averaged 31%, 20% and 8%, and the erosion-reducing effects of grass (GER) averaged 93%, 95% and 93% on the 5°-plots, 10°-plots and 18°-plots, respectively. The ratios of GRR to GER were 0.09–0.33, implying that the ability of vegetation to reduce erosion was greater than its ability to reduce runoff. The GRR and GER obviously decreased as the inflow rate increased, and the GRR decreased as the hillslope gradient increased, but there were no obvious differences in the GER between hillslope gradients. Vegetation could decrease the ability of the concentrated flow to carry and transport sediment and increase the energy consumption of the concentrated flow in response to hydraulic resistance. Vegetation also significantly reduced the degree of rill development. The degree of rill dissection on the GR (0.054–0.087 m2 m?2) was lower than that on the CK (0.061–0.184 m2 m?2). Our findings provide an essential reference for ecological environment and vegetation restoration on loess hillslopes.  相似文献   

14.
武陵山区女儿寨小流域次降雨径流与产沙特征   总被引:4,自引:0,他引:4       下载免费PDF全文
 以武陵山区女儿寨小流域为研究区,根据流域2004—2008年77场典型降雨径流观测资料,研究流域次降雨径流与产沙特征。结果表明:77场降雨中,以25.0~49.9 mm和50.0~100.0 mm的降雨为主,占降雨总数的67.53%,降雨强度以10~40 mm/h为主;降雨量与径流深和产沙模数呈现较为显著的线性相关性,降雨量、径流深及降雨侵蚀力对产沙模数均有明显影响,其中以径流深和产沙模数的拟合效果最好,R2达0.684 7;在对降雨、径流、产沙共12个指标进行相关性分析的基础上,对径流深、洪峰流量、产沙模数、降雨侵蚀力4个主要指标进行多元逐步回归拟合,R2均在0.85以上,并通过显著性检验,回归方程拟合效果较好,可用于相关指标的定量计算;流域的产沙量主要取决于几次大的暴雨,汛期的降雨决定流域的产流产沙状况。研究结果可为流域水土流失监测和预报、水土保持措施合理配置等提供相应参考。  相似文献   

15.
红壤坡地降雨入渗、产流及土壤水分分配规律研究   总被引:12,自引:2,他引:12  
选取农作区和荒草区两个不同利用模式下的红壤坡地,研究了降雨的入渗、产流及对土壤水分分布的影响。结果表明:(1)农作区和荒草区的径流系数都随着年限的延长而降低并达到稳定。降雨量成为影响径流量的唯一主导因素;农作区的径流系数显著高于荒草区(r〈0.05)。(2)农作区的入渗比率(入渗量/降雨量)低于荒草区;在持续降雨的情况下。农作区60cm以上土壤蓄水增量降低,但渗漏量保持不变.因此使入渗比率降低,而荒草区则在60cm以上土壤蓄水增量降低时,通过提高土壤的渗漏量保持较高的入渗比率。(3)降雨对土壤水分分布的影响受土壤初始含水量和垫面的影响。土壤初始含水量越低,降雨使土壤水分含量增量越大。在同等降雨置下,农作区只有40cm以上的土壤水分含量增加,而荒草区则为90cm以上。  相似文献   

16.
Krám  P.  Hruška  J.  Driscoll  C.T. 《Water, air, and soil pollution》1998,105(1-2):409-415
The environmental chemistry of beryllium (Be) was investigated at the Lysina catchment in western Bohemia, Czech Republic, a forest ecosystem with high loadings of acidic atmospheric deposition. The catchment supports Norway spruce plantations; it is underlain by leucogranite and the soils are Spodosols. Average concentrations of Be were high in groundwater (3.3 µg L-1) and in stream water (1.5 µg L-1), in comparison to the drinking water standard of the Czech Republic (0.2 µg L-1). Chemical equilibrium calculations suggest that aquoberyllium Be2+ was the prevailing inorganic species in drainage waters at the site. Atmospheric deposition of Be (45 µg m-2 yr-1) was small in comparison to drainage outflow (586 µg m-2 yr-1) at Lysina. Elevated Be concentrations in drainage water appear to be the result of the mobilization of Be from soils and weathered bedrock due to acidic atmospheric deposition. Increased mobility of Be due to acidification may have serious ecological consequences in acid-sensitive areas with terrestrial pools of available Be.  相似文献   

17.
The concentrations and annual fluxes of Fe, Al, Mn, Cu and Pb were measured during 1983 in bulk precipitation, throughfall, stem-flow, forest floor percolate, mineral soil solution below the root zone and streamflow in a maple-birch stand on an acid podzolic soil at the Turkey Lakes Watershed (TLW), Ontario. Inputs of metals to TLW in precipitation were small in comparison with those in the eastern United States and Europe. Considerable loss of Mn and Cu from the vegetation during both the growing and the dormant (leafless) periods was observed and presumed to be due to leaching. The enrichment in soil solution of all metals examined, in relation to throughfall, was greatest for Al (7X) and least for Cu (1.2X). Aluminum was mobilized in both the forest floor and the mineral soil, the latter possibly in association with SO4 2?. Copper was solubilized in the lower forest floor or the mineral soil. Surface soil contents of Al and Cu were reduced by Al and, to a lesser extent, Cu leaching beyond the effective rooting zone. Iron, Mn and Pb were mobilized largely in the F horizon of the forest floor, most likely by organic acids. Leaching of Fe, Mn and Pb was reduced by metal accumulation in vegetation, the lower forest floor, or mineral soil within the effective rooting zone of the vegetation. Most (80 to 99%) of the metals leached from the rooting zone were retained in the watershed and did, not appear in streamwater.  相似文献   

18.
A study of inorganic-N concentrations in streams, soil waters, throughfall and rainfall was conducted for one year in five moorland and 20 Sitka spruce plantation catchments in upland Wales. The forest ages ranged from 10 to 55 yr. Highly significant positive relationships with forest stand age existed for inorganic-N concentrations in streamwater, B and O horizon soil waters and throughfall. Inorganic-N in streams and B horizon waters was entirely NO3 ?. Inorganic-N fluxes in throughfall also showed a significant, positive relationship with stand age. Throughfall flux of inorganic-N in the oldest stand was 25.1 kgN ha?1 yr?1, double that in incident rainfall. The older forest stands appear unable to utilise the available N. Nitrification is very active in the soils of these older stands, resulting in significant soil acidification. The processes responsible for the observed NO3 ? leaching losses, and the implications for the debate on Nitrogen Critical Loads are discussed.  相似文献   

19.
Experiments were conducted to study drainage and runoff losses of selenium (Se) from two seleniferous soils (from Simbly containing total Se 850 μg [kg soil]–1 and from Barwa containing 1310 μg [kg soil]–1) under simulated rainfall (250–260 mm in three rainstorms) conditions. Rainfall intensities ranged from 56 to 120 mm h–1 with uniformity coefficients ranging from 70.6% to 84.2%. Selenium lost through drainage (sum of drainage from initially saturated soil for 24 h and through dry and wet runs) was 0.15% and 0.11% of total Se content in the two soils. In soils having similar pH and organic‐C content, losses of Se through drainage as well as runoff were defined by total Se, water‐soluble Se, CaCO3 content, and texture of the soils. The amount of runoff water was almost two times in the soil with fine texture and less infiltration rate than in the other and that same trend was observed with respect to loss of sediment. The soil with higher CaCO3 content and water‐soluble Se lost more Se with moving water both through leaching and runoff, whereas the other soil with fine texture lost greater amount of Se with the sediment. Total Se lost through drainage as well as runoff was 0.29% of the native Se present in both the soils suggesting that significant amount of Se could be lost from seleniferous soils during irrigation and rainfall events.  相似文献   

20.
To assess links between hydroclimatological factors and NO3 - concentrations in streamflow from boreal forests with shallow soils, data from two catchments were analyzed. TOPMODEL was used to calculate the surface runoff fraction, daily dynamics of soil moisture, groundwater levels, and extensions of saturated areas. The stable isotope 18O was used for isotopic hydrograph separation (IHS) during one snowmelt season. Air-temperature and flow increase were the dominating factors explaining annual NO3 -dynamics. Correlation also was found between NO3 - concentrations and the surface runoff fraction. Increased concentrations during times of shallow groundwater were found both during cold and warm periods in one catchment. In the other, shallow groundwater was correlated to decreasing concentrations during cold periods, and increasing concentrations during warm periods. A two component model of event and pre-event water fractions and corresponding NO3 - concentrations was set up for the snowmelt season. Model predictions mirrored NO3 - concentrations during the first five days of the snowmelt. After that, the model overestimated NO3 - concentrations, which indicates retention of NO3 - in the event water fraction, originating from the snowmelt. The highest concentrations occurred during the initiations of flow increase, which indicates flushing of surficial NO3 -.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号