首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
To determine the effects of irrigation water quality, plants were irrigated with normal potable water [0.25 dS m?1 electrical conductivity (EC), 25 mg L?1 sodium (Na), 55 mg L?1 chloride (Cl)], treated effluent (0.94 dS m?1 EC, 122 mg L?1 Na, 143 mg L?1 Cl) and saline water with low salinity (1.24 dS m?1 EC, 144 mg L?1 Na and 358 mg L?1 Cl) and high salinity (2.19 dS m?1 EC, 264 mg L ?1Na and 662 mg L?1 Cl) for snow peas, and high salinity (3.07 dS m?1 EC, 383 mg L?1 Na and 965 mg L?1 Cl) and very high salinity (5.83 dS m?1 EC, 741 mg L?1 Na and 1876 mg L?1 Cl) for celery. The greater salts build up in the soil and ion toxicity (Cl and Na) with saline water irrigation contributed to significantly greater reduction in root and shoot biomass, water use, yield and water productivity (yield kg kL?1 of water used) of snow peas and celery compared with treated effluent and potable water irrigation. There was 8%, 56% and 74% reduction in celery yield respectively with treated effluent, high salinity and very high salinity saline water irrigation compared with potable water irrigation. The Na concentration in snow peas shoots increased by 54%, 234% and 501% with treated effluent, low and high salinity saline water irrigation. Similarly, the increases in Na concentration in celery shoots were 19%, 35% and 82%. The treated effluent irrigation also resulted in a significant increase in soil EC, nitrogen (N) and phosphorus (P) content compared with potable water irrigation. The heavy metals besides salts build up appears to have contributed to yield reductions with treated effluent irrigation. The study reveals strong implications for the use of saline water and treated effluent for irrigation of snow peas and celery. The salt build up within the root zone and soil environment would be critical in the long-run with the use of saline water and treated effluent for irrigation of crops. To minimize the salinity level in rhizosphere, an alternate irrigation of potable water with treated effluent or low salinity level water may be better option.  相似文献   

2.
XIE Yue  ZHOU Li-Xiang 《土壤圈》2013,23(3):402-408
To assess the feasibility of biogenic schwertmannite to act as a sorbent for removing arsenite from groundwater, a series of biogenic schwertmannite-packed column adsorption experiments were conducted on simulated As(III)-containing groundwater. Empty bed contact time (EBCT), As(III) concentration in effluent, and the removal efficiency of As(III) through the column were investigated at pH 8.0 and temperature 25 ± 0.5 °C. The results showed that the breakthrough curves were mainly dependent on EBCT values when the influent As(III) concentration was 500 μg L-1 and the optimum EBCT was 4.0 min. When the effluent As(III) concentration reached 10 and 50 μg L-1, the breakthrough volume for the schwertmannite adsorption columns were 4 200 and 5 600 bed volume (BV), with As(III) adsorption capacity of 2.1 and 2.8 mg g-1, respectively. Biogenic schwertmannite could be regenerated by 1.0 mol L-1 NaOH solution, and more than 80% of As(III) adsorbed on the surface of schwertmannite could be released after 3 successive regenerations. The breakthrough volume for the regenerated schwertmannite-packed column still maintained 4 000--4 200 BV when the As(III) concentration in effluent was below 10 μg L-1. Compared with other sorbents for As(III) removal, the biogenic schwertmannite-packed column had a higher breakthrough volume and a much higher adsorption capacity, implying that biogenic schwertmannite was a highly efficient and potential sorbent to purify As(III)-contaminated groundwater.  相似文献   

3.
In order to study the potential use of microfauna as an indicator of effluent quality and operational parameters in an activated sludge system for treating piggery wastewater, an experimental sequencing batch reactor was set up and evaluated by biological and physical–chemical analyses for 12 months. Results show that microfauna (and specifically ciliate protozoa) are a good parameter for assessing effluent quality in terms of both chemical oxygen demand (COD) and ammonia and for assessing the organic and nitrogen load of the system. Specifically, the abundance of ciliates decreases from 20,000 individuals·mL?1 to ca. 2,500 individuals·mL?1 and from ca. 10,000 individuals mL?1 to ca. 200 individuals mL?1 when effluent concentration is between 550 and 750 mg L?1 and above 100 mg L?1 to the COD and ammonia concentrations, respectively. Furthermore, microfauna abundance is reduced from ca. 18,000 individuals mL?1 (organic load between 0.1 and 0.2 mg COD mg total suspended solids (TSS)?1 day?1) to ca. 500 individuals mL?1 (organic load between 0.3 and 04 mg COD mg TSS?1 day?1). Microfauna abundance also decreases as nitrogen loading increases. Nitrogen loading in the range of 5–60 mg NH4–N g TSS?1 day?1 does not have any significant effect on microfauna abundance. However, ammonia loading from 60 to 120 mg NH4–N g TSS?1 day?1 reduces microfauna abundance ca. 6-fold. Ciliate protozoa were the largest microfauna group during the whole period of study, representing ca. 75% of the total microfauna abundance. The largest group in the ciliate community was that of the free-swimming ciliates. This was followed by the group of attached and crawling ciliates. Specifically, the dominant ciliate species during the whole study period were Uronema nigricans, Vorticella microstoma-complex, Epistylis coronata, and Acineria uncinata.  相似文献   

4.
Fungi have been isolated that can tolerate and absorb high levels of heavy metals, especially Cd, when grown in a continuous flow air-lift fermenter with up to 10 throughputs per day. This allows the recovery of metals or the purification of industrial effluent streams. An average of over 97% of the Cd was removed from the simulated effluent during passage through the fermenter, reducing the Cd concentration from over 6 mg L?1 to less than 0.2 mg L?1. The biomass recovered contained up to 2.9% Cd (on a dry weight basis) and can either be disposed of or returned for smelting to recover the metal.  相似文献   

5.
Abstract

An experiment was carried out in a controlled temperature (CT) room for five weeks with tomato cvs., Moneymaker, Liberto, and Calypso, to investigate possible relationships between zinc (Zn) deficiency or toxicity and electrolyte leakage in plant leaves. The concentrations of Zn in nutrient solution were 0.01, 0.5, and 5.0 mg L?1, respectively. There were significant reductions in the dry matter and chlorophyll content of all three cultivars grown both at 0.01 (low) and 5 mg L?1 (high) Zn compared to 0.5 mg L?1. The concentration of Zn at 0.01 mg L?1 was not sufficient to provide for optimal plant growth, while 5 mg L?1 in nutrient solution was detrimental to plant growth for all three cultivars. Dry matter production was generally lowest in the plants grown at low (0.01 mg L?1) Zn except for Moneymaker where the lowest biomass was in the high Zn treatment. Zinc concentration was increased in the leaves and roots with increasing Zn concentration in nutrient solution. Phosphorus concentration was toxic in the leaves of the plants grown at low (0.01 mg L?1) and was deficienct at high Zn (5 mg L?1). The electrolyte leakage (%) gradually increased in the plants grown at low and high Zn concentrations and these increases were greatest in the leaves of plants grown at low Zn (except for Moneymaker grown at high Zn where reduction in dry matter was less). The best results for all growth parameters tested were for the plants grown at 0.5 mg L?1 Zn. The results of this short‐term experiment show that electrolyte leakage which is relatively simple and easy to measure may be a good indicator of cultivar tolerance to Zn deficiency and toxicity.  相似文献   

6.
Phosphorus control measures at two major (>10000 people equivalent, p.e.) sewage treatment works (STWs) were installed in the lowland calcareous basin of the River Wensum (England). In-stream phosphorus concentrations were monitored seasonally from subcatchments with different levels of phosphorus impacts, as well as before and after phosphorus control, above and below the two major STWs. Point source effluents raised in-stream soluble reactive phosphorus (SRP) concentrations from 9–15 μg L?1 (agricultural sub-catchments) to 580–3270 μg L?1. This was accompanied by an increase of the SRP relative to total phosphorus from 27% to 80–90%. The phosphorus content of the suspended sediment was high (0.2 to 7.7%). Molybdate unreactive phosphorus (1–29 μg L?1) was surprisingly not affected by point source effluents. The river bed sediment bioavailable phosphorus concentrations were higher (4–18 μg g?1 wet weight) downstream from the main effluents, compared to upstream (2–6 μg g?1 wet weight). Phosphorus control at the STWs in 1999 has allowed to reduce in-stream soluble reactive concentrations to 140–280 μg L?1 but has had no significant impact on bioavailable phosphorus in the sediment by 2001, suggesting that either net sediment desorption did not occur or that it is a much slower, longer term response. The relative contribution of the diffuse sources increased from 10% to 27% of the total phosphorus loads at Fakenham. The management of these rivers is therefore problematic.  相似文献   

7.
Chromium occurs naturally at trace levels in most soils and water, but disposal of industrial waste and sewage sludge containing chromium compounds has created a number of contaminated sites, which could pose a major environmental threat. This study was conducted to enumerate and isolate chromium-resistant microorganisms from sediments of evaporation ponds of a metal processing plant and determine their tolerance to other metals, metalloids and antibiotics. Enumeration of the microbiota of Cr-contaminated sediments and a clean background sample was conducted by means of the dilution-plate count method using media spiked with Cr(VI) at concentrations ranging from 10 to 1000 mg L?1. Twenty Cr(VI) tolerant bacterial isolates were selected and their resistance to other metals and metalloids, and to antibiotics was assessed using a plate diffusion technique. The number of colony-forming units (cfu) of the contaminated sediments declined with increasing concentrations from 10 to 100 mg L?1 Cr(VI), and more severely from 100 to 1000 mg L?1 Cr(VI). The background sample behaved similarly to 100 mg L?1 Cr(VI), but the cfu declined more rapidly thereafter, and no cfu were observed at 1000 mg L?1 Cr(VI). Metals and metalloids that inhibited growth (from the most to least inhibitory) were: Hg > Cd > Ag > Mo = As(III) at 50 μg mL?1. All 20 isolates were resistant to Co, Cu, Fe, Ni, Se(IV), Se(VI), Zn, Sn, As(V), Te and Sb at 50 μg mL?1 and Pb at 100 μg mL?1. Eighty-five percent of the isolates had multiple antibiotic resistance. In general, the more metal-tolerant bacteria were among the more resistant to antibiotics. It appears that the Cr-contaminated sediments may have enriched for bacterial strains with increased Cr(VI) tolerance.  相似文献   

8.
The aquatic vascular plant (Ceratophyllum demersum L.) was investigated as a potential biological filter for removal of Cd from wastewaters. Plants were grown in and harvested weekly from 0.10 M Hoagland nutrient solutions containing concentrations of Cd from 0.01 to 1.03 μg Cd mL?1. Tissue Cd was positively correlated to increased concentrations of Cd in solution. Concentration factors (CFs) of Cd in plants after one week were 13.3 for the 0.01 μg Cd mL?1 treatment; 451.4 for plants treated with 0.04 μg Cd mL?1, and 506.5 for plants treated with 1.03 μg Cd mL?1. Plants treated with 0.01 μg Cd mL?1 sustained tissue Cd concentrations almost 9-fold over those at week 1. However, after 5 weeks tissue Cd concentration in plants exposed to 1.03 μg Cd mL?1 had decreased 97% compared to the week 1 concentration. Growth measurements of dry weight, stem lengths, and lateral shoot growth were nagatively correlated to increased Cd treatments. Our results suggest that Coontail exposed to very low Cd concentrations (0.01 μg Cd mL?1) can take up and accumulate Cd. However, plants exposed to Cd at 0.04 μg Cd mL?1 or above did not accumulate Cd past one week.  相似文献   

9.
The effects of selenium (Se) (VI) soil fertilization with 2 μg Se L?1 or foliar spraying twice with 20 mg Se L?1 in the form of sodium (Na) selenate on the physiological and biochemical characteristics of cabbage plants were studied. The ability of the plants to take up Se and translocate it to different parts of the plants was also studied. Despite the high concentration of Se in the foliar solution, there was no effect on photosynthesis, transpiration rate, photochemical efficiency of PSII, or electron transport system activity. The amount of chlorophyll and anthocyanins were unchanged. At harvest, the concentration of Se in control plants was lower than 100 ng Se g?1 dry weight (DW), while plants treated with 20 mg Se L?1 contained 5500 ng Se g?1. Selenium enriched cabbage could be used in human nutrition. The tolerance of cabbage to Se could be explained by the formation of insoluble compounds that are not available for the plant.  相似文献   

10.
The potential of domestic wastewater treatment plants to contribute for the dissemination of ciprofloxacin-resistant bacteria was assessed. Differences on bacterial counts and percentage of resistance in the raw wastewater could not be explained on basis of the size of the plant or demographic characteristics of population served. In contrast, the treated effluent of the larger plants had significantly more heterotrophs and enterobacteria, including ciprofloxacin-resistant organisms, than the smaller (p?<?0.01). Moreover, longer hydraulic retention times were associated with significantly higher percentages of resistant enterobacteria in the treated effluent (p?<?0.05). Independently of the size or type of treatment used, domestic wastewater treatment plants discharged per day at least 1010–1014 colony forming units of ciprofloxacin-resistant bacteria into the receiving environment.  相似文献   

11.
In this study an attempt has been made to find a solution to the problem of disposal of distillery effluents through anaerobic followed by aerobic treatment. Accordingly, experimental studies were planned and carried out in two phases. The first phase experimentation was conducted to study the performance of Semicontinuous Fixed Film Anaerobic Reactors (SCFFAR) which simulate Downflow Stationary Fixed Film anaerobic reactors (DSFF) for partial treatment of distillery waste. Second phase experimentation included studies on degradation of anaerobically treated effluent employing semicontinuous aerobic reactors with sludge recycle. The results indicated that the distillery waste should be diluted to bring down the COD to about 50 000 mg L?1 before the same is treated by stationery fixed film anaerobic reactors and this dilution can be achieved by circulating the treated effluent. Further the reduction of COD beyond 9000 to 10 000 mg L?1 by anaerobic treatment appears to be uneconomical. Results of second phase of the study show that the aerobic degradation of anaerobically treated effluent can achieve significant COD reduction (approx. 67%). However, reduction of COD of final effluent below 500 mg L?1 appears to be very difficult. The settling characteristics of the sludge produced in aerobic study depended on the BSRT value and improved with increase in BSRT.  相似文献   

12.
In this study, interactions of nickel sulfate and urea sprays on vegetative growth, yield and leaf mineral contents in strawberry were investigated. Rooted Pajaro strawberry plants were potted in 3 liter pots filled with soil, leaf mold and sand (1:1:1, v/v/v). Established plants were foliar sprayed with nickel sulfate at 0, 150, 300 and 450 mg L?1 and urea 0 and 2 g L?1 concentrations. Results indicated that nickel (Ni; 300 mg L?1) plus urea (2 g L?1) significantly increased the yield and runner numbers. Nickel sulfate at the rate of 300 and 150 mg L?1and urea (2 g L?1) significantly increased the crown numbers. The greatest root fresh and dry weights were obtained from untreated plants. Urea at 2 g L?1 without nickel significantly increased shoot fresh and dry weights. Nickel at 450 mg L?1 without urea significantly increased Ni concentration in leaves. Overall, nickel sulfate at 150 and 300 mg L?1 along with urea at 2 g L?1 were the best treatments.  相似文献   

13.
《Journal of plant nutrition》2013,36(7):1071-1084
Calibration of field crop response to nutrient availability is the bases for making a fertilizer recommendation from soil and tissue analyses. The purpose of this study was to evaluate and summarize results from a series of experiments on silicon (Si) fertilization of rice in the Everglades Agriculture Area. Twenty-eight rice field experiments were conducted from 1992 through 1996. The experiments consisted of 2 to 5 rates of calcium silicate applied to soils (Histosols) of varying Si soil-test values. Soil samples were taken before planting and analyzed for acetic acid (0.5 mol L?1) extractable Si. Straw samples were collected at harvest and analyzed for total Si. Grain yield was determined. The “critical” levels for Si in the soil (point below which response to Si fertilizer is expected) calculated by the Cate & Nelson procedure was 19 mg Si L?1 soil. The amount of silicon to correct Si deficiency in the soil and to obtain optimum rice yield was 1500, 1120 and 0 kg ha?1 for low (<6 mg L?1), medium (6 to 24 mg L?1), and high (>24 mg L?1) level of soil Si, respectively. Silicon in the straw was classified as high when Si concentration was >34 g kg?1, medium when in between 17 and 34, and low when <17 g kg?1 (3.4 and 1.7%, respectively).

  相似文献   

14.
The uptake of Ni (II) and toxic effects of the metal on some biochemical parameters in Salvinia natans L. were studied. The uptake of Ni (II) by the plants gradually increased with increase in concentration of Ni (II) in the culture medium. Maximum accumulation of Ni (II) was noted within a day and maximum removal (about 90%) was recorded upto 20 Μg mL?1 of Ni (II). Accumulation of the metal in roots (14.75 Μg mL?1) is greater than that of shoots (5.25 Μg mL?1). Ni (II)>10 Μg mL?1 promoted senescence of Salvinia plants by decreasing chlorophylls, protein, amino acid, Hill activity, dry weight and by inducing necrosis. In the absence of other pollutants, Salvinia plants may be used for removal of Ni (II) from effluents and also as an indicator of Ni pollution.  相似文献   

15.
The amount of Cd and Pb in full blood and in the urine of males in Cracow and in a control area were measured and compared to the background of the level of these metals in air, dust fall and drinking water. The investigations were carried out in the years 1984–85. The mean Cd level in body fluids of Cracow's inhabitants was significantly higher than in the control group, and it amounted to: 0.54 μg Cd 100 mL?1 in blood and 2.13 μg Cd L?1 in urine. The Pb content in blood of the Cracow group (15.74 μg 100 mL?1) was also significantly higher than in the control one, while the Pb level in urine was similar in both populations, reaching values below 10 μg L?1. The mean annual Cd concentration in air and the Cd content in the dust fall in Cracow were 3 times higher than in the control area. The mean annual Pb concentration in Cracow's air exceeded the permissible Polish norm. In comparison with the control area, the Pb concentration level in air and its content in the dust fall in Cracow were 5 and 2 times higher, respectively. The level of Cd and Pb concentration in drinking water in Cracow and in the control area were much lower than the permissible values; however, in Cracow they were somewhat higher than in the control area.  相似文献   

16.
A greenhouse assay using an arugula (Eruca sativa L.) hydroponics system was carried out to evaluate the following effects of increasing amounts of cadmium and lead in nutritive solution: (a) production; (b) translocation of cadmium (Cd) and lead (Pb) throughout the plants; (c) possible interactions of Cd and Pb with other mineral elements, transition metals, essential to plants; (d) tolerance limits to Cd and Pb with regard to production; and (e) chelating interaction of Cd and Pb with root substances. The absorption of Cd and Pb increased with increasing dosages in solution. Roots accumulated larger amounts of metals than shoots. Plants develop better with less than 0.025 mg L?1 of Cd, with a damaging Cd concentration of 1 mg L?1. The tolerable Pb concentration was up to 10 mg L?1. Cadmium and Pb translocate poorly in plants and their deleterious effect is due to the deposit of very stable chelates in roots.  相似文献   

17.
The adsorption of As(V) on alumina, hematite, kaolin and quartz has been measured as a function of pH (2 to 10), and As concentrations (10?4 to 10 ?8 M; in the alumina and kaolin systems only). The effects of sulfate (0 to 80 mg L?1) and fulvic acid (0 to 25 mg L?1) were studied. The charge of the solid surface and the As speciation in solution (determined by pH) were the most important chemical parameters affecting the sorption behavior. At pH below PZC of the solid, there was a qualitative correlation between the adsorption and the anion exchange capacity of the solid. For hematite at low pH (below 5) there was a reduction of the adsorption possibly related to the formation of positively charged species. The presence of sulfate or fulvic acid reduced the adsorption.  相似文献   

18.
Elevated levels of As in contaminated water and soil could pose a major threat to the environment. Relatively high levels of As have been reported in agricultural drainage water and in evaporation pond sediments in Kern County, California. The objective of this study was to enumerate and isolate As-resistant microorganisms from agricultural drainage water and evaporation pond sediments and to assess their tolerance to metals, metalloids and antibiotics. The culture medium was amended with arsenite (III), arsenate (V), methylarsonic acid (MAA), and dimethylarsinic acid (DMA). Among the water samples, As(V), MAA, and DMA added to the medium at concentrations from 0.1 to 1000 mg L?1 showed no effect on the colony forming units (CFUs) compared with no As supplementation, while arsenite (III) (> 1.0 mg L?1) inhibited the population. The sediments showed three trends: (i) no effect on CFUs in the presence of As(V) up to 1000 mg kg?1, (ii) a decline in CFUs in the presence of > 100 mg kg?1, As(III), and (iii) an increase in CFUs upon the addition of MAA or DMA at > 25 mg kg?1, Arsenite (III) was much more toxic to the indigenous microflora than any other As species. Arsenite (III) inactivates many enzymes by having a high affinity for thiol groups of proteins. A plate diffusion method was used to assess the tolerance of the As-resistant bacteria to heavy metals, metalloids and antibiotics. Of 14 isolates tested, all were resistant to Co, Cu, Pb, Ni, Mo, Cr, Se(IV), Se(VI), As(III), As(V), Sb, Sn, and Ag (50 µg mL?1). The most toxic trace elements were Cd followed by Hg>Te>Zn. Multiple antibiotic tolerance (resistance to 2 or more antibiotics) was found among 43% of the isolates. The As-resistant bacteria showed a high tolerance to metals and antibiotics.  相似文献   

19.
Following the Deepwater Horizon explosion and crude oil contamination of a marsh ecosystem in AL in June 2010, hydrocarbon-degrader microbial abundances of aerobic alkane, total hydrocarbon, and polycyclic aromatic hydrocarbon (PAH) degraders were enumerated seasonally. Surface sediment samples were collected in October and December of 2010 and in April and July of 2011 along 40?C70-m transects from the high tide to the intertidal zone including Spartina alterniflora-vegetated marsh, seagrass (Ruppia maritima)-dominated sediments, and nonvegetated sediments. Alkane and total hydrocarbon degraders in the sediment were detected, while PAH degraders were below detection limit at all locations examined during the sampling periods. The highest counts for microbial alkane degraders were observed at the high tide line in April and averaged to 8.65?×?105 of cells/g dry weight (dw) sediment. The abundance of alkane degraders during other months ranged from 9.49?×?103 to 3.87?×?104, while for total hydrocarbon degraders, it ranged between 5.62?×?103 and 1.14?×?105 of cells/g dw sediment. Pore water nutrient concentrations (NH 4 + , NO 3 ? , NO 2 ? , and PO 4 3? ) showed seasonal changes with minimum values observed in December and April and maximum values in October and July. Concentrations of total petroleum hydrocarbons in sediments averaged 100.4?±?52.4 and 141.9?±?57.5?mg/kg in January and July, 2011, respectively. The presence of aerobic microbial communities during all seasons in these nearshore ecosystems suggests that an active and resident microbial community is capable of mineralizing a fraction of petroleum hydrocarbons.  相似文献   

20.
A study was conducted to determine the contaminantlevel of the Sarno River basin, a small creek located insouthwestern Italy. Six sampling site locations were selected tocoincide with two previous studies conducted in 1975 and 1985 toprovide a basis for comparison. For each location, twelve sampleswere collected over the period October 1997–September 1998.Results indicated a degradation in river water quality, especiallynear the mouth. This was reflected by a dissolved oxygenconcentration of about 0.8 mg L-1 near the urban areas ofScafati, Pompei and Castellamare of Stabia. At the same locations,BOD5 and COD values were two to five times higher than theallowable regulatory maximum levels, respectively. About 4 kmfrom the headwaters, the average oxygen concentration was 4.7 mgL-1, BOD5 values were close to the standard limit (37 vs 40 mg L-1), and COD values were above the standard limits(252 vs 160 mg L-1). Highest concentrations were detectedduring peak tomato production. During this time, settleable solidswere also elevated, two to six times the regulatory standard.Coliform bacteria densities were found in excess of the standardlimits at all sites. Near the head of the river, mean fecalcoliform (22,571 MPN mL-1) and streptococci densities (14,214 MPN mL-1) surpassed the regulatory level of 120 and 20 MPN mL-1, respectively, reflecting the input from the urbansettings of Sarno and agricultural fields. The heavy metaldissolved concentrations were low at all sampling sites. Most ofthe analyzed contaminants increased when comparend with 1985data. BOD5 increased 5 to 10 times at sites near the urbansettings of Scafati, Pompei and Castellamare di Stabia, whereasCOD increases were twofold at all sites. A decline of chromiumlevels was observed due to the recent effective treatment ofwaste water from the tanning plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号