首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Soil acid phosphomonoesterase activity(APA)plays a vital role in controlling phosphorus(P)cycling and reflecting the current degree of P limitation.Responses of soil APA to elevating nitrogen(N)deposition are important because of their potential applications in addressing the relationship between N and P in forest ecosystems.A study of responses of soil APA to simulated N deposition was conducted in three succession forests of subtropical China.The three forests include a Masson pine(Pinus massoniana)forest (MPF)-pioneer community,a coniferous and broad-leaved mixed forest(MF)-transition community and a monsoon evergreen broad-leaved forest(MEBF)-climax community.Four N treatments were designed for MEBF:control(without N added),low-N(50 kg N ha-1 year-1),and medium-N(100 kg N ha-1 year-1)and high-N(150 kg N ha-1 year-1),and only three N treatments(i.e.,control, low-N,medium-N)were established for MPF and MF.Results showed that soil APA was highest in MEBF,followed by MPF and MF.Soil APAs in both MPF and MF were not influenced by low-N treatments but depressed in medium-N treatments.However,soil APA in MEBF exhibited negative responses to high N additions,indicating that the environment of enhanced N depositions would reduce P supply for the mature forest ecosystem.Soil APA and its responses to N additions in subtropical forests were closely related to the succession stages in the forests.  相似文献   

2.
Virgin fir trees have been dying on Mt. Oyama, which is located in the southwestern part of Kanto Plain, although the frequency of death seems to be reducing recently. We report elevational patterns of acid deposition in precipitation and throughfall under fir and cedar canopies and nitrogen saturation in the forest ecosystem on Mt. Oyama. The deposition fluxes of major inorganic ions in precipitation were nearly constant regardless of elevation except for hydrogen and ammonium ions, whereas the deposition fluxes of all major inorganic ions in throughfall among cedar increased. The 5-year average of annual nitrate deposition in precipitation from 1994 to 1998 showed 19.3 – 23.5 kg ha?1 yr?1 (annual inorganic total N deposition: 9.6 – 10.7 kgN ha?1 yr?1) at four sites ranging in elevation from 500 to 1252 m, whereas the deposition in both cedar and fir throughfall was over 6 times greater than that in precipitation. The average soil surface nitrate concentration in 1998 was 140 µg g?1 (the range: 21.1 – 429 µg g?1, n=80) and the 7-year average of nitrate concentration in stream water from 1992 to 1998 was 4.81 mg L?1 (the range: 2.38 – 20.6 mg L?1, n=317). Our results indicate that nitrogen saturation is occurring in the forest ecosystem because of high N deposition, probably via acid fog, on Mt. Oyama.  相似文献   

3.
Nitrogen movement among microsites is thought to be an important control on patterns of ecosystem-level N cycling. In particular, N transfer between decomposing leaves may explain why litter mixtures sometimes decompose differently than would be predicted from the decomposition dynamics of each species separately. We evaluated how N moves between leaves of differing N status in leaf-pair microcosms. We collected litter from six species of trees from French Guiana (three with high N concentration, three with low) and 15N-labeled the microbial communities growing on each species. We then established microcosms with one labeled and one unlabeled leaf in a fully factorial design (each species with every species, 15N on each species) and measured 15N transfer over 28 days. There was substantial transfer of the 15N label in all cases, averaging between 15% and 30% of the 15N originally on the labeled leaf. Net N transfer from high-N to low-N leaves resulted from greater gross 15N transfer from high-N to low-N leaves than in reverse. Gross 15N transfer was controlled entirely by the N status of the source leaf, rather than by the difference in N-status of the leaves or by the characteristics of the sink leaf. For example, as much 15N was transferred from a high-N leaf to another high-N leaf as to a low-N leaf. These results support the assumption from N mineralization theories that microbes at a specific site have first access to that N and therefore control how much N is available to move to other microsites in the soil system. The strength of the gradient between microsites may then control the rate at which available N moves, but not how much N is available to move. If N transfer among different litter species is important for synergistic effects on decomposition of litter mixtures it would not be driven by the N gradient as is often hypothesized, but by the characteristics of the source leaf.  相似文献   

4.
Piirainen  S.  Finér  L.  Starr  M. 《Water, air, and soil pollution》1998,105(1-2):165-174
Nitrogen deposition, leaching, and retention were monitored in a mature spruce (Picea abies Karsten) dominated mixed boreal forest in eastern Finland. Bulk precipitation, throughfall, stemflow, and percolation through the podzolic soil profile were monitored from 1993 to 1996. Mean annual bulk deposition of total N was 3.83 kg ha-1, of which 33% was NH4 +, 26% was NO3 - , and 41% was organic N. Throughfall+stemflow flux of total N was 2.93 kg ha-1 yr-1. Sixty-four % of NH4 + and 38% of NO3 - in bulk precipitation was retained by tre three canopy. Organic N was released (0.27 kg ha-1 yr-1) from the tree canopy. Nitrate-N was retained and organic N was leached as the water passed through the ground vegetation and soil O-horizon. Ammonium-N and organic N were retained mainly in the E-horizon. The output of total N from the E-horizon was only 5% of the total N deposition in the forest stand during the study period and it was mainly as organic N. The output of inorganic N forms from under B-horizon was seasonal and occurred mainly at spring snowmelt.  相似文献   

5.
Buzek  F.  Černý  J.  Pačes  T. 《Water, air, and soil pollution》1998,105(1-2):155-164
The effects of atmospheric deposition on N cycling in acidified soils were studied at three spruce and one beech forested sites in the Czech Republic. Nitrogen content and δ15N were monitored in bulk and throughfall precipitation, needles, leaves, soils and soil solutions. Changes in soil NO3 - production, effect of admixing of atmospheric N in spruce forest and N consumption in deciduous forest are described using changes in 15N fractionation of mineralized N in soil. Admixing of atmospheric NH4+ can be identified at low concentrations of exchangeable NH4 +. The δ15N ratio of atmospheric NO3 - input is on average by 2‰ less negative than the δ5N ratio in soil water; admixing changes the δ15N of soil NO3 - detected in lysimeters.  相似文献   

6.
The purpose of this study was to determine the nitrogen (N) deposition in a mire of the German National Park Hochharz Mountains in regard to different input pathways of open area and forest stand deposition. High N deposition rates strongly affect the development and growth of mires in general. For determination of the open area N deposition two methods were applied: the bulk deposition method and the Integral Total Nitrogen Input (ITNI) method. This method is based on the 15N isotope dilution technique and was adapted at this study to evaluate its applicability for natural ecosystems as well as to compare with the traditional bulk method. The forest stand deposition included canopy throughfall, stemflow and fog was measured by means of bulk collectors. On the test site, bulk deposition measurements showed an input of 27 kg N ha? 1 yr? 1 in the open area and 47 kg N ha? 1 yr? 1 in the forest stand. The higher N input in the forest stand is caused by interception of fog by the canopy. N concentrations in fog were up to more than six times higher than in rain. The ITNI system yielded a total N deposition of 30 kg N ha? 1 yr? 1 on average in the open area. The small differences between the two simultaneously applied measuring techniques were caused by a minimum biomass development of the autochthonous plant Calamagrostis villosa in the ITNI system. With increasing biomass production the influence of plants on the atmospheric N input also increased. It can be concluded that the ITNI system is beneficial for the application in a natural ecosystem when using more robust and biomass producing plants. The measured atmospheric N deposition exceeds the critical load for nutrient poor mires and represents therefore a potential risk for the continuity of this ecosystem.  相似文献   

7.
High nitrogen, especially ammonium, input has been observed in Schichinohe, Aomori Prefecture, northeastern Japan. A monitoring study on precipitation, throughfall, and stream water has been carried out to estimate the stage of nitrogen saturation since 1996. Fifty-two to 70% of nitrogen input in throughfall was retained in forest ecosystems. Nitrate concentration in stream water tended to decrease throughout the study. There was no symptom of nitrogen saturation at Japanese cedar stands in Shichinohe, although high nitrogen input in open bulk has been observed. Ammonium (NH4 +) was retained in the canopy. The ratio of NH4 + input in throughfall to that by open bulk was 0.40 – 0.47. Total inorganic nitrogen input under the canopy amounted 0.68 – 0.72 kmolc ha?1 yr?1 (9.6 – 10.0 kg N ha?1 yr?1). Our results suggests that atmospheric nitrogen input has benefitted the three growth.  相似文献   

8.
The concentration of ammonium and nitrate in precipitation has increased during this century. The deposition of N compounds (wet + dry) is reaching 30 to 40 kg ha?1yr?1 in many areas in Central Europe and above 20 kg in the southern parts of Scandinavia. In extreme situations throughfall data indicate depositions above 60 kg ha?1yr?1 in Central Europe and above 40 kg ha?1yr?1 in south Sweden. Very high depositions are observed on slopes at forest edges and adjacent to areas with animal farms and manure spreading. In areas with low N deposition almost all deposited N (>95%) will be absorbed in the tree canopies or in the soil. In areas with high deposition an increased outflow is observed which in some cases reach 10 to 15 kg ha-lyr-1. The increased output is an indication of N saturation of the ecosystem and it leads to acidification effects in soils, soilwater, groundwater and surface waters.  相似文献   

9.
Dise  N.B.  Matzner  E.  Gundersen  P. 《Water, air, and soil pollution》1998,105(1-2):143-154
To investigate which ecosystem parameters determine the risk and magnitude of nitrate leaching we compiled data from published and unpublished sources on dissolved inorganic nitrogen (DIN: NO3 -) in throughfall, DIN leaching loss in runoff or seepage water, and other ecosystem characteristics from 139 European forests. Not all data were available for all sites: 126 sites had at least one year's data on DIN inputs and DIN leaching loss; 40-50 sites had some data on soil chemistry and/or vegetation pools of N. DIN inputs in throughfall range between <1 and about 70 kg N ha-1 yr-1 and the losses with seepage or runoff range between <1 and 50 kg N ha-1 yr-1. Retention of N within the ecosystem increases with increasing DIN deposition and increasing proportion of NH4 + in deposition. The amount of N in needles and litterfall shows a significant linear relationship with throughfall deposition of DIN, whereas the C:N ratio of the organic (OH) horizon is uncorrelated to the level of throughfall-DIN flux. About 50% of the variability in DIN leaching loss can be explained by the flux of DIN in throughfall. Alternatively, about 60% of the variability in DIN leaching loss can be explained in a two-variable multiple regression combining the C:N ratio of the organic soil and the pH of the mineral soil. The survey data suggest that leaching of DIN from forest ecosystems in Europe is related in part to current DIN deposition and in part to the longer-term internal ecosystem N status as reflected in the chemistry of the humus and acidification status of the soil.  相似文献   

10.

Purpose

Evergreen broad-leaved forest ecosystems are common in east China, where they are both ecologically and economically important. However, nitrogen (N) addition over many years has had a detrimental effect on these ecosystems. The objective of this research was to evaluate the effect of 4 years of N addition on microbial communities in an evergreen broad-leaved forest in southern Anhui, China.

Materials and methods

Allochthonous N in the form of aqueous NH4NO3 and phosphorus (P) in the form of Ca(H2PO4)2·H2O were applied at three doses with a control (CK, stream water only without fertilizer): low-N (50 kg N ha?1 year?1), high-N (100 kg N ha?1 year?1) and high-N+P (100 kg N ha?1 year?1 + 50 kg P ha?1 year?1). Quantitative PCR analysis of microbial community size and Illumina platform-based sequencing analysis of the V3-V4 16S rRNA gene region were performed to characterize soil bacterial community abundance, structure, and diversity.

Results and discussion

Bacterial diversity was increased in low-N and high-N treatments and decreased in the high-N+P treatment, but α-diversity indices were not significantly affected by N additions. Proteobacteria, Acidobacteria, and Actinobacteria were the predominant phyla in all treatments, and the relative abundance of different genera varied among treatments. Only soil pH (P = 0.051) showed a weak correlation with the bacterial community in CK and low-N treatment.

Conclusions

The composition of the bacterial community and the abundance of different phyla were significantly altered by N addition. The results of the present study indicate that soil bacterial communities in subtropical evergreen broad-leaved forest are, to a certain extent, resilient to changes derived from N additions.
  相似文献   

11.
Increasing nitrogen deposition due to human activity might have a serious impact on ecosystem functions such as the nitrogen transformations conducted by microbes. We therefore focused on nitrous oxide (N2O) production as an indicator of soil microbial activity. The rates of N2O emission from the forest floor were measured every two weeks in two forest stands in the central part of Japan: a red pine stand at Kannondai and a deciduous stand at Yasato. Nitrogen deposition rates by throughfall were 30.6 kg N ha?1 y?1 at Kannondai and 15.7 at Yasato. The rates of N2O emission ranged from 0.5 to 14.2 µg N m?2 h?1 (mean 4.5) at Kannondai and from 0.2 to 7.0 µg N m?2 h?1 (mean 2.3) at Yasato. The N2O emission rate showed significant positive relationships with soil temperature and nitrogen deposition during the preceding two weeks. The annual emission rates of N2O were 0.38 kg N ha?1 y?1 at Kannondai and 0.20 at Yasato. As a the annual nitrogen deposition, these rates were 1.23% at Kannondai and 1.27% at Yasato.  相似文献   

12.
David  M.B.  Cupples  A.M.  Lawrence  G.B.  Shi  G.  Vogt  K.  Wargo  P.M. 《Water, air, and soil pollution》1998,105(1-2):183-192
The responses of temperate and boreal forest ecosystems to increased nitrogen (N) inputs have been varied, and the responses of soil N pools have been difficult to measure. In this study, fractions and pool sizes of N were determined in the forest floor of red spruce stands at four sites in the northeastern U.S. to evaluate the effect of increased N inputs on forest floor N. Two of the stands received 100 kg N ha-1 yr-1 for three years, one stand received 34 kg N ha-1 yr-1 for six years, and the remaining stand received only ambient N inputs. No differences in total N content or N fractions were measured in samples of the Oie and Oa horizons between treated and control plots in the three sites that received N amendments. The predominant N fraction in these samples was amino acid N (31-45% of total N), followed by hydrolyzable unidentified N (16-31% of total N), acid-soluble N (18-22% of total N), and NH4 + (9-13% of total N). Rates of atmospheric deposition varied greatly among the four stands. Ammonium N and amino acid N concentrations in the Oie horizon were positively related to wet N deposition, with respective r2 values of 0.92 and 0.94 (n = 4, p < 0.05). These relationships were somewhat stronger than that observed between atmospheric wet N deposition and total N content of the forest floor, suggesting that these pools retain atmospherically deposited N. The NH4 + pool may represent atmospherically deposited N that is incorporated into organic matter, whereas the amino acid N pool could result from microbial immobilization of atmospheric N inputs. The response of forest floor N pools to applications of N may be masked, possibly by the large soil N pool, which has been increased by the long-term input of N from atmospheric deposition, thereby overwhelming the short-term treatments.  相似文献   

13.
Dissolved organic nitrogen (DON) plays an important ecological role in forest ecosystems, and its concentration is related to that of dissolved organic carbon (DOC). We investigated DON concentrations and ratios of DOC to DON in throughfall and soil waters in 16 Norway spruce and two Scots pine forest stands sampled at weekly intervals between 1996 and 2006. The stands are all included in the ICP Forests Level II monitoring program and are located throughout Norway. DON concentrations were significantly and positively related to DOC concentrations in throughfall (r 2?=?0.72, p?<?0.0001) and soil water at 5, 15, and 40 cm (r 2?=?0.86, 0.32, and 0.84 and p?<?0.0001, 0.04, and <0.0001, respectively). At most sites, the annual median DOC/DON ratio in throughfall ranged from 20.3 to 55.5, which is lower than values in soil water, which ranged from 24.5 to 81.3, gradually decreasing with soil depth. DON concentrations varied seasonally in throughfall at many plots and in soil water at 5-cm depth at one plot only, with higher values in the growing season, but there was no noticeable seasonality at greater depth. The ratios of DOC/DON in soil water were significantly positively related to the C/N ratio in soil at the same depth. Above-ground litter input was the main factor having a significant, negative relationship to DOC/DON in soil water at all depths studied. This might reflect the effect of site conditions on both DOC/DON ratios and litter quantity.  相似文献   

14.
A steady state soil chemistry model was used to calculate the critical load of acidity for forest soils and surface waters at Lake GÄrdsjön in S.W. Sweden. The critical load of all acid precursors (potential acidity) for the forest soil is 1.64 kmolc ha?1 yr?1, and 1.225 kmolc ha?1 yr?1 for surface waters. For the most sensitive receptor, the critical load is exceeded by 1.0 kmolc ha?1 yr?1, and a 80% reduction in S deposition is required, if N deposition remains unchanged. The critical load is largely affected by the present immobilization of N in the terrestrial ecosystem which is higher than the base cation uptake. The model, PROFILE, is based on mass balance calculations for the different soil layers. From measurable soil properties, PROFILE reproduces the present stream water composition as well as present soil solution chemistry. The model calculates the weathering rate from independent geophysical properties such as soil texture and mineral composition.  相似文献   

15.
ABSTRACT

Turfgrass salinity tolerance is usually studied under conditions of non-limiting nutrition, even though most turfgrasses are managed with growth-limiting levels of nitrogen (N). This study examined the effect of N status (replete versus deficient) on salinity tolerance in tall fescue (Festuca arundinacea Schreb.). Additionally, the interactive effects of N status and salinity on tissue ion concentrations were determined. Two cultivars (‘Monarch’ and ‘Finelawn I’) were grown in nutrient solution culture. Treatments included N level (100% or 25% of maximum N demand) and salinity (0, 40, 80, 120 meq L?1). Salinity reduced leaf growth under high-N conditions, but much less so under low-N conditions. Concentrations of potassium (K), sodium (Na), and chloride (Cl) in the leaf sap were significantly higher in low-N than in high-N plants, indicating that increased salinity tolerance in low-N turf was not due to ion exclusion. These results suggest that efforts to screen turfgrasses for salt tolerance should be conducted using realistic N-fertility levels.  相似文献   

16.
Input-output fluxes of nitrogen (N) and other ecosystem data from 64 European forest ecosystem studies have been compiled in a database (ECOFEE). Sites with high N deposition (up to 64 kg N ha–1yr–1) were characterized by high input of ammonia/ammonium. The deposition of oxidized N was usually only 10 to 15 kg N ha–1yr–1 Of all the sites included, 60 % leached more than 5 kg N ha–1yr–1. Elevated nitrate leaching appeared at inputs above 10 kg N ha–1yr–1. At several sites with inputs of 15–25 kg N ha–1yr–1 nitrate leaching approached the N input, whereas ammonium dominated sites with high input still retained c. 50 % of the input.  相似文献   

17.
The responses of nitrogen transformations and nitrate (NO_3 -) leaching to experimentally increased N deposition were studied in forested sub-catchments (1500 m2) with Gleysols in Central Switzerland. The aim was toinvestigate whether the increase in NO3 - leaching,due to elevated N deposition, was hydrologically driven orresulted from N saturation of the forest ecosystem.Three years of continuous N addition at a rate of 30 kgNH4NO3-N ha-1 yr-1 had no effects on bulksoil N, on microbial biomass N, on K2SO4-extractableN concentrations in the soil, and on net nitrification rates.In contrast, N losses from the ecosystem through denitrification and NO3 - leaching increased significantly. Nitrate leaching was 4 kg N ha-1yr-1at an ambient N deposition of 18 kg N ha-1 yr-1.Leaching of NO3 - at elevated N deposition was 8 kg Nha-1 yr-1. Highest NO3 - leaching occurredduring snowmelt. Ammonium was effectively retained within theuppermost centimetres of the soil as shown by the absence ofNH4 + in the soil solution collected with microsuction cups. Quantifying the N fluxes indicated that 80% ofthe added N were retained in the forest ecosystem.Discharge and NO3 - concentrations of the outflow from the sub-catchments responded to rainfall within 30 min. The water chemistry of the sub-catchment outflow showed thatduring storms, a large part of the runoff from this Gleysol derived from precipitation and from water which had interactedonly with the topsoil. This suggests a dominance of near-surface flow and/or preferential transport through this soil. The contact time of the water with the soil matrix wassufficient to retain NH4 +, but insufficient for a complete retention of NO3 -. At this site with soilsclose to water saturation, the increase in NO3 - leaching by 4 kg N ha-1 yr-1 through elevated N inputsappeared to be due to the bypassing of the soil and the rootsystem rather than to a soil-internal N surplus.  相似文献   

18.
Measurements were made of NO3-N and NH4-N in bulk deposition, throughfall and soil solution on six permanent plots in pine and spruce stands located along a transect from the south to the north of Poland. Location differed both in the level of air pollution level and in climatic parameters. The total N load calculated from throughfall ranged from 12.5 to 34 kg-1a -1. The load of NH4-N exceeded the NO3-N contribution. Differences in total N load were not reflected in foliar N concentration. Present forest health status of stands determined by defoliation class, and do not appear to be related to their N deposition.  相似文献   

19.
Forest floors in the temperate climate zone are frequently subjected to strong changes in soil moisture, but the consequences for the soil N cycle are poorly known. In a field experiment we tested the hypotheses that soil drying leads to a decrease of gross N turnover and that natural rewetting causes a pulse of gross N turnover and an increase of N leaching from the forest floor. A further hypothesis was that optimal water availability induced by irrigation causes maximum N turnover and N leaching. Replicated control, throughfall exclusion and irrigation plots were established in a Norway spruce forest to simulate different precipitation patterns during a growing season. Gross N turnover rates were determined in undisturbed soil cores from Oi + Oe and Oa + EA horizons by the 15N pool dilution technique. Forest floor percolates were periodically collected by suction plates. After 142 mm throughfall was excluded, the median soil water potential at the throughfall exclusion plots increased from pF 1.9 to 4.5 in the Oi + Oe horizon and from pF 1.8 to 3.8 in the Oa + EA horizon. Gross ammonification ranged from 14 to 45 mg N kg−1 soil day−1 in the Oi + Oe horizon and from 4.6 to 11.4 mg N kg−1 soil day−1 in the Oa + EA horizon. Gross ammonification of both horizons was smallest in the throughfall exclusion plots during the manipulation, but the differences between all treatments were not statistically significant. Gross nitrification in both horizons was very small, ranging from 1.6 to 11.1 mg N kg−1 soil day−1. No effects of decreasing water potential and rewetting on gross nitrification rates were observed because of the small rates and huge spatial variations. Irrigation had no effect as the differences from the control in soil water potential remained small. N leaching from the forest floor was not affected by the treatments. Our findings suggest that ammonification in forest floors continues at considerable rates even at small water potentials. The hypotheses of increased N turnover and N leaching following rewetting of dry forest floor or irrigation were not confirmed.  相似文献   

20.
Mexico City experiences some of the most severe air pollution in the world. Ozone injury has been documented in sensitive tree species in urban and forested areas in the Valley of Mexico. However, little is known of the levels of other atmospheric pollutants and their ecological effects on forests in the Valley of Mexico. In this study bulk throughfall deposition of inorganic nitrogen (N) and sulfur (S) was measured for one year at a forested site upwind (east) and downwind (southwest) of Mexico City. Edaphic and plant (Pinus hartwegii Lindl.) indicators of N and S nutrient status were also measured. Streamwater NO3 - and SO4 2- concentrations were also determined as an indicator of watershed-level N and S loss. Annual bulk throughfall deposition of inorganic N and S at the high-pollution forested site 23 km southwest of Mexico City (Desierto de los Leones National Park; DL) was 18.5 and 20.4 kg ha-1. Values for N and S deposition at Zoquiapan (ZOQ), a relatively low-pollution site 53 km east of Mexico City, were 5.5 and 8.8 kg ha-1 yr-1. Foliar concentrations of N, foliar N:P and C:N ratios, extractable soil NO3 -, and streamwater NO3 - concentrations indicate that the forest at DL is N enriched, possibly as a result of chronic N deposition. Sulfur concentrations in current-year foliage were also slightly greater at DL than at ZOQ, but S concentrations in one-year-old foliage were not statistically different between the two sites. Streamwater concentrations of NO3 - ranged from 0.8 to 44.6 μEq L-1 at DL compared to 0.0 to 11.3 μEq L-1 at ZOQ. In summary, these findings support the hypothesis that elevated N deposition at DL has increased the level of available N, increased the N status of P. hartwegii, and resulted in export of excess N as NO3 - in streamwater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号