首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Based on studies of high-elevation, Sierra Nevada catchments during the period from 1983 through 1996, we describe temporal variations in the concentrations of NO3 - and SO4 2- in surface waters. During snowmelt, some catchments had a pattern of NO3 - increase to a plateau between the start of snowmelt and some weeks before runoff peaked, and a decline as runoff increased to its maximum. In other catchments, NO3 - concentrations peaked during the autumn and winter. Long-term trends in surface water chemistry were evident in only two catchments: an increase in SO4 2- concentrations in surface waters of the Ruby Lake basin, and a lowering of annual maxima and minima of NO3 - concentrations at Emerald Lake. From October 1987 through April 1994, SO4 2- concentrations increased from about 6 µeq L-1 to about 12 µeq L-1 in Ruby Lake, and in Emerald Lake, NO3 - maxima declined by 25-50 %.  相似文献   

2.
Monthly fluxes of sulphate (SO4 2-) and base cations(Ca2+, Mg2+, K+) were studied from 1993 to 1996 as precipitation passed through forest vegetation and surfacesoil layers in an area receiving low and declining levels of atmospheric sulphate pollution. The canopy was dominated by mature Norway spruce (Picea abies Karsten) and the soilwas a podzol developed on glacial till material. The mean annual bulk deposition of SO4 2- collected in the open was 136 molc ha-1 and that of Ca2+, Mg2+ and K+ was 44, 11 and 25 molc ha-1, respectively. The annual total throughfall deposition of SO4 2- was 318 molc ha-1 and that of Ca2+, Mg2+ and K+ was 151, 64 and 181 molcha-1, respectively. Sulphate was the dominant anion accompanying the base cations leached from the canopy. More than half (58%) of the annual total throughfall deposition ofSO4 2- was retained by the O-horizon and only 15% leached from below the B-horizon. The annual leaching of Ca2+, Mg2+ and K+ from below the B-horizon was14, 25 and 9% of the annual total throughfall deposition, respectively. The transport of base cations through the soil was predominantely countered by SO4 2- anions.  相似文献   

3.
Temporal changes in major solute concentrations in six Czech Republic lakes were monitored during the period 1984–1995. Four chronically-acidic lakes had decreasing concentrations of strong-acid anions (CSA = SO4 2- + NO3 - + Cl-), at rates of 3.0 to 9.0 μeq L-1 yr-1. Decreases in SO4 2-, NO3 -, and Cl- (at rates up to 5.1 μeq L-1 yr-1, 3.2 μeq L-1 yr-1, and 0.6 μeq L-1 yr-1, respectively) occurred. The response to the decrease in deposition of S was rapid and annual decline of SO4 2- in lake water was directly proportional to SO4 2- concentrations in the acidified lakes. Changes in NO3 - concentrations were modified by biological consumption within the lakes. The decline in CSA was accompanied in the four most acidic lakes by decreases in AlT, increases in pH at rates of 0.011 to 0.016 pH yr- 1, and decreases of Ca2+ and Mg2+ (but not Na+) in three lakes. The acid neutralizing capacity (ANC) increased significantly in all six lakes. Increases in base cation concentrations (CB = Ca2+ + Na+ + Mg2+ + K+) were the principal contributing factor to ANC increases in the two lakes with positive ANC, whereas decrease in CSA was the major factor in ANC increases in the four chronically-acidic lakes. The continued chemical recovery of these lakes depends on the uncertain trends in N deposition, the cycling of N in the lakes and their catchments, and the magnitude of the future decrease in S deposition.  相似文献   

4.
Characterization of the forest vegetation and soils in two adjacent; contrasting headwater lake basins located in Kejimkujik National Park, Nova Scotia was completed in 1980. Precipitation chemistry was studied during May to November, 1981–83 at two forested plots in each basin. There were 2012 stems ha-1 in Beaverskin basin and 1816 stems ha-1 in Pebbleloggitch basin. Beaverskin species composition was predominantly coniferous (72% of stems) while Pebbleloggitch was predominantly deciduous (52% of stems). Thickness and mass of organic soil layers were greater in Beaverskin. Mineral soil cation concentrations were similar. There were no differences between the basins in mean incident bulk precipitation pH. Mean volume-weighted pH for the period (73 collections) was 4.80. Sixteen percent of collections had a pH < 4.25. Sulphate deposition in incident bulk precipitation (May – November) ranged from 5.4–8.5 kg ha-1 during 1981–83 while NO inf3 sup- ranged from 0.04–0.93 kg ha-1. The partitioning of incident precipitation into throughfall varied considerably (69%–38%) year-to-year. Temporal flux of ions did not differ significantly. Amounts of all major ions in throughfall especially SO inf4 sup2- and base cations(Ca2+ + Mg2+ + K+ + Na+) were enriched.  相似文献   

5.
The interaction between high concentrations of polluting gases (SO2 and NOx) and damaged forest ecosystems was observed by studying throughfall precipitation in the Erzegebirge Mountains, Northern Bohemia. Qualitative and quantitative data on throughfall for the period November 1989–October 1990 are presented. Weighted averages of SO 4 2? and NO 3 ? concentrations in the throughfall were 23.05 mg L?1 and 13.61 mg L?1 in a beech and 34.41 mg L?1 and 11.03 mg L?1 in a spruce forest respectively. Three variables (the molar ratios of K/Na, Ntot/S and N-NO3/N-NE4) were used to compare the spruce throughfall quality to that observed in areas with similar however, less damaged spruce stands. Both K/Na and N-NO3/N-NH4 ratios clearly decreased with increasing tree damage, the Ntot/S ratio increased. The results suggest that the throughfall in damaged ecosystems of the Erzegebirge region becomes more like a wet precipitation as the tree canopies get sparser and the trees reduce canopy leaching.  相似文献   

6.
The recovery potential of stream acidification from years of acidic deposition is dependent on biogeochemical processes and varies among different acid-sensitive regions. Studies that investigate long-term trends and seasonal variability of stream chemistry in the context of atmospheric deposition and watershed setting provide crucial assessments on governing biogeochemical processes. In this study, water chemistries were investigated in Noland Divide watershed (NDW), a high-elevation watershed in the Great Smoky Mountains National Park (GRSM) of the southern Appalachian region. Monitoring data from 1991 to 2007 for deposition and stream water chemistries were statistically analyzed for long-term trends and seasonal patterns by using Seasonal Kendall Tau tests. Precipitation declined over this study period, where throughfall (TF) declined significantly by 5.76?cm?year?1. Precipitation patterns play a key role in the fate and transport of acid pollutants. On a monthly volume-weighted basis, pH of TF and wet deposition, and stream water did not significantly change over time remaining around 4.3, 4.7, and 5.8, respectively. Per NDW area, TF SO4 2- flux declined 356.16?eq?year?1 and SO4 2- concentrations did not change significantly over time. Stream SO4 2- remained about 30???eq L?1 exhibiting no long-term trends or seasonal patterns. SO4 2- retention was generally greater during drier months. TF monthly volume-weighted NH4 + and NO3 - concentrations significantly increased by 0.80???eq L?1?year?1 and 1.24???eq L?1?year?1, respectively. TF NH4 + fluxes increased by 95.76?eq?year?1. Most of NH4 + was retained in the watershed, and NO3 - retention was much lower than NH4 +. Stream monthly volume-weighted NO3 - concentrations and fluxes significantly declined by 0.56???eq L?1?year?1 and 139.56?eq?year?1, respectively. Overall, in NDW, inorganic nitrogen was exported before 1999 and retained since then, presumably from forest regrowth after Frazer fir die-off in the 1970s from balsam wooly adelgid infestation. Stream export of NO3 - was greater during winter than summer months. During the period from 1999 to 2007, stream base cations did not exhibit significant changes, apparently regulated by soil supply. Statistical models predicting stream pH, ANC, SO4 2-, and NO3 - concentrations were largely correlated with stream discharge and number of dry days between precipitation events and SO4 2- deposition. Dependent on precipitation, governing biogeochemical processes in NDW appear to be SO4 2- adsorption, nitrification, and NO3 - forest uptake. This study provided essential information to aid the GRSM management for developing predictive models of the future water quality and potential impacts from climate change.  相似文献   

7.
Chemical Composition of Precipitation in Beijing Area, Northern China   总被引:1,自引:0,他引:1  
Variations of anions (SO4 2-, NO3 -,NO2 -, Cl- and F-),cations (K+,Na+, Ca2+, Mg2+ and +) and pH values in precipitation, througfall and stemflow samples collected overa four-year period (1995–1998) in Beijing (two sitesZhongguancun and Mangshan) are presented. The annualvolume-weighted range of pH values were 6.57–7.11 inprecipitation, 5.46–6.86 in thoughfall and 5.32–6.41 instemflow. The fominant anion was , while Ca+and NH4 + were the main cations in precipitation,throughfall and stemflow. Most of ion concentrations with precipitation, throughfall and stemflow volume showed negative correlation, except for some ones. Significant correlationvalues were also found between ions (SO4 2-,NO3 -, Cl-, F-, Ca2+,Mg2+ andNa+) in precipitation, throughfall and stemflow indicatedthe common sources of these ions such as coal combustion,automobile emission and fertilizers application. Compared toprecipitation, there was an increased ion concentration inthroughfall or in stemflow. Changes of ion concentrations werein Quercus liatungensis Koiz. and Pinus tabulaefornisCarr. throughfall (or stemflow) because of different crown andbark qualities of tree species.  相似文献   

8.
Mexico City experiences some of the most severe air pollution in the world. Ozone injury has been documented in sensitive tree species in urban and forested areas in the Valley of Mexico. However, little is known of the levels of other atmospheric pollutants and their ecological effects on forests in the Valley of Mexico. In this study bulk throughfall deposition of inorganic nitrogen (N) and sulfur (S) was measured for one year at a forested site upwind (east) and downwind (southwest) of Mexico City. Edaphic and plant (Pinus hartwegii Lindl.) indicators of N and S nutrient status were also measured. Streamwater NO3 - and SO4 2- concentrations were also determined as an indicator of watershed-level N and S loss. Annual bulk throughfall deposition of inorganic N and S at the high-pollution forested site 23 km southwest of Mexico City (Desierto de los Leones National Park; DL) was 18.5 and 20.4 kg ha-1. Values for N and S deposition at Zoquiapan (ZOQ), a relatively low-pollution site 53 km east of Mexico City, were 5.5 and 8.8 kg ha-1 yr-1. Foliar concentrations of N, foliar N:P and C:N ratios, extractable soil NO3 -, and streamwater NO3 - concentrations indicate that the forest at DL is N enriched, possibly as a result of chronic N deposition. Sulfur concentrations in current-year foliage were also slightly greater at DL than at ZOQ, but S concentrations in one-year-old foliage were not statistically different between the two sites. Streamwater concentrations of NO3 - ranged from 0.8 to 44.6 μEq L-1 at DL compared to 0.0 to 11.3 μEq L-1 at ZOQ. In summary, these findings support the hypothesis that elevated N deposition at DL has increased the level of available N, increased the N status of P. hartwegii, and resulted in export of excess N as NO3 - in streamwater.  相似文献   

9.
Acid deposition is considered to be a major environmental problem in China, but information about effects on soils and waters is scarce. To contribute to increased knowledge about the problem a small catchment (about 7 ha) in the outskirts of Guiyang, the provincial capital of Guizhou in south-western China, was instrumented for collection of precipitation, throughfall, soil water and stream water. In addition soil samples have been collected and analyzed for key properties. Median pH in the precipitation is 4.40 (quartiles: 4.19 and 4.77) and the median sulfate concentration 228 µeq/L (quartiles: 147 and 334 µeq/L). The dry deposition of both SO2 and alkaline dust is considerable. The sum of wet deposition of sulfate and dry deposition of SO2 has been estimated to about 8.5 gSm-2yr-1. The total S-deposition may be somewhat higher due to dry deposition of sulfate and occult deposition. In soil water, SO4 2- is the major anion, generally ranging from 300 to 2500 µeq/L in the different plots. Calcium is an important cation, but there is also a considerable contribution of aluminum from the soil. In some of the plots the concentrations of inorganic monomeric aluminum (Ali) are typically between 200 and 400 µm. Potential harmful levels of aluminum and/or high Ali/(Ca2+ + Mg2+) molar ratios occur in the catchment, but damages to vegetation have not yet been reported. In most cases exchangeable aluminum accounts for between 75 and 95% of the total effective cation exchange capacity (CECE) in the mineral soils. The aluminum chemistry cannot easily be explained by conventional models as the Gaines-Thomas ion-exchange equation or equilibrium with an Al(OH)3 mineral phase. The stream water is generally less acidic and has considerably lower concentrations of aluminum than the soil water, even though quite acid events have been observed (pH < 4.4). The median pH values are 4.9 and 5.0 in the two first order streams and 6.3 in the dam at the lower boarder of the catchment.  相似文献   

10.
Kang  H.  Freeman  C.  Lock  M.A. 《Water, air, and soil pollution》1998,105(1-2):107-116
Fluxes of methane and nitrous oxide from a wetland were compared to hydrochemistry (NO3 - and SO4 2-) and soil enzyme activities (β-glucosidase) in an attempt to predict gas fluxes using chemical and enzymatic activities in north Wales, UK. In a one-year survey, the enzyme activities ranged from 0.028 to 0.065 µmol g-1 min-1, while NO3 - and SO4 2- concentrations ranged between 0-0.78 and 5-200 mg L-1, respectively. Methane and nitrous oxide emissions varied between 0.32-240 and 0.28-5.48 mg m-1 da-1, respectively. The field survey was followed by laboratory-based manipulation experiments, from which pilot mathematical models were constructed, and related to the field data. The variation of methane emission was attributed to changes in SO4 2- concentration and temperature at the site. In contrast, NO3 - concentration, water table height, and β-glucosidase activity were major controlling factors for nitrous oxide emission. The models explained more than 80 % of the variation observed in the field study.  相似文献   

11.
阴离子对可变电荷土壤吸附铜离子的影响机理   总被引:1,自引:0,他引:1  
根据NO-3、Cl-和SO24-对可变电荷土壤和恒电荷土壤吸附Cu2+的影响的比较,探讨了阴离子对可变电荷土壤吸附Cu2+的影响机理。结果表明,当3种阴离子的浓度相同时,在SO24-体系中铁质砖红壤对Cu2+的吸附率较在NO3-和Cl-体系中大得多,而在浓度相同的3种阴离子体系中,黄棕壤对Cu2+的吸附率相差不大。在离子强度相近的NaCl体系中,砖红壤对Cu2+的吸附率相近。在3种阴离子体系中,随着pH升高,砖红壤对Cu2+的吸附率均增大;但在NO-3体系和Cl-体系中Cu2+的吸附率相近;而在SO24-体系中Cu2+的吸附率最大。随着Na2SO4浓度的增大,铁质砖红壤和砖红壤对Cu2+的吸附率减小。但在0.005 mol L-1和0.05 mol L-1Na2SO4体系中,Cu2+的吸附率大于在不含Na2SO4的体系中者。而在0.5 mol L-1Na2SO4体系中,Cu2+吸附率小于在不含Na2SO4体系中者。在3种浓度的Na2SO4体系中,黄棕壤对Cu2+的吸附率均小于在不含Na2SO4体系中者。总之,阴离子可通过离子强度、专性吸附和形成离子对影响土壤对Cu2+的吸附。在可变电荷土壤中,阴离子对Cu2+吸附的影响机理较在恒电荷土壤中复杂得多。  相似文献   

12.
Rainfall, stemflow, and throughfall were collected from 1996 to 1999 at two types of forest sites: (1) forests near the traffic roads and urban areas and (2) forests away from the urban areas at Mt. Gokurakuji, Hiroshima, western Japan in order to estimatethe effects of anthropogenic activities on atmospheric deposition. Rainfall deposition for major ions showed small differences between the sites. The NO3 - and SO4 2-concentrations in stemflow were higher at the urban-facing slope than at the mountain-facing slope. Throughfall deposition of NO3 - and SO4 2- was also higher at urban-facing slopes. Net throughfall (NTF) deposition (throughfall minus rainfall) of NO3 - and SO4 2- accounted for 77 and50% of the total throughfall deposition on urban-facing slopes, respectively, while it accounted for 44 and 23% on themountain-facing slopes, respectively. These results indicated a higher contribution from dry deposition on urban-facing slopes compared to mountain-facing slopes. Atmospheric N (NO3 - +NH4 +) deposition from throughfall was estimated to be around 17–26 kg N ha-1 yr-1 on urban-facing slopes, which was greater than the threshold of N deposition that could cause nitrogen leaching in Europe and the United States. The highload of atmospheric N deposition may be one of the factors bringing about the decline of pine forests on urban-facing slopesof Mt. Gokurakuji.  相似文献   

13.
Variations in sulphate (SO4 2-) concentration of porewater and net SO4 2- mobilization were related to differences in water level fluctuations during wet and dry summers in two conifer swamps located in catchments which differed in till depth and seasonality of groundwater flow. Sulphate depletion at the surface and in 20 cm porewater coincided with anoxia and occurred mainly during the summer when water levels were near the peat surface and water flow rates were low in both catchments. There was an inverse relationship between net SO4 2- mobilization and water level elevation relative to the peat surface, explaining variation in SO4 2- dynamics between the swamps during summer drought periods. Aeration of peat to 40 cm and a large net SO4 2- mobilization (10–70 mg SO4 2- m-2 d-1) occurred during a dry summer in which the water level dropped to 60 cm below the surface in the swamp receiving ephemeral groundwater inputs from shallow tills within the catchment. This resulted in high SO4 2- concentrations in the surface water and porewater (30–50 mg L-1), and elevated SO4 2- concentrations remained through the fall and winter. In contrast, within the swamp located in the catchment with greater till depth (> 1 m), continuous groundwater inputs maintained surface saturation during the dry summer, and SO4 2- mobilization and concentrations of SO4 2- in the pore water during the following fall did not increase. Susceptibility to large water table drawdown and mobilization of accumulated SO4 2- is influenced by the occurrence of ephemeral vs. continuous groundwater inputs to valley swamps during dry summer periods in the Canadian Shield landscape. This study reveals that extrapolation of results of SO4 2- cycling from one wetland to another requires knowledge of the hydrogeology of the catchment in which the wetlands are located.  相似文献   

14.
A total of 51 lakes in southern Quebec, Canada, were sampled between 1985 and 1993 to study changes in water chemistry following reductions in SO2 emissions (main precursor of acid precipitation). Time series analysis of precipitation chemistry revealed significant reductions in concentrations and deposition of SO4 2- from 1981 to 1992 in southern Quebec as well as reductions in concentrations and deposition of base cations (Ca2+, Mg2+), NO3 - and H+ in the western section of the study area. Reductions in atmospheric inputs of SO4 2- have resulted in decreased lakewater SO4 2- concentrations in the majority of the lakes in our study, although only a small fraction (9 of 37 lakes used in the temporal analysis) have improved significantly in terms of acidity status (pH, acid neutralizing capacity – ANC). The main response of the lakes to decreased SO4 2- is a decrease in base cations (Ca2++Mg2+), which was observed in 17 of 37 lakes. Seventeen lakes also showed significant increases in dissolved organic carbon (DOC) over the period of study. The resulting increases in organic acidity as well as the decrease in base cations could both play a role in delaying the recovery of our lakes.  相似文献   

15.
Solute fluxes to the ground in open plots and under the forest canopy of different species were investigated in a number of long-term ecosystem studies in West Germany. From the canopy flux balance, rates of interception deposition and canopy/deposition interactions were assessed. Chemically, both open precipitation and throughfall are dilute solutions of H2SO4 and HNO3 and their salts. For the sites investigated, mean pH in bulk precipitation ranged from 4.1 to 4.6, and in throughfall from 3.4 to 4.7. The increase in acidity after canopy passage at most sites indicates considerable interception deposition of strong acids to the forest stands, exceeding the rate of H+ buffering in the canopy. Evidence for buffering processes can be directly deduced from the fact that on sites with high soil alkalinity and high foliage base status, throughfall pH is usually higher than precipitation pH. Furthermore, the same idea can be concluded from changes in solution composition after canopy passage: the H+/SO inf4 sup2? ratio is decreasing at most sites, while alkali earth cations from exchange processes occur in throughfall (Ca2+/SO inf4 sup2? ratio increases). Solution composition and element flux data are presented for each of the sites, and the regional, orographical and site specific (species composition, ecosystem state) differentiations are discussed. A method for the assessment of total deposition and of canopy interactions such as H+-buffering and cation leaching is described, and results of calculations are shown. From these calculations it is concluded that forest ecosystems in Germany receive mean H+ loads of ca. 1 to 4 keq H+ · ha?1 · a?1 from atmospheric deposition. Acidity deposition rates seem to be related to a few key factors such as regional characteristics and ecosystem characteristics.  相似文献   

16.
Sulphate concentrations and 34S ratios were monitored in bulk precipitation, spruce throughfall, and soil water (depth of 30 and 90 cm) at ervená jáma (CER) and Naetín (NAC), two severely polluted sites in the Czech Republic, between December 1992 and September 1994. Throughfall [SO4 2–], up to 80 mg L–1 in winter and as low as 7 mg L–1 in summer, was higher than [SO4 2–] in bulk precipitation (annual average 6 mg L–1). There was a distinct seasonaity in S isotope abundances, with lower 34SBULK in summer (+4 per mil CER, + 6 per mil NAC) and lower 34STF in winter (+3 per mil CER, +4 per mil NAC). Wintertime 34SBULK was around +8 per mil at CER and +10 per mil at NAC, summertime 34STF was close to +7 per mil at both sites. For only a 1- month period in spring, bulk precipitation S became isotopically lighter than throughfall S. Bulk precipitation data from CER were in good agreement with those from the nearby monitoring station Lesná (LES), typically differing by less than 10 mg L–1 and 2 per mil in [SO4 2–] and 34S, respectively. Suction lysimeters (soil depth of 30 and 90 cm) yielded higher sulphate concentrations and lower 34S ratios compared to both bulk and throughfall precipitation. Little seasonality was observed in [SO4 2–] at 30 cm (around 40 mg L–1); at 90 cm [SO4 2–] was higher in winter (70 mg L–1) than in summer (45 mg L–1). 34S at 90 cm was <+5 per=" mil=" in=" 1993=" and=" up=" to=" +7.5=" in=" 1994,=" lower=" in=" the=" first=" year=" and=" higher=" in=" the=" second=" year=" compared=" to=" the=" depth=" of=" 30=" cm.=" sulphur=" fluxes=" at=" cer=" and=" nac=" are=" characterized=" by=" distinct=" isotope=" compositions=" and=" can=" therefore=" be=" used=" to=" trace=" s=" pathways=" and=" transformations=" in=" the=" forest=">  相似文献   

17.
Soil solutions were taken from three forest areas with granite bedrock in Japan (Abukuma, Tateyama and Hiroshima) to investigate pH values, forms of Al and the molar BC/Al ratios. In each area, 10 sites were chosen for study. At each site, a target tree was selected, and two soil solution samples were taken from 10 cm depth at points 10 cm and 100 cm from the trunk of the tree to evaluate the effects of stemflow and throughfall on soil solution chemistry. Values of pH of samples taken 10 cm from the trunks (referred to as S samples) and 100 cm from the trunks (referred to as T samples) ranged from 3.66 to 6.52 and from 4.55 to 6.48, respectively. For Japanese cedar (Cryptomeria japonica) and Japanese cypress (Chamaecyparis obtusa) trees, S samples showed lower pH than T samples, whereas the inverse relation was observed for broadleaf trees. In the Abukuma and Tateyama areas, the concentrations of monomeric Al (Alm) were mostly below 30 µmol L?1. In the Hiroshima area, however, extremely high Alm concentrations (up to 293 µmol L?1) were observed at some sites. The molar ratio of BC (= Ca + Mg + K) to inorganic monomeric Al was higher than 1 for all samples, except for an S sample from the Hiroshima area having a ratio of 0.72.  相似文献   

18.
Harriman  R.  Curtis  C.  Edwards  A.C. 《Water, air, and soil pollution》1998,105(1-2):193-203
Samples were collected from 13 upland sites (main inflow and loch outflow) in the UK along an N deposition gradient of 12-50 kg ha-1 yr-1 to determine the relationship between N deposition and NO3 - concentrations in surface waters. There was no direct correlation between NO3 - leaching and soluble inorganic N deposition at these sites, but a significant relationship with NO3 - was found using a deposition function incorporating dissolved organic carbon (DOC) flux from each catchment. A similar but less significant relationship was found between NO3 - concentration and DOC:DON ratio in runoff water. Catchments showed evidence of N saturation, i.e., when mean NO3 - concentration exceeded 5 µeq L-1, when the mean DOC:DON ratio fell below an approximate value of 25. Five other large loch sites (LLS) with multiple subcatchments were used to test these relationships and for four of these mostly heathland sites the predicted NO3 - concentrations closely matched measured values. At the fifth site, where most subcatchments were forested, the deposition function and DOC:DON ratios gave conflicting predictions and both methods generally underestimated measured NO3 - concentrations. If the capacity of these catchments to retain deposited N is determined by C supply then many upland catchments in the UK may experience increasing NO3 - concentrations in runoff in the future at current or increased levels of N deposition.  相似文献   

19.
Ion concentrations in water collected within a forest of sugar maple and yellow birch at the Turkey Lakes Watershed near Sault Ste. Marie, Ontario were examined from 1982 to 1984 to determine sources of acidity and the extent of cation leaching from forest floor horizons. Volume-weighted concentrations and ion fluxes in throughfall and forest-floor percolate during the growing and dormant seasons were calculated. Hydrogen ion content of the forest-floor percolate decreased in relation to that of throughfall in the dormant season and increased in the growing season. Hydrogen ion deposition in throughfall could account for 100% of the flux of H+ through the forest floor in the dormant period, and 40% of the flux during the growing season. In forest-floor percolate, Ca2+ concentrations were positively correlated with those of SO4 2-, NO3 - and organic anions during both dormant and growing seasons. Sources of NO3 - and organic anions within the ecosystem and major external inputs of NO3 - and SO4 2- were critical factors that influenced cation mobility in the forest floor.  相似文献   

20.
The International Cooperative Programme on Integrated Monitoring (ICP IM) is part of the effects monitoring strategy of the UN/ECE Convention on Long-Range Transboundary Air Pollution. We calculated input-output budgets and trends of N and S compounds, base cations and hydrogen ions for 22 forested ICP IM catchments/plots across Europe. The site-specific trends were calculated for deposition and runoff water fluxes and concentrations using monthly data and non-parametric methods. The reduction in deposition of S and N compounds, caused by the new Gothenburg Protocol of the Convention, was estimated for the year 2010 using atmospheric transfer matrices and official emissions. Statistically significant downward trends of SO4, NO3 and NH4 bulk deposition (fluxes or concentrations) were observed at 50% of the ICP IM sites. Implementation of the new UN/ECE emission reduction protocol will further decrease the deposition of S and N at the ICP IM sites in western and northwestern parts of Europe. Sites with higher N deposition and lower C/N-ratios clearly showed an increased risk of elevated N leaching. Decreasing SO4 and base cation trends in output fluxes and/or concentrations of surface/soil water were commonly observed at the ICP IM sites. At several sites in Nordic countries decreasing NO3 and H+ trends (increasing pH) were also observed. These results partly confirm the effective implementation of emission reduction policy in Europe. However, clear responses were not observed at all sites, showing that recovery at many sensitive sites can be slow and that the response at individual sites may vary greatly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号