首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Optical emission from individual strained indium arsenide (InAs) islands buried in gallium arsenide (GaAs) was studied. At low excitation power density, the spectra from these quantum dots consist of a single line. At higher excitation power density, additional emission lines appeared at both higher and lower energies, separated from the main line by about 1 millielectron volt. At even higher excitation power density, this set of lines was replaced by a broad emission peaking below the original line. The splittings were an order of magnitude smaller than the lowest single-electron or single-hole excited state energies, indicating that the fine structure results from few-particle interactions in the dot. Calculations of few-particle effects give splittings of the observed magnitude.  相似文献   

2.
An atomic force microscope was used to study single-electron motion in nanotube quantum dots. By applying a voltage to the microscope tip, the number of electrons occupying the quantum dot could be changed, causing Coulomb oscillations in the nanotube conductance. Spatial maps of these oscillations were used to locate individual dots and to study the electrostatic coupling between the dot and the tip. The electrostatic forces associated with single electrons hopping on and off the quantum dot were also measured. These forces changed the amplitude, frequency, and quality factor of the cantilever oscillation, demonstrating how single-electron motion can interact with a mechanical oscillator.  相似文献   

3.
Incremental single-electron charging of size-quantized states has been observed in the well in submicrometer double-barrier resonant tunneling devices. In order to distinguish between the effects of size quantization and the single-electron charging, the heterostructure material was grown asymmetrical so that one barrier is substantially less transparent than the other. In the voltage polarity such that the emitter barrier is more transparent than the collector barrier, electrons accumulate in the well; incremental electron occupation of the well is accompanied by Coulomb blockade, which leads to sharp steps of the tunneling current. In the opposite voltage polarity the emitter barrier is less transparent than the collector barrier and the tunneling current reflects resonant tunneling through size-quantized well states.  相似文献   

4.
A bidirectional single-electron counting device is demonstrated. Individual electrons flowing in forward and reverse directions through a double quantum dot are detected with a quantum point contact acting as a charge sensor. A comprehensive statistical analysis in the frequency and time domains and of higher order moments of noise reveals antibunching correlation in single-electron transport through the device itself. The device can also be used to investigate current flow in the attoampere range, which cannot be measured by existing current meters.  相似文献   

5.
By coupling a single-electron transistor to a high-quality factor, 19.7-megahertz nanomechanical resonator, we demonstrate position detection approaching that set by the Heisenberg uncertainty principle limit. At millikelvin temperatures, position resolution a factor of 4.3 above the quantum limit is achieved and demonstrates the near-ideal performance of the single-electron transistor as a linear amplifier. We have observed the resonator's thermal motion at temperatures as low as 56 millikelvin, with quantum occupation factors of NTH = 58. The implications of this experiment reach from the ultimate limits of force microscopy to qubit readout for quantum information devices.  相似文献   

6.
A quantum fluid passing an obstacle behaves differently from a classical one. When the flow is slow enough, the quantum gas enters a superfluid regime, and neither whirlpools nor waves form around the obstacle. For higher flow velocities, it has been predicted that the perturbation induced by the defect gives rise to the turbulent emission of quantized vortices and to the nucleation of solitons. Using an interacting Bose gas of exciton-polaritons in a semiconductor microcavity, we report the transition from superfluidity to the hydrodynamic formation of oblique dark solitons and vortex streets in the wake of a potential barrier. The direct observation of these topological excitations provides key information on the mechanisms of superflow and shows the potential of polariton condensates for quantum turbulence studies.  相似文献   

7.
A new type of electrometer is described that uses a single-electron transistor (SET) and that allows large operating speeds and extremely high charge sensitivity. The SET readout was accomplished by measuring the damping of a 1.7-gigahertz resonant circuit in which the device is embedded, and in some ways is the electrostatic "dual" of the well-known radio-frequency superconducting quantum interference device. The device is more than two orders of magnitude faster than previous single-electron devices, with a constant gain from dc to greater than 100 megahertz. For a still-unoptimized device, a charge sensitivity of 1.2 x 10(-5) e/hertz was obtained at a frequency of 1.1 megahertz, which is about an order of magnitude better than a typical, 1/f-noise-limited SET, and corresponds to an energy sensitivity (in joules per hertz) of about 41 Planck's over 2pi.  相似文献   

8.
The exceptional electronic properties of graphene, with its charge carriers mimicking relativistic quantum particles and its formidable potential in various applications, have ensured a rapid growth of interest in this new material. We report on electron transport in quantum dot devices carved entirely from graphene. At large sizes (>100 nanometers), they behave as conventional single-electron transistors, exhibiting periodic Coulomb blockade peaks. For quantum dots smaller than 100 nanometers, the peaks become strongly nonperiodic, indicating a major contribution of quantum confinement. Random peak spacing and its statistics are well described by the theory of chaotic neutrino billiards. Short constrictions of only a few nanometers in width remain conductive and reveal a confinement gap of up to 0.5 electron volt, demonstrating the possibility of molecular-scale electronics based on graphene.  相似文献   

9.
Light emission from molecular layers has been induced by inelastically tunneling electrons in a tunneling junction. The fast quenching of molecular emission on metal surfaces was suppressed by use of the "transparent conductor" indium-tin-oxide for the junction electrodes. The emission measurements have been made in squeezable tunneling junctions as small as 10(-9) square centimeters, coated with 9-10 dichloro-anthracene layers. At a bias of 2.5 to 3.5 volts, yields of 5000 photons per microcoulomb were observed. Evidence for the molecular origin of the emission is given. This method shows good prospects for use in the imaging of chromophores on surfaces with atomic resolution.  相似文献   

10.
Manipulation of single spins is essential for spin-based quantum information processing. Electrical control instead of magnetic control is particularly appealing for this purpose, because electric fields are easy to generate locally on-chip. We experimentally realized coherent control of a single-electron spin in a quantum dot using an oscillating electric field generated by a local gate. The electric field induced coherent transitions (Rabi oscillations) between spin-up and spin-down with 90 degrees rotations as fast as approximately 55 nanoseconds. Our analysis indicated that the electrically induced spin transitions were mediated by the spin-orbit interaction. Taken together with the recently demonstrated coherent exchange of two neighboring spins, our results establish the feasibility of fully electrical manipulation of spin qubits.  相似文献   

11.
In a mesoscopic conductor, electric resistance is detected even if the device is defect-free. We engineered and studied a cold-atom analog of a mesoscopic conductor. It consists of a narrow channel connecting two macroscopic reservoirs of fermions that can be switched from ballistic to diffusive. We induced a current through the channel and found ohmic conduction, even when the channel is ballistic. We measured in situ the density variations resulting from the presence of a current and observed that density remains uniform and constant inside the ballistic channel. In contrast, for the diffusive case with disorder, we observed a density gradient extending through the channel. Our approach opens the way toward quantum simulation of mesoscopic devices with quantum gases.  相似文献   

12.
Zhou C  Kong J  Yenilmez E  Dai H 《Science (New York, N.Y.)》2000,290(5496):1552-1555
Modulation doping of a semiconducting single-walled carbon nanotube along its length leads to an intramolecular wire electronic device. The nanotube is doped n-type for half of its length and p-type for the other half. Electrostatic gating can tune the system into p-n junctions, causing it to exhibit rectifying characteristics or negative differential conductance. The system can also be tuned into n-type, exhibiting single-electron charging and negative differential conductance at low temperatures. The low-temperature behavior is manifested by a quantum dot formed by chemical inhomogeneity along the tube.  相似文献   

13.
We have measured carbon nanotube quantum dots with multiple electrostatic gates and used the resulting enhanced control to investigate a nanotube double quantum dot. Transport measurements reveal honeycomb charge stability diagrams as a function of two nearly independent gate voltages. The device can be tuned from weak to strong interdot tunnel-coupling regimes, and the transparency of the leads can be controlled independently. We extract values of energy-level spacings, capacitances, and interaction energies for this system. This ability to control electron interactions in the quantum regime in a molecular conductor is important for applications such as quantum computation.  相似文献   

14.
BC Stipe  MA Rezaei  W Ho 《Science (New York, N.Y.)》1998,279(5358):1907-1909
Tunneling electrons from the tip of a scanning tunneling microscope were used to induce and monitor the reversible rotation of single molecules of molecular oxygen among three equivalent orientations on the platinum(111) surface. Detailed studies of the rotation rates indicate a crossover from a single-electron process to a multielectron process below a threshold tunneling voltage. Values for the energy barrier to rotation and the vibrational relaxation rate of the molecule were obtained by comparing the experimental data with a theoretical model. The ability to induce the controlled motion of single molecules enhances our understanding of basic chemical processes on surfaces and may lead to useful single-molecule devices.  相似文献   

15.
What is the complex impedance of a fully coherent quantum resistance-capacitance (RC) circuit at gigahertz frequencies in which a resistor and a capacitor are connected in series? While Kirchhoff's laws predict addition of capacitor and resistor impedances, we report on observation of a different behavior. The resistance, here associated with charge relaxation, differs from the usual transport resistance given by the Landauer formula. In particular, for a single-mode conductor, the charge-relaxation resistance is half the resistance quantum, regardless of the transmission of the mode. The new mesoscopic effect reported here is relevant for the dynamical regime of all quantum devices.  相似文献   

16.
We measure the differential conductance of a single-electron transistor (SET) irradiated with microwaves. The spin-entangled many-electron Kondo state produces a zero-bias peak in the dc differential conductance if the quantum dot in the SET contains an unpaired electron. When the photon energy hf is comparable to the energy width of the Kondo peak and to e (the charge on the electron) times the microwave voltage across the dot, satellites appear in the differential conductance shifted in voltage by +/-hf/e from the zero-bias resonance. We also observe an overall suppression of the Kondo features with increasing microwave voltage.  相似文献   

17.
Graphene provides a rich platform to study many-body effects, owing to its massless chiral charge carriers and the fourfold degeneracy arising from their spin and valley degrees of freedom. We use a scanning single-electron transistor to measure the local electronic compressibility of suspended graphene, and we observed an unusual pattern of incompressible fractional quantum Hall states that follows the standard composite fermion sequence between filling factors ν = 0 and 1 but involves only even-numerator fractions between ν = 1 and 2. We further investigated this surprising hierarchy by extracting the corresponding energy gaps as a function of the magnetic field. The sequence and relative strengths of the fractional quantum Hall states provide insight into the interplay between electronic correlations and the inherent symmetries of graphene.  相似文献   

18.
Although perfect copying of unknown quantum systems is forbidden by the laws of quantum mechanics, approximate cloning is possible. A natural way of realizing quantum cloning of photons is by stimulated emission. In this context, the fundamental quantum limit to the quality of the clones is imposed by the unavoidable presence of spontaneous emission. In our experiment, a single input photon stimulates the emission of additional photons from a source on the basis of parametric down-conversion. This leads to the production of quantum clones with near-optimal fidelity. We also demonstrate universality of the copying procedure by showing that the same fidelity is achieved for arbitrary input states.  相似文献   

19.
Quantum communication relies on the availability of light pulses with strong quantum correlations among photons. An example of such an optical source is a single-photon pulse with a vanishing probability for detecting two or more photons. Using pulsed laser excitation of a single quantum dot, a single-photon turnstile device that generates a train of single-photon pulses was demonstrated. For a spectrally isolated quantum dot, nearly 100% of the excitation pulses lead to emission of a single photon, yielding an ideal single-photon source.  相似文献   

20.
Colloidal quantum rods of cadmium selenide (CdSe) exhibit linearly polarized emission. Empirical pseudopotential calculations predict that slightly elongated CdSe nanocrystals have polarized emission along the long axis, unlike spherical dots, which emit plane-polarized light. Single-molecule luminescence spectroscopy measurements on CdSe quantum rods with an aspect ratio between 1 and 30 confirm a sharp transition from nonpolarized to purely linearly polarized emission at an aspect ratio of 2. Linearly polarized luminescent chromophores are highly desirable in a variety of applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号