首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Understanding seasonal soil nitrogen (N) availability patterns is necessary to assess corn (Zea mays L.) N needs following winter cover cropping. Therefore, a field study was initiated to track N availability for corn in conventional and no‐till systems and to determine the accuracy of several methods for assessing and predicting N availability for corn grown in cover crop systems. The experimental design was a systematic split‐split plot with fallow, hairy vetch (Vicia villosa Roth), rye (Secale cereale L.), wheat (Triticum aestivum L.), rye+hairy vetch, and wheat+hairy vetch established as main plots and managed for conventional till and no‐till corn (split plots) to provide a range of soil N availability. The split‐split plot treatment was sidedressed with fertilizer N to give five N rates ranging from 0–300 kg N ha‐1 in 75 kg N ha‐1 increments. Soil and corn were sampled throughout the growing season in the 0 kg N ha‐1 check plots and corn grain yields were determined in all plots. Plant‐available N was greater following cover crops that contained hairy vetch, but tillage had no consistent affect on N availability. Corn grain yields were higher following hairy vetch with or without supplemental fertilizer N and averaged 11.6 Mg ha‐1 and 9.9 Mg ha‐1 following cover crops with and without hairy vetch, respectively. All cover crop by tillage treatment combinations responded to fertilizer N rate both years, but the presence of hairy vetch seldom reduced predicted fertilizer N need. Instead, hairy vetch in monoculture or biculture seemed to add to corn yield potential by an average of about 1.7 Mg ha‐1 (averaged over fertilizer N rates). Cover crop N contributions to corn varied considerably, likely due to cover crop N content and C:N ratio, residue management, climate, soil type, and the method used to assess and assign an N credit. The pre‐sidedress soil nitrate test (PSNT) accurately predicted fertilizer N responsive and N nonresponsive cover crop‐corn systems, but inorganic soil N concentrations within the PSNT critical inorganic soil N concentration range were not detected in this study.  相似文献   

2.
Abstract

Nitrogen (N) fertilizer is a key factor of yield increase but also an environmental pollution hazard. The sustainable agriculture system should have an acceptable level of productivity and profitability and an adequate environmental protection. The objectives of this study were to determine the relationships between N rate, DM yield, plant N concentration (NC) and residual soil nitrate‐nitrogen in order to improve the predicted N rate in corn (Zea mays L.) silage. The experiment was conducted over a period of three years in the province of Quebec on three soil series in a continuous corn crop sequence. Treatments consisted of six rates of N: O, 40, 80, 120, 160, and 200 kg N ha‐1 as ammonium nitrate applied at planting: broadcast and side banded. Four optimum N rates were calculated using different models: (i) economic rate base on fertilizer and corn price using the quadratic model (E); (ii) economic rate based on fertilizer and corn price using the quadratic‐plus‐plateau model (QP); (iii) critical rate based on linear‐plus‐plateau model (P); (iv) lower than maximum rate (L) corresponding to 95% of maximum yield. The optimum plant NC at all growing stages and the N uptake at harvest were calculated depending on these N rates and yields.

The NC of whole plant at 8‐leaf stage (25–30 cm plant height) of ear leaf at tasselling and of whole plant at harvest stage, the N rate, the N uptake at harvest and the DM yield were all significantly intercorrelated and affected by soils and years, but not affected by N fertilizer application method. The DM yield was linearly and significantly related to NC of whole plant at 8‐leaf stage (rv = 0.932**). At this stage, the average NC corresponding to the optimum N rate and yield was of 3.71, 3.68, and 3.66% as calculated with E, L, and P model, respectively. Our data suggest that the NC of whole plant at 8‐leaf stage may be used to evaluate the N nutrition status of plant and the required optimum N fertilizer rate. The NC of ear leaf at tassel stage was also significantly correlated to corn yield (r = 0.994**). It may be used as an indicator to evaluate the near‐optimum N rate in the subsequent years.

The N uptake by whole above‐ground plant at harvest was quadratically related to corn yield. Data show that at high fertilizer N rate, the N uptake still increased without significantly increasing yield. The N uptake was of 176.5, 163.0, and 155.0 kg N ha‐1 using the E, L and P rates of 146, 126, and 115 kg N applied ha‐1, respectively. The optimum N rate and yield were affected by soil type and year, but not by the method of N fertilizer application. The yield increased rapidly up to a N rate of about 120 kg N ha‐1 and then quite slightly to a maximum N rate of 192 kg N ha‐1. The optimum N rate was of 115 and 126 kg N ha‐1 using the P and L model respectively and as high as 146.8 kg N ha‐1 using the E model. The L model, using a much smaller N rate, gave a reasonably high yield compared to E rate (12.2 and 12.5 Mg ha‐1, respectively). The data show that a relatively much lower N rate than maximum did not proportionally diminish the yield. Thus, for a difference of 40.4% between maximum N rate and P rate a difference of only 7.4% in yield was observed. Using the L model the differences in rate and yield were of 34.4% and 4.7%, respectively. The QP model gave no significant difference compared to E model.

At harvest the residual soil NO3‐N increased significantly with increasing N fertilizer rate in whole of the 100 cm soil profile, but mainly in the top 40 cm soil layer. The total NO3‐N found in 0–100 cm profile at rate of 0, 120 and 200 kg applied N ha‐1 at planting was as high as 33.7, 60.5, and 74.5 kg N ha‐1 respectively in a light soil and 37.5, 97.5, and 145.5 kg N ha‐1 in a heavy clay soil. The difference in NO3‐N content in the 60–100 cm layer between different applied N rate suggests that at harvest, part of fertilizer N applied at planting was already leached below the 100 cm soil layer. Results, thus, show that reasonably high corn yields can be obtained using more adequate N fertilizer rates which avoid the overfertilization and are likely to reduce the air and ground water pollution.  相似文献   

3.
Nitrogen (N) supply increased yield, leaf % N at 10 days after silking (DAS) and at harvesting, the contents of ribulose‐1,5‐bisphosphate carboxylase (RUBISCO) and soluble protein, and the activities of phosphoenolpyruvate carboxylase (PEPC), and ferredoxin‐glutamate synthase (Fd‐GOGAT), but not of glutamine synthetase (GS) for six tropical maize (Zea mays L) cultivars. Compared to plants fertilized with 10 kg N/ha, plants inoculated with a mixture of Azospirillum sp. (strains Sp 82, Sp 242, and Sp Eng‐501) had increased grain % protein, and leaf % N at 10 DAS and at harvest, but not grain yield. Compared to plants fertilized with either 60 or 180 kg N/ha, Azospirillum‐inoculated plants yielded significantly less, and except for GS activity, which was not influenced by N supply, had lower values for leaf % N at 10 DAS and at harvest, for contents of soluble protein and RUBISCO, and for the activities of PEPC and Fd‐GOGAT. Yield was positively correlated to leaf % N both at 10 DAS and at harvest, to the contents of soluble protein and RUBISCO, and to the activities of PEPC and Fd‐GOGAT, but not of GS, when RUBISCO contents and enzyme activities were calculated per g fresh weight/min. However, when enzyme contents and enzyme activities were expressed per mg soluble protein/min, yield was correlated positively to RUBISCO and PEPC, but negatively to GS. These results give support to the hypothesis that RUBISCO, Fd‐GOGAT, and PEPC may be used as biochemical markers for the development of genotypes with enhanced photosynthetic capacity and yield potential.  相似文献   

4.
A calcareous clay nd a calcareous sand, were fractionated densimetrically by dispersion in organic liquids of sp. gr. 1.59–2.06. The N contents of the light fractions decreased with increasing densities of the suspending liquids and were up to 18–23 times higher than those of the whole soils. Light fraction organic-N of both the sandy and clay soils was obtained mainly from silt-size components. However, the efficiency, with which light fraction material was obtained from the two whole soils, varied. With the clay soil, the total yield of light fraction organic-N was increased markedly by applying the densimetric technique to particle size components, rather than to the whole soil.Silt-size and fine clay-size particles from soils, sampled during rapid metabolism of microbial organic-[15N], were further fractionated densimetrically in “Nemagon”, sp. gr. 2.06. The organic-[15N] of the light and heavy subtractions changed markedly (P < 0.05) during periods of net 15N immobilization and mineralization, including a period after soil fumigation when extensive decomposition of [15N]-labelled microbial biomass occurred. Changes in the 15N of complementary light and heavy subfractions followed similar trends. Light subtraction organic-[15N] usually showed the greater relative change but the differences between the subtractions were not statistically significant. It is concluded that when small proportions only of soil organic-N are associated with macroorganic debris, as in these two soils amended wth glucose and 15NO?3, densimetric fractionation at a sp. gr. as high as 2.06 will yield light and heavy fractions, whose nitrogenous components are similarly available to biological attack. Enhanced metabolism of light fraction material is more likely to be demonstrated when such material consists mainly of obvious plant residues, and this may be more easily achieved by fractionation in liquids of sp. gr. <2.  相似文献   

5.
Abstract

Nitrogen (N) in forest soil extracts and surface waters may be dominantly in organic compounds as dissolved organic nitrogen (DON). Due to various difficulties associated with measuring total N (as TKN) by the Rjeldahl digest, this important vehicle for nutrient movement is rarely monitored. By coupling two relatively new methods and optimizing them for use in soil studies, we developed an alternative method for measuring DON. Analysis of pure compounds and field samples shows that persulfate oxidation combined with conductimetric quantification of nitrate (NO3) provides a highly accurate measure of dissolved N content. With relatively inexpensive equipment and reagents, a single technician can digest and assay over a hundred samples a day. This rapid, simple, and accurate assay may make it possible to routinely monitor DON where it had previously been impractical. This in turn could substantially enhance understanding about the form and quantity of N involved in nutrient fluxes.  相似文献   

6.
Abstract

An upland rice variety IAC‐47 was grown in a greenhouse to determine the effect of foliar nitrogen (N) supplementation during grain development on the activity of the N assimilation enzymes, nitrate reductase (NR) and glutamine synthetase (GS), on free amino‐N content and leaf soluble sugars, and on grain crude protein content. At 10 and 20 days after anthesis (DAA), the leaves were fertilized with a liquid fertilizer containing 32% N as 12.8% urea, 9.6% ammonium (NH4), and 9.6% nitrate (NO3) in increasing rates corresponding to 0,20+20, 40+40, and 60+60 kg N ha‐1. Leaves were collected twice (at 12 DAA and 14 DAA for GS activity, sugar and amino‐N content, and at 11 and 13 DAA for NRA) after each application of leaf N. The late foliar application of N increased significantly grain crude protein without a corresponding decrease in grain weight. The NR activity (NRA) increased after the foliar application of N. In the flag leaf, 60+60 kg N ha‐1 (21 DAA) resulted in higher NRA (20x over the control), while GS activity was smaller than the control. At 22 DAA there was an increase in GS activity in the flag leaf at 20+20 N level. However, the GS activity decreased as applied N levels increased. Also at the 20+20 level, there were increases in free amino‐N in the flag leaf and second leaf at the final harvest. Throughout the experiment, plants at the 60+60 N level had the lowest levels of soluble sugars. Increases in crude protein were highest at 40+40 N level (27.9%), followed by 60+60 (18.7%).  相似文献   

7.
Laboratory incubation experiments with and without added urea or NH4NO3 were performed on humus from stands of beech (Fagus silvatica) grown on soils from limestone, schists, flysch and peridotites and on humus from oak (Quercus conferta) stands on soils from limestone and schists.Beech and oak humus from stands grown on soils from limestone and flysch showed considerable nitrification with a concurrent high mobilization rate of the nutrient elements Ca, Mg and K, especially in the presence of increasing urea concentrations, but no net humus N mineralization was observed. Beech humus from stands grown on soils from schists and peridotites showed no nitrification and increasing concentrations of added urea did not modify their inability to nitrify. Non-nitrifying types of humus showed considerable ammonification but their Ca, Mg and K mobilization rates were about one-tenth those observed in nitrifying humus and were inversely correlated with urea concentrations.Exchangeable Al3+ and extractable Mn were present in high concentrations in the underlying inorganic soils in all cases where nitrification was absent from the overlying humus but addition of 500 parts Al3+ and 1000 parts Mn/106 separately or in combination to a nitrifying humus failed to inhibit nitrification.An interpretation of these findings is attempted with reference to the possibility of absence of nitrification in climax vegetations and the preference of certain forest species for NH+4 or NO?3.  相似文献   

8.
In incubation experiments in the laboratory interactions of urea or NH4NO3 with humus from stands of fir (Abies cephalonica, Loudon) growing on soils developed from flysch (shales) and limestone and with humus from stands of black pine (pinus nigra, Arn.) growing on soils developed from peridotites, limestone and schists were investigated.Fir humus from stands on flysch and limestone and black pine humus from limestone showed nitrification but it was absent from black pine humus from stands on peridotites and on schists. Humus from stands on schists showed appreciable ammonification. Increasing concentrations of urea did not initiate nitrification in the latter type of humus. No substantial N immobilization was detected in spite of relatively high P immobilization. Increases in concentration of Ca, Mg and K occurring on incubation of humus samples were related to the ability of a humus type to nitrify rather than to concentrations of added urea-N.Urea was hydrolyzed rapidly to NH+4 during contact with various types of humus, resulting in an increase of pH. Production of NH+4 from urea was only minimally affected by drying the humus samples at 70°C for 20 h before incubation but was reduced to 30% at 1–5°C.  相似文献   

9.
Abstract

Diffusion methods for quantitative determination and isotope‐ratio analysis of inorganic N in soil extracts were modified for use with Kjeldahl digests. The digest was diluted to 25 mL with deionized water, and an aliquot (to 6 mL) was transferred in a shell vial (17 mm dia., 60 mm long) to a 473‐mL (1‐pint) wide‐mouth Mason jar containing 15 mL of 8 M NaOH. The NH3 liberated by overturning the vial inside the sealed jar was collected for 48 h at room temperature (24 h with orbital shaking) in 3 mL of boric acid‐indicator solution in a Petri dish, or in an acidified glass‐fiber disk, suspended from the Mason‐jar lid. Determinations of N and 15N by diffusion were in close agreement with analyses using conventional steam‐distillation and concentration techniques.  相似文献   

10.
Crop and native plants can be characterized as high and low nutrient‐adapted based on their expected response to native and applied nutrients. Our objective was to compare the plasticity of biomass allocation and tissue nutrient concentrations to added sulfur (S) and nitrogen (N) across a continuum of high and low nutrient‐adapted grasses, represented by barley (Hordeum vulgare), smooth brome (Bromus inermis), bluebunch wheatgrass (Pseudoroegneria spicata), and Idaho fescue (Festuca idahoensis). In our greenhouse study, treatments included two S sources (pyrite and gypsum), at 150 and 300 kg S ha‐1, N at 50 kg ha‐1, and a check. Shoot biomass of barley, smooth brome, and bluebunch wheatgrass was enhanced by S plus N. Shoot biomass of barley and smooth brome was greater with pyrite than with gypsum. Root biomass of smooth brome and bluebunch wheatgrass was greater with pyrite than with gypsum. Plant S concentrations of barley and Idaho fescue were enhanced by added S. Plant S concentrations in barley and smooth brome were greater with gypsum than with pyrite. Except for barley, plant S pools (shoot biomass x shoot S concentration) were enhanced with S plus N compared with no added nutrients. Nitrogen pools of barley, smooth brome, and bluebunch wheatgrass were higher with pyrite than with gypsum. Soil sulfate (SO4) was greater when S or S plus N was added than without any added nutrients. For barley and smooth brome, soil sulfate tended to be lower with pyrite than with gypsum. For all soils, pH was lower with added S or added S plus N compared with unamended soils. While pyrite lowered soil pH, gypsum tended to increase soil pH. Overall, barley and smooth brome were highly plastic in responding to enhanced nutrient levels, bluebunch wheatgrass was relatively responsive, and Idaho fescue was least responsive.  相似文献   

11.
A greenhouse experiment with beans (Phaseolus vulgaris L.) was performed in order to investigate the effect of nitrogen and sulphur application and seed inoculation on the yield, leaf area, distribution of different nitrogen and sulphur fractions and N/S ratio in shoot, fruit and root.

Inoculation of plants together with nitrogen or sulphur application produces an increase in the concentration of total nitrogen and a decrease in the accumulation of nitrate‐nitrogen and sulphate‐sulphur in shoot, fruit and root. Leaf area increased more with nitrogen than with sulphur application while the highest amounts of fruit dry matter were obtained with sulphur application.

N: S ratios obtained were different according to the part of the plant tested. Sulphur fertilization decreased the N: S ratios in shoot, fruit and root. The data obtained indicate that and adequate N: S ratio can insure maximum production of yield.  相似文献   


12.
Aubergine plants (Solanum melongena cv. Bonica) were grown under controlled greenhouse conditions on a soil substrate supplied with organic fertilizers (15 kg/m2) mixed with calcium sulfate (CaSO4 at 500 g/m2), with different doses of nitrogen (N as N1 = 15, N2 = 22.5, N3 = 30 g/m2) in the form of ammonium nitrate (NH4NO3), and phosphorus (P as P1 = 24, P2 = 36 g/m2) as phosphorus acid H3PO4). Plants were sampled every 15 days, and the pigments chlorophyll a, chlorophyll b, total (a+b) and ratio (a/b), carotene, licopene, and anthocyanins were determined in the leaves. The results showed that increases in rhizosphere N led to increases in foliar concentrations of chlorophyll a and b, both individually and as total chlorophyll, independently of the dose of P applied. Total chlorophyll concentrations were directly correlated with the level of P fertilization. Carotene and licopenes reflected the influence of increasing doses of N, whereas P did not affect these pigments. Anthocyanin levels were affected by both N and P.  相似文献   

13.
It may be desirable to minimize dinitrogen (N2) fixation in alfalfa (Medicago saliva L.) when a source of inorganic nitrogen (N), such as manure, is readily available. Our objectives were to determine the N2 fixation response of eight alfalfa germplasms to inorganic N and to characterize plant‐to‐plant variation for this trait. Seed was sown in vermiculite and irrigated with nutrient solution in growth chambers. Herbage was removed at 71 d and treatments of 1, 3, 5, or 10 mM N were applied as 15N‐depleted ammonium nitrate (NH4NO3). After 34 d of regrowth, herbage was removed and analyzed for dry mass, total N concentration, and N isotope ratio. Increased availability of inorganic N resulted in a linear increase in herbage weight, height, shoot number, and N concentration, and consistently decreased N2 fixation for all germplasms. Estimated N2 fixation was greater than zero at the highest rate of inorganic N, which we speculate was due, in part, to remobilized root and crown N, because nodules appeared to be nonfunctional. Across all treatments, N2 fixation correlated best with herbage N concentration, but there was no relationship between these variables within a given N treatment concentration. Significant variation in reliance on N2 fixation in the presence of inorganic N existed in all eight germplasms.  相似文献   

14.
Abstract

Application of soluble forms of nitrogen (N) fertilizers to sandy soils may cause leaching of nitrate N (NO3‐N) resulting in contamination of groundwater. The leaching loss of N may be reduced to a certain extent by the use of controlled‐release N formulations. A leaching column study was conducted to evaluate the leaching of urea, ammonium N (NH4‐N), and NO3‐N forms from selected urea‐based controlled‐release formulations (Meister, Osmocote, and Poly‐S) and uncoated urea under eight cycles of intermittent leaching and dry conditions. Following leaching of 1,760 mL of water (equivalent to 40 cm rainfall) through the soil columns, the recovery of total N (sum of all forms) in the leachate accounted for 28, 12, 6, or 5% of the total N applied as urea, Poly‐S, Meister, and Osmocote, respectively. Loss of urea‐N from all fertilizer sources was pronounced during the initial leaching events (with the exception of Meister). Cumulative leaching of urea‐N was 10% for uncoated urea while <1.7% for the controlled‐release formulations. Cumulative leaching of NH4‐N was 6.2% for uncoated urea while <0.5% for the controlled‐release formulations. Cumulative leaching loss of NO3‐N was 3.78% for Osmocote, 4.6% for Meister, 10.4% for urea, and 10.5% for Poly‐S. This study demonstrates a significant reduction in leaching of N forms from controlled‐release formulations as compared to that from the soluble form.  相似文献   

15.
16.
Whether the extent of dry weight inhibition by nitrogen (N) or phosphorus (P) deficiencies on different plant parts is the same and whether imposing moderate N and P deficiencies selectively suppress undesirable vegetative growth has not been studied in Pima cotton (Gossypium barbadense L.). The purpose of this study was to determine the extent to which dry matter accumulation in leaves, stems, and reproductive structures is inhibited by N and P deficiencies in Pima cotton. The study was conducted in 1991 and 1992 in a Uvalde silty clay loam soil (fine‐silty, mixed, hyperthermic Aridic Calciustolls). The treatments included applied rates of 0, 67, 135, 202, and 269 kg N ha‐1 in a factorial combination with 0, 15, 29, and 44 kg P ha‐1. Nitrogen deficiency (0 kg N ha‐1) significantly (P≤0.05) reduced leaf (LDW) and stem (SDW) dry weights in both years and reproductive dry weight (RDW) in 1992. Nitrogen deficiency suppressed dry weight accumulation in leaves to a greater extent than in stems. Relative to 269 kg N ha‐1, the 0 kg N ha‐1 treatment resulted in a maximum LDW reduction of 62% at 144 DAP (days after planting) in 1991 and 36% at 121 DAP in 1992, compared with a corresponding SDW reduction of only 39% in 1991 and 25% in 1992. Dry weight accumulation in reproductive parts was the least affected by N deficiency. The decline in LDW associated with senescence and defoliation began earlier in treatments that received 0 or 67 kg N ha‐1 than treatments that received ≥135 kg N ha‐1. Phosphorus affected LDW and SDW in 1991, but its differential effect on LDW, SDW, and RDW was much smaller than that of N. Imposing a moderate level of N deficiency, not P deficiency, may be an effective Pima cotton management strategy to selectively suppress undesirable vegetative growth and enhance maturity.  相似文献   

17.
Abstract

Root‐tip, 1‐cm of Sorghum bicolor (L.) Moench cv SC283, SC574, GP‐10, and Funk G522DR were exposed to calcium (45Ca2+) at pH 5.5 for 2‐hr in the presence of nitrate‐nitrogen (NO3?‐N) or ammonium‐nitrogen (NH4+‐N). Nitrate (0.1 mM) induced significantly increased 45Ca uptake in Funk G522DR, SC283, and GP‐10 while 0.01 mM NO3 ?‐N induced significantly increased 45Ca'uptake in SC574, but 45Ca absorption was significantly decreased at 1 mM NO3—N. In the presence of the NH4+ ion, 45Ca uptake was increased up to 8X that of the NH4 +‐N untreated roots. When ammonium chloride (NH4CI) was used, the Cl? tended to induce an increased 45Ca uptake. Cultivar variation was present.  相似文献   

18.
Abstract

Pearl millet and annual ryegrass were continually doubled‐cropped on Olivier silt loam soil for seven years at six levels of N, applied as ammonium nitrate in three applications to millet and in two applications to ryegrass. Forage yields increased as N application rates increased. During seven years at the 0 and 448 kg/ha N rate, millet produced 35% and 95%, respectively, as much yield as it produced at the 800 kg/ha N rate, while comparable values for ryegrass were 19% and 83%. At 448 kg/ha of N the two grasses produced a combined yield of over 20 Mg/ha of dry forage per year. Ryegrass yields following millet were consistently lower than yields previously obtained at this site.

Nitrogen applications consistently increased concentrations of N, Ca, and Mg in both forage grasses, while effects on P and K were variable and S concentrations were unaffected. The amounts of all nutrients removed in the forages were increased as yields increased with N application rates. Nitrate‐N levels considered to be toxic to ruminant animals occurred only where N applications exceeded 170 kg/ha at any one time. In vitro digestibility of each grass was consistently increased by N applications.

The percentage of fertilizer N that was removed in the crops ranged from 66% to 68% for millet and from 35 to 52% for ryegrass as N applications increased up to 448 kg/ha. Residual ammonium and nitrate levels in the top 1.2 m of soil were not increased by N rates of 448 kg/ha or lower. At the 800 kg/ha N‐rate, the apparent N recovery rate decreased and residual ammonium and nitrate levels increased throughout the soil profile.  相似文献   

19.
 We examined how soil organisms and C, N and P mineralisation are affected by admixing deciduous tree species, silver birch (Betula pendula) and woollen birch (B. pubescens), in managed Norway spruce (Picea abies) stands. Pure spruce and mixed spruce–birch stands were examined at four sites in southern and central Sweden. Soil macroarthropods and enchytraeids were sampled in litter and soil. In the uppermost 5 cm of soil humus we determined microbial biomass and microbial respiration; we estimated the rate of C, N and P mineralisation under laboratory conditions. The densities of Coleoptera, Diptera and Collembola were larger in mixed stands than in spruce stands. Soil fauna composition differed between mixed and spruce stands (as revealed by redundancy analysis). Staphyliniidae, Elateridae, Cecidiomyidae larvae and Onychiuridae were the families that increased most strongly in mixed stands. There were no differences in microbial biomass and microbial respiration, nor in the C, N and P mineralisation rates, between mixed and spruce stands. However, within mixed stands microbial biomass, microbial activity and C mineralisation were approximately 15% higher under birch trees than under spruce trees. We propose that the presence of birch leaf litter was likely to be the most important factor causing differences in soil fauna composition. Birch may also influence the quality and the decomposition rate of humus in mixed stands. However, when the proportion of birch trees is low, the short-term (decades) effect of this species on decomposition is likely to be small in mixed stands on acid forest soils. Received: 20 February 1998  相似文献   

20.
Evaluation of legume response to acidic conditions can be difficult when using nutrient solutions because of fluctuations in solution pH. The organic buffer 2(N‐morpholino)‐ethanesulfonic acid (MES) has been used for stabilizing pH in nutrient solution studies. We evaluated the effectiveness of MES (5.0 mM) to stabilize solution culture at pH 5.5 with and without mineral N (0 or 1.0 mM NH4NO3) and its influence on growth and N2 fixation of arrowleaf clover (Trifolium vesiculosum Savi). The buffer maintained pH stability ± 0.1 pH units in the presence or absence of mineral N. In the absence of mineral N, the quantity of N2 fixed by plants grown with MES was not significantly different from that fixed by plants grown without MES. However, with mineral N, N2 fixation was reduced 37% with addition of MES. Tissue analysis indicated a small increase in Ca and Mg concentration for plants grown with MES. Caution should be exercised in the use of MES in studies of N2‐fixing legumes when mineral N is included.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号