共查询到20条相似文献,搜索用时 0 毫秒
1.
Machiko Kirikae Ryusuke Hatano Hideaki Shibata Yumiko Tanaka 《Water, air, and soil pollution》2001,130(1-4):697-702
We determined proton budgets of surface soils in a deciduous forest (Df) and a coniferous forest (Cf) of Volcanogenous Regosols in Tomakomai, Hokkaido of northern Japan. The total H+ source was 12.9 and 11.6 kmolc ha?1 y?1 at Df and Cf respectively, and the external H+ was 1% at Df and 2% at Cf. The primary H+ sources were vegetation uptake of base cations and nitrification, while the major H+ sinks were release of base cations and NO3 + uptake by vegetation. Leaching incubation experiments using A horizon soils including Df and Cf with NH4 + solutions (5.3, 15.9 mg N L?1) showed that H+ from nitrification was generally higher in the Df soil than Cf soil, and nitrification of Tomakomai Df soil was the highest in both treatments. Results of multiple regression analyses suggested that pHkCl and exchangeable Ca2+ contributed to the H+ generation via nitrification. Leaching experiments with dilute HCl (pH 3.3) revealed that cation release (mainly Ca2+) occurred, and the proportion of release by decrease of exchangeable cations was higher than that by mineral weathering. Mineral weathering in the Tomakomai soil was higher than the other soils. 相似文献
2.
Taku Kato Takashi Kamijo Tamao Hatta Kenji Tamura Teruo Higashi 《Soil Science and Plant Nutrition》2005,51(2):291-301
In the initial soil formation processes of the Volcanogenous Regosols (Scoriacious) from Miyake-jima Island, Japan, the soil profile morphology showed a distinct formation of the A horizon, about 10 cm thick, over C horizons during a period of 125 years. Along with these soil formation processes under the primary succession of vegetation from bare land to mixed forest, the following changes in the soil characteristics were observed of four study sites where soil formation had occurred over a period of 16, 38, 60 and 125 years in scoriacious volcanic materials ejected during each eruption. Whole soil samples of the surface horizon showed that the proportion of the > 2mm fraction decreased and the clay fraction increased. Electron microscopic observation revealed that pores on the scoria surface were newly formed and had expanded with advanced weathering, and that the formation of a weathering zone on the scoria surface (polygonal shape) was more recognized with the passage of time. Soil pH of the surface horizon decreased, and the amount of carbon in the surface samples showed a linear increase with the passage of time. The amounts of exchangeable bases and the CEC value of the surface samples showed comparable increase rates with time. Consequently, the base saturation percentage was kept at about 100% during the 125-year period. It was suggested that the increase in the amounts of exchangeable bases was controlled by the increase in the amounts of soil organic matter accumulated during the initial soil formation processes of Volcanogenous Regosols (Scoriacious). 相似文献
3.
O. Nagata A. Managi Y. Hayakawa R. Hatano H. Shibata F. Satoh 《Water, air, and soil pollution》2001,130(1-4):691-696
Biogeochemical proton and base cation fluxes in a 30-year old white birch forest composed of Dystric Cambisols in northern Hokkaido, Japan were estimated using data on atmospheric deposition (AD), throughfall (TF), stemflow (SF), and discharge from soils (DS) and plant uptake (UP) from early June to November 1999. In the monitoring period, proton flux was 0.20kmolcha?1 for AD, 0.07 for TF+SF, and 0.03 for DS, indicating that atmospheric acid input was neutralized through plant and soil. Base cation flux was 1.29 for AD, 1.23 for TF+SF, and 0.99 for DS and plant base cation uptake was 2.14, indicating that the soil was the major source of base cation for plant. However, these seasonal fluxes showed various trends. Cumulative base cation flux in TF+SF showed constant increase trend during the whole period, which was similar to AD. Proton flux in AD jumped once just after a heavy rain of 255mm for 8 days at the end of July. Trends for the proton and base cation fluxes in TF plus SF were similar to that of AD. Although proton and base cation fluxes of DS were not found until middle July because of vegetation uptake and no flow, both fluxes increased suddenly after the heavy rain in July. After August, the base cation and proton fluxes in the DS increased continuously, due to the lack of plant uptake and intermittent rainfall. In this study, it is clear that plant activity and water flow are very important driving force for seasonal dynamics of biogeochemical cycling. 相似文献
4.
大兴安岭北部森林生态系统土壤动物组成与多样性分析 总被引:5,自引:0,他引:5
对大兴安岭北部7个代表性森林群落土壤动物进行调查,共捕获湿生土壤动物20216只,大、中小型土壤动物87类,19577只,隶属于4门9纲23目66科。大、中小型土壤动物的优势类群为螨类和节跳虫科,常见类群4类,两者占总捕获量的92.22%。各群落土壤动物的数量和种类组成有一定差异,其中杨落Ⅱ和白桦Ⅲ的数量和种类最多,柳草Ⅶ最少。7个群落共有类群23类,共优类群为螨类中的前气门亚目和中气门亚目,共有的常见类群2类:山跳虫科和线蚓科。7个群落间相似程度均较大,大多为中等相似。各群落土壤动物数量和种类在土壤各层的垂直分布上具有明显表聚性。在多样性分析中,各群落多样性指数H′大小为柳草Ⅶ>白桦Ⅲ>杨落Ⅱ>落沼Ⅳ>樟子松Ⅵ>桦杜Ⅰ>蒙古栎Ⅴ。大部分群落多样性指数的动态变化是8月>6月>10月。 相似文献
5.
Y. Matsuura M. Sanada M. Takahashi Y. Sakai N. Tanaka 《Water, air, and soil pollution》2001,130(1-4):1661-1666
Long-term study on acid precipitation monitoring at suburban forests in Sapporo city showed that bulk precipitation pH were below 4.8 in recent years. Throughfall and stemflow chemistry for two main coniferous species (Abies sachalinensis and Picea jezoensis) showed different regime for pH and element deposition. The mean annual pH values of throughfall and stemflow in Picea stand were 1.0 to 1.3 units higher than that of rain collected outside the forest. In contrast, mean annual pH of throughfall and stemflow in Abies stand were 0.3 to 0.5 units higher than that of rain. Mean annual inorganic nitrogen input via throughfall and stemflow were estimated 0.41±0.11 gN/m2/yr in Abies stand, 0.44±0.13 gN/m2/yr in Picea stand. Cation input via throughfall, especially for K, in Picea stand was 1.4 times as large as that in Abies stand. Mean annual input of S in both stands was the same level. The possible effects on surface soil properties and nutrient cycling in northern evergreen conifers was discussed. 相似文献
6.
Shiro Tsuyuzaki 《Biological conservation》2002,108(2):239-246
The Japanese montane zones are usually covered with well-developed forests, and most ski resorts are constructed there. Therefore, the construction of skislopes requires the destruction of forest ecosystems. To detect vegetation development patterns on skislopes, I assessed vegetation on seven skislopes in the lowland of Hokkaido Island, Japan, using 155 2 m×2 m plots. The surrounding vegetation was mostly consisted of broad-leaved forests with a floor of dwarf bamboo, Sasa senanensis. The skislopes were established 5-28 years before the surveys by scraping off the topsoil and subsequent artificial seeding. The data of vegetation analyzed by TWINSPAN resulted in six different grassland types: (A) Miscanthus sinensis-Hypochaeris radicata, (B) introduced herbs with low richness, (C) introduced herbs, (D) Artemisia montana, (E) M. sinensis-Pueraria lobata-A. montana, and (F) Solidago gigantea var. leiophylla. H. radicata and S. gigantea var. leiophylla were alien species. Vegetation dominated by introduced grasses for erosion control, such as Dactylis glomerata and Poa pratensis, should be initial vegetation on the skislopes. Most tree pioneer species established in the vegetation type A, that was most natural vegetation in the skislopes. Type A seemed to proceed from types B and C, and species richness was the highest. Therefore, this type should be preferable for the management and restoration of skislope vegetation. Type D established on newer skislopes, while types E and F established on older skislopes. Results including detrended correspondence analysis suggested that those vegetation types D-F proceeded to distorted succession, i.e. biological invasion changed native successional sere. Based on these results, I recommended that the restriction of alien invasion and careful monitoring on M. sinensis grasslands are required to restore the natural vegetation. 相似文献
7.
大兴安岭北部森林生态系统土壤动物的功能类群及其生态分布 总被引:4,自引:1,他引:4
对大兴安岭北部塔河县7个森林群落的土壤动物进行研究,将该区土壤动物划分为腐食性、植食性和捕食性动物三个功能类群,无论个体数量还是生物量,腐食性动物所占比例都最大,而植食性和捕食性动物所占比例较小。土壤动物各功能类群在组成、个体数量和生物量等方面均具有相对稳定性,并在一定程度上反映了环境质量。土壤环境条件优越的群落,腐食性动物的个体数量及生物量所占比例相应较大。与小兴安岭森林土壤动物相比,大兴安岭地区腐食性动物所占比例减小,植食性和捕食性动物所占比例相应增加。各地区的共有类群反映了大环境的相似程度,而特有类群则反映出各自局地环境的特殊性,它们对生态系统具有指示作用。 相似文献
8.
I.G. Simmons 《Biological conservation》1973,5(4):281-289
Hokkaido is the least densely populated of the major islands of Japan and was colonized by the Japanese only in the nineteenth century. There is therefore proportionately more wild land than elsewhere in the nation, and 712,393 ha are designated as National Parks, quasi-National Parks, or Prefectural Parks. These are zoned into three categories, each with varying degrees of development control. Among the protected biota are virgin woodlands of Fagus crenata in the south-west, and pristine Picea-Abies forests in the central mountains of the island. The latter hold relict populations of the Ezo Brown Bear (Ursus arctos yezoensis). Coastal parks are important sites for many species of sea-birds and sea-mammals. Increasing numbers of visitors in most seasons, but especially in summer, combined with the prospect of the increased accessibility of Hokkaido from Honshu, will increase the pressure upon many areas of wild terrain, while industrial and agricultural development are bringing about a decline in the environmental quality of some parts of the island. 相似文献
9.
H. Shibata F. Satoh K. Sasa M. Ozawa N. Usui O. Nagata Y. Hayakawa R. Hatano 《Water, air, and soil pollution》2001,130(1-4):685-690
Annual biogeochemical fluxes (bulk precipitation, throughfall, stem flow, soil solution and vegetation uptake) of inorganic elements were observed in eight cool temperature forested ecosystems in Hokkaido, northern Japan, in order to determine the mechanisms of acid neutralization in Japanese forest ecosystems. We compared our results with the other biogeochemical studies in Japan, north Europe and US from the literature. In many Japanese forests, the internal proton production (IPS) by base cation accumulation into the vegetation was a major proton source, rather than external acidic deposition, and the IPS also affected the base cation fluxes from the mineral. IPS in Japanese forest tended to be larger than that in north Europe and US. Our results suggested that the high acid neutralizing ability of Japanese forests could be attributed to the strong relationship between the base cation buffering of the soil and the larger contribution of IPS as a proton source. acidic deposition|biogeochemical cycling|forest ecosystem|Japan|proton budget 相似文献
10.
Masayuki Hojito Yoko Adachi Yutaka Ono Hideki Ogasawara 《Soil Science and Plant Nutrition》2016,62(5-6):545-552
Nutrient recycling should be effective at balancing nutrient flows in Japanese animal production. This means replacing imported feed with self-produced feed. The Yakumo Experimental Farm of Kitasato University has produced commercial beef under ‘organic’ management, without the use of agricultural chemicals or imported feed, since 2005. Using a data set obtained from 220 ha of grassland and 250 head of cattle over the 5 years from 2008 to 2012, we estimated nitrogen (N) flow. During 2011 and 2012, we measured grass production, cattle production (selling out), soil parameters and atmospheric deposition (from precipitation and atmospheric ammonia concentrations). To determine N fixation by clover (white clover, Trifolium repens L.), we compared grass + clover plots with grass-only plots. Averaged over the period, N components on the 220 ha of grassland comprised 1952 Mg soil N stock, 3.2 Mg N yr?1 in living livestock, 14.3 Mg N yr?1 uptake by grass growth (including 8.6 Mg yr?1 of N fixed by clover), 15.7 Mg N yr?1 applied in composted manure, 1.7 Mg N yr?1 in imported bedding material, 2.8 Mg N yr?1 in deposition and 1.41 Mg N yr?1 in meat production. N in composted manure equaled about 0.8% of the huge soil N stock; N in grass production equaled about 0.7%, of which clover fixation supplied 60%; N deposition was not negligible; and N export by meat production was minor. These results show that on this organically managed farm, soil N stock increased gradually (by 8.6 Mg N yr?1 [220 ha]?1 = 39 kg N ha?1 yr?1 = 0.02% of the soil N stock) and N export was small. Our findings show that it is possible to balance N inputs with N outputs in a beef cattle enterprise without the need for feed or fertilizer imports. 相似文献
11.
Tomoaki Morishita Ryusuke Hatano Osamu Nagata Kohei Sakai Takahiro Koide Osamu Nakahara 《Soil Science and Plant Nutrition》2013,59(8):1187-1194
Abstract It has been well documented by short-term artificial experiments that the CH4 uptake is inhibited by N input, especially NH4 p+-N input. To investigate the effect of the natural N input by throughfall and other factors on the CH4 uptake in forest soils, we measured the CH4 uptake rates for 6 months during the snow-free period of the year and N input by throughfall throughout the year at 10 sites in Hokkaido, Japan, from 1997 to 2002. Water filled pore space (WFPS) and pH values in the soils varied widely among the sites (38-93% and 3.9-6.2, respectively). The rates of NH4 p+-N and NH3 p--N inputs ranged from 1.3 to 6.9 kg N hap-1 yearp-1 and from 0.8 to 2.9 kg N hap-1 yearp-1, respectively. The NH4 p+-N input was generally higher than the NH3 p--N input. Total N input by throughfall amounted to 2.3-9.4 kg N hap-1 yearp-1. The highest CH4 uptake rate occurred within the period from July to September (41-215 μg CH4 mp-2 hp-1) each year at most sites. CH4 uptake rate was relatively low (~50 μg CH4 M-2 hp-1) at northern sites, while a high CH4 uptake rate was observed throughout the year 100 (? CH4 mp-2 hp-1) at southern sites. The mean CH4 uptake rates were significantly different among the sites. Cumulative CH4 uptake ranged from 1.4 to 6.6 kg CH4 hap-1 [184 d]p-1 with a mean values of 3.22 ± 1.36 kg CH4 hap-1 [184 d]p-1. Cumulative CH4 uptake increased with increasing temperature and decreased with an increase in precipitation (Rain), NH4 p+-N input (TFNH4) WFPS, soil total C (TC), and total N (TN). There was a quadratic relationship between the CH4 uptake and NH3 p--N input (TFNO3), soil pH, and C / N ratio in soil. A regression equation was obtained as follows to predict the CH4 uptake in forest soils: Cumulative CH4 uptake = 0.47 / Rain + 0.38 / TFNH4 + 0.34 / TC - 0.30 / TFN03 (R p2 = 0.74, p = 0.0001). This equation indicates that atmospheric N input into forest soils is one of the main factors that control cumulative CH4 uptake with precipitation, total carbon content in soil in Hokkaido, Japan. 相似文献
12.
In Japan, most of the paddy fields are laid out on alluvial plain while other land crop fields are developed on plateau. The greater part of the latter ccnsists of volcanic ash soils. 相似文献
13.
日本北海道农村生态系统中N循环研究 总被引:2,自引:0,他引:2
This study of Mikasa City in 2001, which analyzed N flow between N production and N load in seven agricultural and settlement subsystems, i.e., paddy, onion, wheat, vegetable, dairy, chicken, and citizen subsystems, aimed to compare N flow in each subsystem, to determine the main sources of the N load, and to evaluate the influence of agricultural production and food consumption on N cycling in a rural area. The results showed that in Mikasa city, 38.5% of the N load came from point sources and the remainder from non-point sources with intensive vegetable farming imparting a serious N load. Because of the internal N cycling in the dairy subsystem, chemical fertilizer application was reduced by 70.2%, and 23.72 Mg manure N was recycled to the field; therefore, the N utilization efficiency was raised from 18.1% to 35.1%. If all the manure N in the chicken subsystem was recycled, chemical fertilizer application would be reduced by 8.1% from the present level, and the point sources of N pollution would be reduced by 20.8%. 相似文献
14.
Bobrik A. A. Goncharova O. Yu. Matyshak G. V. Ryzhova I. M. Makarov M. I. Timofeeva M. V. 《Eurasian Soil Science》2020,53(11):1549-1560
Eurasian Soil Science - In the course of studies in typical forest ecosystems of the northern, middle, and southern taiga of Western Siberia performed at the peak of the growing season, the spatial... 相似文献
15.
Serguei Koptsik Nataliya Berezina S. Livantsova 《Water, air, and soil pollution》2001,130(1-4):1025-1030
Variations in soil acidity and in biodiversity were analysed in the National Natural Park "Russian North", European Russia. Improving soil quality from podzol, podzolic soil, derno-podzolic soil, brown earth to pararendzina leads to increase in diversity and changes in floristical composition, followed by changing of pine and spruce forest to mixed and birch forests. In PCA ordination species diversity, richness and evenness of trees, shrubs and vascular plants are closely connected with each other, and are represented by the first principal component. They are strongly correlated to the thickness of Al horizon, pHH20 and pHCaC12 in organic, surface and subsurface mineral horizons. Only bryophyte species richness and diversity are directly related to the thickness and weight of organic horizon, soil exchangeable acidity, and inversely related to the thickness of Al horizon and pH. Thus, the ordination of the major species diversity variables is highly related to soil pH, suggesting that pH is the best soil related predictor of species diversity parameters. Our study shows that plants notably respond to soil acidification in boreal forest ecosystems. 相似文献
16.
《Soil Science and Plant Nutrition》2013,59(4):676-688
Abstract Nitrous oxide (N2O) emissions were measured and nitrogen (N) budgets were estimated for 2?years in the fertilizer, manure, control and bare plots established in a reed canary grass (Phalaris arundinacea L.) grassland in Southern Hokkaido, Japan. In the manure plot, beef cattle manure with bark was applied at a rate of 43–44?Mg fresh matter (236–310?kg?N)?ha?1?year?1, and a supplement of chemical fertilizer was also added to equalize the application rate of mineral N to that in the fertilizer plots (164–184?kg?N?ha?1?year?1). Grass was harvested twice per year. The total mineral N supply was estimated as the sum of the N deposition, chemical fertilizer application and gross mineralization of manure (GMm), soil (GMs), and root-litter (GMl). GMm, GMs and GMl were estimated by dividing the carbon dioxide production derived from the decomposition of soil organic matter, root-litter and manure by each C?:?N ratio (11.1 for soil, 15.5 for root-litter and 23.5 for manure). The N uptake in aboveground biomass for each growing season was equivalent to or greater than the external mineral N supply, which is composed of N deposition, chemical fertilizer application and GMm. However, there was a positive correlation between the N uptake in aboveground biomass and the total mineral N supply. It was assumed that 58% of the total mineral N supply was taken up by the grass. The N supply rates from soil and root-litter were estimated to be 331–384?kg?N?ha?1?year?1 and 94–165?kg?N?ha?1?year?1, respectively. These results indicated that the GMs and GMl also were significant inputs in the grassland N budget. The cumulative N2O flux for each season showed a significant positive correlation with mineral N surplus, which was calculated as the difference between the total mineral N supply and N uptake in aboveground biomass. The emission factor of N2O to mineral N surplus was estimated to be 1.2%. Furthermore, multiple regression analysis suggested that the N2O emission factor increased with an increase in precipitation. Consequently, soil and root-litter as well as chemical fertilizer and manure were found to be major sources of mineral N supply in the grassland, and an optimum balance between mineral N supply and N uptake is required for reducing N2O emission. 相似文献
17.
We evaluated the element budgets in a forested watershed in Jiulianshan, southern China. The element input in bulk precipitation was characterized by high depositions of H+, NH4 +, Ca2+, and SO4 2?, i.e., 400, 351, 299, and 876 eq/ha/yr, respectively. The outputs of H+, NH4 +, and SO4 2? from the watershed were very low, while those of Ca2+ and Mg2+ were high, 712 and 960 eq/ha/yr, respectively. The element budgets suggested that i) the net retentions of H+, NH4 +, and SO4 2? in this watershed were high, and ii) the net release of Mg2+ from this watershed was high mainly due to weathering. The net release of Ca2+ was not so high because of the high atmospheric deposition, while atmospheric deposition of Mg2+ was not so high (130 eq/ha/yr). Decrease of acid neutralizing capacity in the soil, i.e., net soil acidification, was caused mainly by the net release of Mg2+. Moreover, the net retention of SO4 2? also contributed to soil acidification. 相似文献
18.
Naoharu Mizuno Hozumi Yoshida Masami Nanzyo Toshiaki Tadano 《Soil Science and Plant Nutrition》2013,59(3):289-295
Potato common scab induced by Streptomyces scabies is a serious constraint for potato-producing farmers and the incidence of potato scab depends on the soil chemical properties. We examined the chemical characteristics of conducive and suppressive soils to potato common scab with reference to the chemical properties of nonallophanic Andosols, recently incorporated into the classification system of cultivated soils in Japan. Allophanic Andosols with a ratio of pyrophosphate-extractable aluminum (Alp) to oxalate-extractable aluminum (Alo) of less than 0.3–0.4 were “conducive” soils with a high allophane content of more than 3%. On the other hand, nonallophanic Andosols with a Alp/Ala ratio higher than this critical value were “suppressive” soils, and their allophane content was less than 2%. The concentration of water-soluble aluminum (AI) was also a useful index for separating conducive from suppressive soils as well as the Alp/Ala value and allophane content. The suppressive soils showed a much higher concentration of water-soluble Al at pH 4.5 to 5.5 than the conducive soils. The high concentration of water-soluble Al may be responsible for the control of the incidence of potato common scab in Andosols. 相似文献
19.
20.
Georg Jost Thomas Dirnb?ck Maria-Theresia Grabner Michael Mirtl 《Water, air, and soil pollution》2011,218(1-4):633-649
Karst watersheds are a major source of drinking water in the European Alps. These watersheds exhibit quick response times and low residence times, which might make karst aquifers more vulnerable to elevated nitrogen (N) deposition than non-karst watersheds. We summarize 13 years of monitoring NO 3 ? , NH 4 + , and total N in two forest ecosystems, a Norway spruce (Picea abies (L.) Karst.) forest on Cambisols/Stagnosols (IP I) and a mixed beech (Fagus sylvatica L.) spruce forest on Leptosols (IP II). N fluxes are calculated by multiplying concentrations, measured in biweekly intervals, with hydrological fluxes predicted from a hydrological model. The total N deposition in the throughfall amounts to 26.8 and 21.1 kg/ha/year in IP I and IP II, respectively, which is high compared to depositions found in other European forest ecosystems. While the shallow Leptosols at IP II accumulated on average 9.2 kg/ha/year of N between 1999 and 2006, the N budgets of the Cambisols/Stagnosols at IP I were equaled over the study period but show high inter-annual variation. Between 1999 and 2006, on average, 9 kg/ha/year of DON and 20 kg/ha/year of DIN were output with seepage water of IP I but only 4.5 kg/ha/year of DON and 7.7 kg/ha/year of DIN at IP II. Despite high DIN leaching, neither IP I nor IP II showed further signs of N saturation in their organic layer C/N ratios, N mineralization, or leaf N content. The N budget over all years was dominated by a few extreme output events. Nitrate leaching rates at both forest ecosystems correlated the most with years of above average snow accumulation (but only for IP I this correlation is statistically significant). Both snow melt and total annual precipitation were most important drivers of DON leaching. IP I and IP II showed comparable temporal patterns of both concentrations and flux rates but exhibited differences in magnitudes: DON, NO 3 ? , and NH 4 + inputs peak in spring, NH 4 + showed an additional peak in autumn; the bulk of the annual NO 3 ? and DON output occurred in spring; DON, NO 3 ? , and NH 4 + output rates during winter months were low. The high DIN leaching at IP I was related to snow cover effects on N mineralization and soil hydrology. From the year 2004 onwards, disproportional NO 3 ? leaching occurred at both plots. This was possibly caused by the exceptionally dry year 2003 and a small-scale bark beetle infestation (at IP I), in addition to snow cover effects. This study shows that both forest ecosystems at Zöbelboden are still N limited. N leaching pulses, particularly during spring, dictate not only annual but also the long-term N budgets. The overall magnitude of N leaching to the karst aquifer differs substantially between forest and soil types, which are found in close proximity in the karstified areas of the Northern Limestone Alps in Austria. 相似文献