首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 503 毫秒
1.
The impact of fly ash on the chemistry of the River Yamuna was studied. By-products from a 200 MW capacity I.P. thermal power station on the west bank of the River Yamuna, Delhi are largely from coal combustion (fly ash) and are disposed of as a slurry to off-site ash ponds. Many elements associated with fly ash are soluble and become available to the biota. A two-year survey was made of the seasonal variations in limnochemical features in the non-impacted and the impacted segments of the river receiving fly ash effluent and the ash treatment ponds. Conductivity, TDS, DO, hardness, sulphate and nitrate increased significantly in the receiving waters over background values. The reverse was noticed for free CO2, alkalinity and phosphate. Changes in some other parameters were insignificant. Fly ash effluents from the ash ponds significantly increased the concentration of some elements, viz., Al, Sb, Bi, Cd, Cr, Co, Li, Mn, Mo, K, Si, and Zn in river water. Generally, the highest concentration of most parameters were recorded in the ash ponds. This investigation was helpful in assessing the effect of wet ash disposal on the river limnology and understanding the solubility of various elements in the ash ponds.  相似文献   

2.
Unweathered, acidic fly ash from a coal-fired power plant was applied to alfalfa meal-amended agricultural soil at levels equivalent to 0, 100, 400, and 700 tonne ha?1. Amended soils were placed in respirometer jars and monitored for C02-C evolution over a 37-day period. Fly ash applications of 400 and 700 tonne ha?1 reduced C02-C production significantly compared to 0 and 100 tonne ha?1 treatments. Carbon dioxide-carbon from all treatments was considerably greater than that from soil treated with 1000 ppm CdCl2. The results suggest that soil heterotrophic microbial activity may be impacted minimally by relatively low levels of fly ash application, but may be inhibited by higher levels of fly ash. Several metals were present at potentially toxic levels in the fly ash employed and may have accounted for the inhibition of CO2 C evolution. The availability of some of these metals was indicated in companion plant uptake experiments.  相似文献   

3.
Adriano  D. C.  Weber  J.  Bolan  N. S.  Paramasivam  S.  Koo  Bon-Jun  Sajwan  K. S. 《Water, air, and soil pollution》2002,139(1-4):365-385
A field study (1993–1996) assessed the effects of applying unusually high rates of coal fly ash as a soil additive forthe turf culture of centipedegrass (Eremochloa ophiroides).In addition, the quality of the soil and the underlying groundwater was evaluated. A Latin Square plot design was employed to include 0 (control, no ash applied), 280, 560, and 1120 Mg ha-1 (mega gram ha-1, i.e., tonne ha-1)application rates of unweathered precipitator fly ash. The onceapplied fly ash was rototilled and allowed to weather for 8 months before seeding. Ash application significantly increasedthe concentrations in plant tissue of B, Mo, As, Be, Se, and Bawhile also significantly reducing the concentrations of Mg, Mn,and Zn. The other elements measured (i.e., N, K, Ca, Cu, Fe, Ag,Cd, Cr, Hg, Ni, Pb, Sb, Tl, Na, and Al) were not affected. Of these elements Mg, Cu, and Mo concentrations in plant tissue increased with time while B and Se decreased temporally. The diminution of B and Na appears to be related to the leaching ofsoluble salts from ash-treated soils. Of all the elements measured, only Mn produced significant correlation (p = 0.0001) between the tissue and soil extractable concentrations. Ash treatment elevated the soil pH to as high as 6.45 with theenhanced effect occurring primarily in the 0–15 cm depth. Soilsalinity increased with the application rate with the largestincreases occurring in the initial year of application. However,by the second year, most of the soluble salts had already leachedfrom the treatment zone into deeper depths, and by the fourthyear, these salts had completely disappeared from the profile.The chemical composition of the underlying groundwater was notadversely impacted by the ash application. Plant tissue and groundwater data however, indicate that much higher rates of fly ash can be used on this type of land use where the plant species is tolerant of soil salinity and does not appear tobioaccumulate potentially toxic trace elements.  相似文献   

4.
Open‐pit mining of the Athabasca Bituminous Sands generates considerable quantities of mineral dusts, but there is no published record of the amount of material deposited in the surrounding environment via the atmosphere since the industry began in 1967. Contemporary and past rates of atmospheric dust deposition were reconstructed using age‐dated peat cores (210Pb and 14C) collected from five bogs in the vicinity of mines and upgraders and from two bogs far removed from industrial activities. The main objective of this study was to quantify the impact of industry on dust emissions, and to do this, the variation in natural “background” rates of mineral matter accumulation also had to be determined. A second objective was to characterize the size, mineralogical composition, and morphology of the particulate matter emitted to better understand potential environmental consequences of dust emissions. The concentrations of acid insoluble ash and Th (a surrogate for insoluble mineral matter) were determined to calculate dust accumulation rates. Scanning electron microscopy with energy‐dispersive X‐ray analysis failed to reveal much variation in mineralogical composition, but near industry, the size of the particles was more variable. The abundance of fly ash particles increased with depth, which suggests that emissions from upgrader stacks may have declined over time. A comparison of acid‐insoluble ash inventories with the pH of the porewaters suggests that the acid‐soluble ash fraction of the dusts deposited may have impacted the chemical composition of the bog waters. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
Laboratory column studies were used to predict the effect on the leachability of lead when using fly ash or a fly ash/sludge mixture as a cover for a lead tailings site. A high pH fly ash cover produced a leachate with a pH 12. This was sufficiently high to allow for the formation of lead hydroxide complexes which are slightly soluble. Therefore, the leachate had an average lead concentration of about 5 mg L-1, while the pH in the leachate from the column with only tailings was 7.8 and a lead concentration below the detection limit (≤0.1 mg L-1). The fly ash cover changed the availability of the remaining lead, making it less available. Rainfall rate did not affect the fly ash cover, but did have an effect on the fly ash/sludge cover.  相似文献   

6.
Vicia faba, in a pot experiment with sandy and clayey soils under greenhouse conditions, was checked for growth response to different amendments with coal alkaline fly ash or cocomposted fly ash mixed with lignocellulosic residues. Soil microbial populations, pH and electrical conductivity as well as heavy metal uptake by plants were monitored. At rates of five and ten percent (on a dry matter basis) in both soils, neither fly ash alone nor cocomposted fly ash exerted any negative effect. Plant biomass production was not influenced in either clayey or sandy soil. Alkaline fly ash did not promote microbial growth when applied alone to the soils. However, cocomposted fly ash generally increased bacterial and actinomycetes counts in both soils. Fungi were not affected by ash. Due to the increase of soil pH by alkaline fly ash or cocomposted fly ash, plant uptake of heavy metals was depressed in the sandy soil. Heavy metal mobility did not cause change in the clayey soil where a high buffering capacity mitigated the effects of fly ash amendments.  相似文献   

7.
Biomass ash is an important and potentially useful by-product of the bioenergy industry. As a “proof of concept” for using biomass fly ash as a foliar fertilizer, we tested (i) whether the nutrients in the ash were absorbed by hybrid aspen trees, (ii) whether the ash affected tree growth, and (iii) whether the ash was compatible with nitrogen foliar fertilizer. Four foliar treatments (water [control], ash suspended in water, nitrogen fertilizer solution, and ash suspended in nitrogen fertilizer solution) were evaluated. Several nutrients in the fly ash were absorbed by hybrid aspen both in the greenhouse and in the field; however, this absorption did not significantly affect tree growth in either setting. Nitrogen fertilization was associated with significantly higher tree growth in the greenhouse; inclusion of the fly ash with the nitrogen fertilizer solution did not significantly alter this growth response.  相似文献   

8.
Fly ash‐enriched soils occur widely throughout the industrial regions of eastern Germany and in other heavily industrialized areas. A limited amount of research has suggested that fly ash enrichment alters the water repellency (WR) characteristics of soil. This study concentrates on the influence of fly ash enrichment on WR of forest soils with a focus on forest floor horizons (FFHs). The soils were a Technosol developed from pure lignite fly ash, FFHs with lignite fly ash, and FFHs without lignite fly ash enrichment. Three different methods (water drop penetration time, WDPT, test; water and ethanol sorptivity measurement and the derived contact angle, θR; and the Wilhelmy‐plate method contact angle, θwpm) were used to characterize soil WR. Additionally, carbon composition was determined using 13C‐NMR spectra to interpret the influence of the organic matter. This study showed that the actual WR characteristics of undisturbed, fly ash‐enriched soils can be explained in terms of the composition of soil organic matter, with the fly ash content playing only a minimal role. Regardless of the huge amounts of mainly mineral fly ash enrichment, all undisturbed FFHs were comparable in their WR characteristics and their carbon compositions, which were dominated by recently‐formed organic substances. The pure fly ash deposit was strongly influenced by lignite remains, with the topsoil having a greater content of recent plant residues. Thus, the undisturbed topsoil was more repellent than the subsoil. When homogenized samples were used, we found a distinct effect of fly ash enrichment and structure on WR. Water repellency of the pure fly ash horizons did not differ distinctly, while the fly ash enrichment in the FFHs caused a significant reduction in WR. The methods used (WDPT, θR and θwpm) identified these differences similarly. These results led to the assumption that water‐repellent structures of the topsoils were probably the result of hydrophobic coatings of recently formed organic substances, whereby the initially high wettability of the mainly mineral, hydrophilic fly ash particles was reduced.  相似文献   

9.
Treatment of Acid Mine Drainage Using Fly Ash Zeolite   总被引:1,自引:0,他引:1  
In this paper, two Indian fly ashes (from Talcher and Ramagundam) were converted into zeolites and both the raw fly ash and zeolite were used to treat two British acidic mine waters. The results demonstrate that fly ash zeolites are more effective than raw fly ash for treatment of acid mine drainage. Fly ash has been found effective for removal of Pb, but with increased dosing, caused release of Ba, Cr, Sr (both fly ashes) plus Zn, Ni (Talcher), or Fe (Ramagundam) into mine water. In contrast, increased dosing with fly ash zeolite removed 100% Pb, 98.9% Cd, 98.8% Zn, 85.6% Cu, 82.8% Fe, 48.3% Ni, and 44.8% Ba from mine water. Fly ash is amorphous in nature and many metals attached on the surface of the ash particles are easily leached off when ash comes in contact with acidic mine water. However, fly ash zeolite is crystalline in nature and due to its high cation exchange properties, most of the metals present in acid mine water are retained in surface sites.  相似文献   

10.
采用恒温振荡吸附试验方法,研究了炭化秸秆对水体中氨氮和磷的吸附,并与粉煤灰和炉渣两种物料的吸附性能进行了对比。结果表明,炭化秸秆对氨氮和磷的吸附容量和吸附率小于粉煤灰、但大于炉渣,且3种物料对氨氮和磷的吸附容量,都随着吸附剂投加量的增加而减小;炭化秸秆和粉煤灰的吸附率随着吸附剂投加量的增加而增大,炉渣则减小;炭化秸秆和炉渣对氨氮和磷的吸附率随着pH值的增大而呈现不规则的增大趋势。3种物料对氨氮和磷的吸附容量受pH的影响很小,粉煤灰对氨氮的吸附容量在pH为6时最高,但在pH为4时炭化秸秆对氨氮的吸附容量最低。  相似文献   

11.
为了研究矿物掺合料对水泥基材料收缩性能的影响规律,对不同矿物掺合料(锂渣、粉煤灰、钢渣)、不同掺量(20%和60%)、不同水胶比(0.30和0.40)下水泥基材料的化学收缩和光谱特性进行研究,同时分析化学收缩与浆体中官能团之间的相关性。结果表明:水泥基材料的化学收缩大致可以分为加速阶段、变缓阶段和平缓阶段且可采用双曲线模型来拟合,相关系数在0.98以上。矿物掺合料等质量替代水泥后,水胶比为0.40且掺量为20%时,水泥-锂渣浆体、水泥-粉煤灰浆体和水泥-钢渣浆体的最大化学收缩分别约为纯水泥浆体的81.2%、97.2%和91.0%,掺量由20%增加至60%时,水泥-锂渣浆体、水泥-粉煤灰浆体和水泥-钢渣浆体的最大化学收缩分别降低了1.9%、1.8%和5.0%。可见水泥-粉煤灰浆体的化学收缩最大,水泥-钢渣浆体的化学收缩次之,水泥-锂渣浆体的化学收缩最小。4种水泥基材料的波谱相似,均以3 647、3 451、2 937、2 361、1 651、1 418、1 124、978和451 cm~(-1)为主要的特征峰,其中水泥基材料的化学收缩受波数1 124、3 451、1 418、978、3 647 cm~(-1)的影响较大。该研究可为矿物掺合料在混凝土中的合理选用提供依据。  相似文献   

12.

Purpose

The impacts of fly ash on the chemistry of forest floors were previously described in literature, while impacts on soil properties were less recognised. Soil investigations were focussed mainly on increases of pH and base saturations in surface horizons. The purpose of this study was to describe the influence of alkaline fly ash blown out from the dumping site of a lignite-fired power plant on pH changes of ectohumus horizons of Podzols and the morphology of deeper horizons.

Materials and methods

We investigated the soil profiles of Podzols derived from loose quartz sand and developed under pine forest surrounding the dumping site of the power plant Be?chatów, central Poland. In the vicinity of the fly ash dumping site, five Podzol profiles located at a distance of 50 m from the dumping site were investigated, as well as soil profiles located along the transect set at distances of 50, 300, 800 and 2000 m from the dumping site. Control profiles were located at a distance of 7.3 km from the dumping site. Soil morphology was described in the field and the following properties were determined: soil texture, hydrolytic acidity, exchangeable cations, total organic carbon and total nitrogen content.

Results and discussion

The pH values of Podzol ectohumus horizons located close to the dumping site ranged from 6.01 to 7.34 compared to a range of 3.08–3.72 in the control. Ectohumus horizon located 300 m from the dumping site showed a pH range of 4.13–4.26, while at a distance of 800 m, the pH values did not differ from those of the control site. The upper part of the eluvial soil horizons located close to the dumping site had been transformed into transitional AE horizons in which humic substances translocated from ectohumus horizons were accumulated. Moreover, the organic carbon content of this horizon increased compared to the carbon content of the illuvial Bs horizon located below it. Under the influence of alkalisation of upper horizons, the illuvial Bhs horizons vanished and were transformed into Bs horizons.

Conclusions

Changes in soils affected by fly ashes are connected with alkalinisation of ectohumus horizons. Podzolisation processes can be reduced or even completely stopped regarding the distance from the dumping site. Eluvial Podzol horizons located close to the dumping site may be transformed into AE horizons in which humic substances translocated from ectohumus horizons are accumulated. Due to transformation and translocation of organic components, Bhs horizons can be transformed into Bs horizons.
  相似文献   

13.
Yatagan Thermal Power Plant consumes low-quality ligniteproduced from the Yatagan Basin, located in the western part ofthe Aegean region nearby Mugla City. The basin is aligned in anorthwest-southeast direction. The dominant wind direction isalso northwest-southeast, which controls the boundary of thewaste at the disposal site. In this study, the concentration of30 volatile elements was analyzed in coal, bottom ash, fly ashand background soil. The study area was divided into grids. The size of the grids was 1 km2 for the background soiland 50–100 m for the ash in the vicinity of the wastedisposal site. 15 fly and bottom ash, six coal and nine-background soil samples were analyzed according to a sequential technique using ICP-AES. The results reveal that heavy metal concentrations in the coal are below the world averages for coal whereas those of bottom ash and fly ash arewithin the world averages for the respective ashes, indicatingheavy metal enrichment. It is recommended that extra care shouldbe taken to prevent subsurface contamination in the study area.  相似文献   

14.
Fang  M.  Wong  J. W. C. 《Water, air, and soil pollution》2000,124(3-4):333-343
The thermophilic bacteria in compost made from coal flyash-amended sewage sludge were isolated and identified using theBiolog system to investigate the effect of coal fly ash on thethermophilic decomposition of sewage sludge during composting. Atotal of 8 species of Bacillus were isolated from thecompost and Bacillus brevis was the dominant speciesduring the entire composting process. The present resultsdemonstrate that the Biolog system is a fast and simple methodfor identifying bacterial species in compost, provided thatoptimum conditions could be achieved for the Bacillusculture. Adding coal fly ash as an amendment did not change thedominant bacteria species during composting, but decreased thepopulation and diversity of thermophilic bacteria species due tothe high alkalinity and salinity. Fewer thermophilic bacteriawere detected in ash-amended sewage sludge compost than insludge compost. There was also reduced metabolic activityobserved in the ash-amended sludge compost from the data ofCO2 evolution and weight loss. Although ash amendmentdemonstrated a negative effect on the population and diversityduring thermophilic phase, it did not cause any significanteffect on compost maturity.  相似文献   

15.
Application of fine-textured and Ca-rich fly ash may be helpful in enhancing soil carbon content via protecting soil organic C (SOC) by organo-mineral complexation and via reducing CO2 emission by carbonation (e.g. formation of CaCO3). However, very limited information is available on the effects of fly ash application on gases loss of C and soil C content. In this study, to estimate the potential use of fly ash as a soil amendment for SOC enhancement purposes, the effects of fly ash application (0, 5, and 10 w/w %) on microbial biomass C (MBC), CH4 and CO2 emissions, and on soil C content were investigated. A 60-days incubation experiment was conducted with an acidic soil in the presence of organic input (pig manure compost, PMC; hairy vetch, HV) with contrasting substrate quality under changing water regime from water-logged to unsaturated via a transition period. Fly ash application did not affect MBC under water-unsaturated conditions, but reduced (P < 0.01) microbial growth under water-logged conditions, probably due to the increased solubility of a certain toxic element such as arsenic under the anaerobic conditions. Across the 60 days of incubation, the CO2 emission was reduced by fly ash regardless of organic input by 20.5–41.3%; meanwhile, a decline of CH4 emission by fly ash application was significant (P < 0.05) only in the HV treatment. Overall, fly ash application slowed down gases C loss and increased soil C content, probably due to the retardation of CH4 and CO2 emission as well as the addition of C contained in the fly ash. Biochemical (inhibition of microbial activity), chemical (formation of CaCO3 via carbonation), and physical (restriction of gas diffusion) mechanisms were suggested for the fly ash effects.  相似文献   

16.
Fly ash, the particulate matter resulting from high temperature combustion of coal, was historically dispersed into the atmosphere and settled as fly-ash spheres on the surface soil from a variety of boilers, including those of steam locomotives and steam-powered farm machinery. In Central Illinois, fly ash provides a time marker extending back to 1850s, coinciding with the development of railroads and cultivation. Two railroads, the primary sources of fly ash, were constructed just south of the Cahokia study site in 1852 and 1854. The objectives of this study were to determine: (1) the distribution, depth of occurrence and the total amount of fly ash present in soil profiles on stable, cultivated and uncultivated summit sites with little or no soil erosion; (2) the effects of elevation, aspect, slope gradient, landscape position, distance from source, past vegetation and time on the amount and depth of fly ash; (3) the effects of erosion on sloping sideslopes; and (4) the amount of deposition of fly-ash rich sediment on footslopes and toeslopes. Total fly-ash content of soil was similar for stable, cultivated and uncultivated summits. Two mound sideslopes maintained a high amount of fly ash because of a lack of cultivation and erosion for the past 80 or more years. Erosion reduced the depth of occurrence and the amount of fly ash present on cultivated sideslopes. It appeared that fly-ash content was initially deposited uniformly within the local landscape even though there were slight variations in the aspect, elevation, slope gradient, and distance from the source. The erosion phases of the soils on all landscape positions were determined based on the amount of fly ash remaining in soil surface layers. Accelerated erosion of cultivated sideslopes resulted in the deposition of fly-ash rich sediment on the adjacent footslopes or toeslopes. The proposed fly-ash method provides a tool to assess the extent of soil translocation from a cultivated landscape and subsequent deposition.  相似文献   

17.
We studied the leaf-litter decomposition of three pioneer plants (Cynodon dactylon – grass; Ricinus communis – shrub and Schinus terebinthifolius – tree), and the diversity of the associated detritivore macrofaunal assemblages in a system affected by two coal ash disposals (fly ash and boiler slag) in southern Brazil. We conducted a litter bag experiment in the area during a period of 140 days. We found that the decomposition rate of R. communis was more than 80% faster (k-value 20.7) than the other species. This result agrees with its low C:N ratio, high N (%), and increased abundance of detritivores in the first days of its decomposition. On the other hand, this leaf-litter supported the lowest invertebrate species richness. C. dactylon and S. terebinthifolius leaf-litters were similar in decomposition rates and macrofauna diversity. The type of ash disposal system did not affect leaf-litter decomposition and detritivore densities; on the other hand, the morphospecies composition was distinct in the different sites.  相似文献   

18.

Background, aim, and scope

From the beginning of the twentieth century until the 1990s, energy in Upper Lusatia, Saxony in Eastern Germany was produced at power plants that burnt lignite coals. As a result, alkaline fly ash and aerosols from the combustion of brown coal have accumulated in adjacent areas that are partly under forestry. We ask the question, “how have these atmospheric depositions of fly ash influenced the soil physical properties (bulk density, particle density, saturated hydraulic conductivity, pore size distribution, and water repellency) of forest floor horizons?”

Materials and methods

The experimental sites represented typical soil types and stands of the sylviculturally used areas in the region of Upper Lusatia. Three forest sites were located close to the emission sources, where high amounts of fly ashes accumulated, and three control sites were without fly ash enrichment. Pore size distribution, saturated hydraulic conductivity, and bulk density were examined with undisturbed samples (metal cylinder 100 cm³). Disturbed samples were used for the characterization of particle density, texture, and water repellency (Wilhelmy plate method). Additionally, the carbon content was determined. Scanning electron microscopy was used to show fly ash enrichment.

Results

The enrichment of mineral fly ash particles could be proven for sites close to the emission source. Using scanning electron microscopy, spherical fly ash particles could be identified. Total quantities of persistent fly ash enrichment amounted to approximately 150-280 Mg ha–1. The enrichment of fly ash affected the soil-physical characteristics. Close to the emission source (sandy fly ashes), particle density, air capacity, and saturated hydraulic conductivity were significantly increased, whereas the plant available water was significantly reduced. With increasing distance from the emission source (silty fly ashes or no ash enrichment), air capacity and saturated hydraulic conductivity were reduced, while an increase of plant available water was observed. Furthermore, the forest floor horizons close to the emission source were characterized by significantly reduced water repellency due to the dominance of hydrophilic mineral fly ash particles.

Discussion

Fly ash deposition in Upper Lusatia must be considered as relevant for properties of forest soils. Mean particle density was significantly higher at sites with fly ash accumulation. This indicates the admixture of mineral particles. While bulk densities were not noticeably influenced, the increase of particle density and the dominance of sandy to coarse silty particles close to the emission sources cause an increase in total porosity, air capacity, and a relative reduction of plant available water. Hollows in spherical fly ash particles might contribute to the meso- and macropores. Due to the admixture of hydrophilic fly ash, the enriched forest floor horizons feature a distinct increase in potential wettability, which coincides with a higher pore and, hence, nutrient and contaminant accessibility. In combination with a higher saturated hydraulic conductivity, an increase in translocation of dissolved substances can be expected especially in the course of acidification, which causes an additional mobilization of nutrients and contaminants.

Conclusions

With this study, we could prove the impact of fly ash enrichment on physical soil properties of forest floor horizons. Via SEM, we detected fly ash particles. The amounts of persistent fly ash accumulation could modify particle density, thickness, bulk density, and carbon content. To characterize hydraulic properties, we investigated the pore size distribution, the saturated hydraulic conductivity, and a water repellency parameter. Thereby, we detected a distinct increase of coarse pores and an accompanying extremely high saturated hydraulic conductivity. The water repellency parameter indicated a significant decrease of hydrophobicity of fly-ash-enriched forest floor horizons.

Recommendations and perspectives

Fly ash enrichment in forest floor horizons not only causes distinct chemical modifications but also alters soil physical properties, which must be considered in further hydrological investigations, as they may influence seepage of water and contaminant translocation within the soil and into groundwater.
  相似文献   

19.
掺合料和水胶比对水泥基材料水化产物和力学性能的影响   总被引:1,自引:2,他引:1  
掺合料和水胶比是影响混凝土性能发展的重要因素。该研究结合纯硅酸盐水泥和掺合料的水化反应机理,推导出复合水泥基材料的水化产物、理论最大掺量和孔隙率的计算公式,探究粉煤灰、钢渣和锂渣掺量对水化产物、孔隙率以及砂浆力学性能的影响,并推算出3种掺合料在混凝土中的理论最大掺量。结果表明:同掺量的粉煤灰、钢渣和锂渣掺入后,复合胶凝材料水化产物CH、CSH和总孔隙率较纯水泥砂浆要小;相比4种砂浆中水化产物而言,按水化产物CSH含量排序为水泥砂浆水泥-锂渣砂浆水泥-钢渣砂浆水泥-粉煤灰砂浆;按总孔隙率大小排序为水泥-钢渣砂浆水泥-粉煤灰砂浆水泥-锂渣砂浆水泥砂浆;按理论最大掺量值大小排序为粉煤灰锂渣钢渣。经砂浆力学性能测试发现:当掺量为20%时,水泥-锂渣砂浆后期的抗压强度优于纯水泥砂浆,若掺量再增加时,水泥-粉煤灰砂浆、水泥-锂渣砂浆和水泥-钢渣砂浆的力学性能均低于纯水泥砂浆。综合上述研究发现锂渣的活性较钢渣和粉煤灰要好,该研究可为掺合料在砂浆和混凝土中的使用提供参考。  相似文献   

20.
Fluorescent dissolved organic matters (FDOM) in the groundwater-river-lake environments were investigated using three-dimensional excitation-emission matrix (EEM) and measuring the dissolved organic carbon (DOC), inorganic anions and electric conductivity (EC) in shallow groundwater, river and lake waters. DOC concentrations were high and largely varied in groundwater, 16–328 μM C (mean 109?±?88 μM C), and in river waters, 43–271 μM C (mean 158?±?62 μM C) and were very low in the lake Biwa waters, 89–97 μM C (mean 93?±?2 μM C). The fluorescence properties of EEM showed that the fulvic-like components (peak C, peak A and peak M) were dominated in groundwater and river waters, but protein-like components (peak T) was in lake waters. The peak C was observed at $ {{\text{Ex}}} \mathord{\left/ {\vphantom {{{\text{Ex}}} {{\text{Em}}}}} \right. \kern-0em} {{\text{Em}}} = {320 \pm 9} \mathord{\left/ {\vphantom {{320 \pm 9} {424 \pm 5}}} \right. \kern-0em} {424 \pm 5}\;{\text{nm}} $ in groundwater, and 340?±?5/432?±?4 nm in river waters, but the lake waters detected the two peaks, 347?±?7/441?±?11 nm (peak C) as a minor peak and 304?±?2/421?±?8 nm (peak M) as a major peak. Emission wavelength of peak T was observed to shorten in wavelengths from groundwater to river and then lake waters. Peak T in lake waters showed at shorter in wavelengths (279?±?2/338?±?11 nm) at the middle point of Lake Biwa compared to those of lake shore site (283?±?3/350?±?7 nm). Photo-irradiation experiment on upstream waters suggested the changes in the fluorescence peaks of fulvic acid-like substances in lake waters, which might be caused by photo-degradation. DOC concentration was significantly correlated with inorganic anions and EC in river waters. However, such correlations were not observed in groundwater. Anion concentrations in lake waters were low with respect to DOC concentration. These results showed that the optical and chemical properties of FDOM are characteristically varied among groundwater, river and lake waters, indicating the impacts of environments to various FDOM at the same watershed level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号