首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

Sorption of antimony on soils is the primary factor that influences its immobilization and migration in the environment. In the present study, the sorption of Sb(V) onto seven Chinese soils with different physicochemical properties was investigated for exploring the relationship between the sorption capacity of Sb(V) and the physicochemical properties of the soils.

Materials and methods

Sorption isotherms and kinetics experiments were performed to ascertain the sorption capacity and the kinetic rate, respectively. The relationship between the sorption capacity of Sb(V) and the physicochemical properties of the soils was analyzed by multiple linear regressions.

Results and discussion

The results showed that the sorption isotherms fitted with both the Langmuir and Freundlich equations very well (R 2?=?0.936–0.997), and the sorption kinetic of Sb(V) onto the seven Chinese soils followed a pseudo-second-order reaction. The maximum sorption capacity of Sb(V) on the soils ranged from 134 to 1,333 mg?kg?1. Nearly 94 % of the variability in maximum sorption of Sb(V) modeled by Freundlich equation could be described by FeDCB (dithionite–citrate–bicarbonicum extractable), and nearly 98 % of the variability could be described by FeDCB and AlDCB.

Conclusions

Multiple linear regressions can be successfully applied to analyzing the relationship between sorption capacity and soil properties. FeDCB and AlDCB played important roles in Sb(V) sorption onto soils. It would be useful to understand the environmental behaviors of Sb and for the implementation of risk assessment management and remediation strategies of Sb.  相似文献   

2.

Purpose

The main objective of this study was to evaluate the potential of a counter-current leaching process (CCLP) on 14 cycles with leachate treatment at the pilot scale for Pb, Cu, Sb, and Zn removal from the soil of a Canadian small-arms shooting range.

Materials and methods

The metal concentrations in the contaminated soil were 904?±?112 mg Cu kg–1, 8,550?±?940 mg Pb kg–1, 370?±?26 mg Sb kg–1, and 169?±?14 mg Zn kg–1. The CCLP includes three acid leaching steps (0.125 M H2SO4?+?4 M NaCl, pulp density (PD)?=?10 %, t?=?1 h, T?=?20 °C, total volume?=?20 L). The leachate treatment was performed using metal precipitation with a 5-M NaOH solution. The treated effluent was reused for the next metal leaching steps.

Results and discussion

The average metal removal yields were 80.9?±?2.3 % of Cu, 94.5?±?0.7 % of Pb, 51.1?±?4.8 % of Sb, and 43.9?±?3.9 % of Zn. Compared to a conventional leaching process, the CCLP allows a significant economy of water (24,500 L water per ton of soil), sulfuric acid (133 L H2SO4 t–1), NaCl (6,310 kg NaCl t–1), and NaOH (225 kg NaOH t–1). This corresponds to 82 %, 65 %, 90 %, and 75 % of reduction, respectively. The Toxicity Characteristic Leaching Procedure test, which was applied on the remediated soil, demonstrated a large decrease of the lead availability (0.8 mg Pb L–1) in comparison to the untreated soil (142 mg Pb L–1). The estimated total cost of this soil remediation process is 267 US$ t–1.

Conclusions

The CCLP process allows high removal yields for Pb and Cu and a significant reduction in water and chemical consumption. Further work should examine the extraction of Sb from small-arms shooting range.  相似文献   

3.

Purpose

Environmental chemistry of antimony (Sb) is still largely unknown. Many questions remain about its availability to plants and effects of fertilizers on mobility of Sb in the rhizosphere soil. In this work, we focused on the following problems: (1) uptake of Sb by wheat seedlings grown in soil enriched with this metalloid and (2) impact of soil amendments on the plant growth, Sb uptake from soil, and its transfer from roots to upper plant parts.

Materials and methods

To obtain further information on the possible transfer of Sb into plants, greenhouse pot experiments were carried out. Soil was spiked with 15 mg kg?1 of Sb and amended with either chicken manure or natural growth stimulator Energen. Wheat Triticum aestivum L. seedlings were grown in the soil during 17 days. Plants together with rhizosphere soil were collected several times in the course of the experiment. The ICP-OES and ICP-MS techniques were applied to determine the concentrations of macro- and trace elements in the plant and soil material.

Results and discussion

Growth of wheat seedlings in Sb-spiked soil resulted in Sb accumulation in roots and leaves of the plants. Energen and especially chicken manure were capable of stimulating transfer of Sb to more mobile and, as a consequence, more available to the plants form, thus enhancing both uptake of Sb from soil and its transfer from roots to upper plant parts. The accumulation of Sb by plants led to a decrease of Sb concentration in the rhizosphere soil with time, and the most significant decrease was observed after amendment of soil with fertilizers.

Conclusions

Fertilizers may be used to increase phytoextraction of Sb and its removal from contaminated soils. However, such an amendment of soil should be done with caution in order to exclude or at least reduce the negative effects on plants.  相似文献   

4.

Purpose

Interestingly, soil is the component of the natural environment in which most hydrophobic organic pollution including polycyclic aromatic hydrocarbons (PAHs) gets accumulated. The aim of the present paper was to determine the effect of soil pollution with PAHs on the elemental composition, spectral properties, and hydrophobic and hydrophilic properties of humic acids. The research was performed on different types of soil samples that were artificially polluted with selected PAHs (anthracene, pyrene, fluorene and chrysene).

Materials and methods

The soil samples were polluted with selected PAHs in an amount corresponding to 10 mg PAHs kg?1. The PAHs-polluted soil samples were incubated for 180 and 360 days at a temperature of 20–25 °C and fixed moisture (50 % of field water capacity). Humic acids (HAs) were extracted from the soil samples prior to the incubation (additionally, soils not polluted with PAHs) and after 180 and 360 days of incubation. For isolated HAs, the following analyses were performed: elemental composition, UV–Vis and IR spectra, susceptibility to oxidation, and hydrophilic (HIL) and hydrophobic (HOB) properties were determined using high-performance liquid chromatography.

Results and discussion

The research demonstrated that introducing anthracene, fluorene, pyrene and chrysene to soil samples resulted in a change in some of the quality parameters of humic acids. However, the intensity and the direction of those changes were determined by soil properties. The changes of the parameters, once PAHs were introduced, that did not depend on the soil properties were ΔA 665u and ΔA 465u (susceptibility to oxidation at wavelengths of 465 and 665 nm) as well as HIL/ΣHOB. The same tendency in changes in the structure of humic acids, once PAHs were introduced, was also observed based on the Fourier transform infrared spectra pattern.

Conclusions

A single pollution of soils with PAHs that leads to changes in the quality parameters of humic acids shows that, as for the soils permanently exposed to pollution with those compounds, significant changes can occur in the properties of humic acids. As a result, it can lead to a change in the functions played by humic acids in the environment.  相似文献   

5.
Abstract

Sequential extraction techniques have been used to make inferences about speciation of phosphorus (P) and to a lesser extent arsenic (As) in soils. However, sequential extraction studies on the less‐abundant group V element, antimony (Sb), are limited. In this work, a widely used P sequential extraction scheme was modified and used to extract P, As, and Sb from two acidic soils from the Macleay River floodplain, NSW, that were enriched with Sb (26.9 and 23.0 mg kg?1). An ammonium oxalate–oxalic acid step was included in the extraction sequence to dissolve the noncrystalline iron (Fe) and aluminium (Al) hydroxide phase. It extracted 30 to 47% of Sb, indicating the importance of this fraction, which may be mobilized in the floodplain by acid sulfate soil processes and periodic waterlogging. The original method overestimated P, As, and Sb in the residual fraction (30–71%). Relative efficiency values of extracts for P, As, and Sb were compared, and inferences about phase distributions were made. The results suggest some potential in using extractions to assess bioavailability of Sb in soil.  相似文献   

6.

Purpose

Soil flushing can represent a suitable technology in remediation of soils, sediments and sludge contaminated by persistent species (e.g. toxic metal). This paper presents a model specifically developed to evaluate the feasibility of chelating agent-enhanced flushing. The model, here applied to the remediation of real Pb-contaminated soils, was conceived also to simulate an innovative pulse-mode soil flushing technique.

Materials and methods

The soil flushing application was firstly carried out through columns laboratory experiments. Columns were filled with a real Pb-contaminated soil (3,000 mg kg?1 of dry soil) and flushing was operated in a pulse mode with different chelating agent dosages (3 and 4.3 mmol kg?1soil). Experimental results were used to calibrate and validate the developed reactive transport model that accounts for transport of ethylenediamine tetraacetic acid (EDTA) and EDTA–Pb chelate complexes, Pb residual concentration on soil and the reduction in permeability by soil dissolution. Determination of hydrodynamic and hydro-dispersive parameters was carried out through a numerical approach incorporating the use of neural network as interpolating function of breakthrough data obtained by a tracer test.

Results and discussion

The EDTA dosage strongly influenced the efficiency in Pb extraction and soil permeability. Cumulative extractions of Pb were found to be 20 and 29 % for the EDTA concentrations of 3 and 4.3 mmol/kg of dry soil, respectively. The soil dissolution caused a significant flow rate decrease, as a consequence of the increase in chelating agent concentration. Therefore the recovery phase duration increased from 738 to 2,080 h. The ability of the model in simulating all the examined phenomena is confirmed by a good fit with experimental results in terms of (a) soil permeability reduction, (b) eluted Pb and (c) residual Pb in the soil.

Conclusions

Results highlighted as the model, supported by a preliminary and careful characterization of the soil, can be useful to assess the feasibility of the flushing treatment (avoiding soil clogging) and to address the choice of the operating parameters (flow rate, chelating agent dosage and application method). On the basis of the present research results, a protocol is suggested for in situ soil pulse–flushing application.  相似文献   

7.

Purpose

The fractionation of soil humic acids (HAs) according to their hydrophobicity is a common procedure in the study of this polydispersed complex natural mixture, so that reversed-phase high-performance liquid chromatography (RP-HPLC) is used resulting in humic components of differing hydrophobic/hydrophilic properties. However, a comparative study of the hydrophobicity of fractions isolated from different soil HAs have not been addressed so far.

Materials and methods

The RP-HPLC with online absorbance detection was used for analysis of International Humic Substances Society soil standard HAs, chernozem soil HAs, and their electrophoretic fractions A, B, and C?+?D, obtained by tandem size exclusion chromatography–polyacrylamide gel electrophoresis. The strong relationship between hydrophobicity, electrophoretic mobility (EM), molecular size (MS), specific absorbance at 280 nm and aromaticity of HAs fractions was found.

Results and discussion

Independently of soil HAs genesis fraction A with lowest EM and highest MS is essentially more hydrophobic (60–73 % of the fraction amount remained adsorbed on the RP column) than medium EM and MS fraction B (33–47 % of the fraction amount remained adsorbed on the RP column). The lowest hydrophobicity belongs to fraction C?+?D with highest EM and lowest MS.

Conclusions

The most hydrophilic aromatic fraction C?+?D seems to have been bound with other mostly aliphatic hydrophobic fractions A and B through non covalent (possibly hydrogen) bonds. These data could be relevant to better understanding the overall makeup of soil HAs and their structural organization.  相似文献   

8.

Purpose

Sugarcane waste products (boiler ash, filter cake, and vinasse) from an ethanol production plant were used as soil amendments by adding 3 % (w/w) in single and/or in combination, with a research focus towards stabilization of cadmium (Cd) and zinc (Zn) in contaminated soils. The objective of this laboratory study was to evaluate the effects of adding these sugarcane waste products on bioavailability of Cd and Zn over time (aging) in Cd- and Zn-contaminated agricultural soils of Thailand.

Materials and methods

Two agricultural contaminated soils of low (<3 mg kg?1) and high (10–15 mg kg?1) Cd concentrations were collected from Tak Province, Northwest Thailand. Fourteen treatments were sampled at 2-week intervals for 84 days for metal bioavailability using BCR extraction procedures (proposed by The Standards, Measurements and Testing Programme of the European Union, SM&T) that determined exchangeable (BCR1), reducible (BCR2), oxidizable (BCR3), and residual (BCR4) fractions, and total concentration was determined using aqua regia digestion and microwave digestion.

Results and discussion

Cd was potentially bioavailable, predominantly in exchangeable (BCR1) and reducible (BCR2) fractions, while the higher contribution of Zn was more prevalent in refractory fractions (BCR2 and BCR4). Aging had an influence on fractionation of Cd and Zn, most notably in the first two fractions (BCR1 and BCR2) of BCR sequential extraction, which resulted in reduction of exchangeable Cd during the first few weeks of incubation (T?=?0 to 28 days). At the end of pot experiment, the exchangeable Cd fraction in the low Cd (LCdS) soil was reduced from 2.3 to 4.7 % and 9.4 to 39.9 % in low and high Cd (HCdS)-contaminated soils, respectively, as compared to nonamended soils.

Conclusions

The observed reduction in exchangeable Cd (BCR1) in the amended soils at the 3 % (w/w) application rate, the low total metal concentrations, and the significant amount of essential plant nutrients (N, P, and K) within these waste products highlight the benefits of amending metal-rich soils with them.  相似文献   

9.

Purpose

In this study, a soil-washing process was investigated for arsenic (As) and pentachlorophenol (PCP) removal from polluted soils. This research first evaluates the use of chemical reagents (HCl, HNO3, H2SO4, lactic acid, NaOH, KOH, Ca(OH)2, and ethanol) for the leaching of As and PCP from polluted soils.

Materials and methods

A Box–Behnken experimental design was used to optimize the main operating parameters for soil washing. A laboratory-scale leaching process was applied to treat four soils polluted with both organic ([PCP] i ?=?2.5–30 mg kg?1) and inorganic ([As] i ?=?50–250 mg kg?1, [Cr] i ?=?35–220 mg kg?1, and [Cu] i ?=?80–350 mg kg?1) compounds.

Results and discussion

Removals of 72–89, 43–62, 52–68, and 64–98 % were obtained for As, Cr, Cu, and PCP, respectively, using the optimized operating conditions ([NaOH]?=?1 N, [cocamidopropylbetaine] i ?=?2 % w w?1, t?=?2 h, T?=?80 °C, and PD?=?10 %).

Conclusions

The use of NaOH, in combination with the surfactant, is efficient in reducing both organic and inorganic pollutants from soils with different levels of contamination.  相似文献   

10.

Purpose

This study assessed the effect of biosolid application on the bioavailable fraction of some trace elements (Cu, Cr, Ni, and Zn) using a bioassay with sunflower (Helianthus annuus) and a chemical assay, diffusion gradient in thin films (DGT).

Materials and methods

Five surface soil samples (0–20 cm) were collected from an agricultural zone in Central Chile where biosolids are likely to be applied. Municipal biosolids were mixed with the soil at concentrations of 0, 30, 90, and 200 Mg ha?1. The experiment to determine the bioavailability of metals in the soil using the bioassay was performed using sunflower. The DGT technique and Community Bureau of Reference (BCR) sequential extraction were used to determine the bioavailable fractions of the metals.

Results and discussion

The application of biosolids increased the phytoavailability of Zn, Ni, and Cr in most of the soils, as indicated by the increasing concentrations in sunflower plants as the biosolid application rate increased. In two of the soils, Codigua and Pelvín, this increase peaked at an application rate of 90 Mg ha?1. Decreases in the bioavailable fractions of Zn, Ni, and Cr were observed with higher biosolid application rates. The bioavailability of metals was estimated through multiple linear regression models between the metals in the sunflower plants and the different chemical fractions of metals in the soils treated with different biosolid rates, which displayed a positive contribution of the labile (water soluble, carbonate, and exchangeable), oxide, and organic metal forms in the soil, particularly with respect to Ni and Zn at application rates of 30 and 90 Mg ha?1. The bioavailable fraction of metals was determined in soils using the DGT technique. The effective concentration (C E) results were compared with those in sunflower plants. The DGT technique could effectively predict the bioavailable fractions of Cr, Ni, and Zn in the Taqueral soil but only that of Zn in the Polpaico soil.

Conclusions

The application of biosolids significantly increased the labile fraction of most of the metals in the studied soils, particularly at the highest biosolid application rate. C E increased as the concentration of biosolids increased for most of the metals. The effectiveness of the DGT technique for predicting the bioavailability of metals was dependent on the soil type and the metal. However, the C E for soil Cu was not related to plant Cu for all soils studied.  相似文献   

11.

Purpose

Fenugreek (Trigonella foenum-graecum L.) is a medicinal plant with antidiabetic effects. Chromium has been related to better glucose tolerance in humans. The objective of this study was to determine whether tannery sludge could be used for Cr biofortification of fenugreek.

Materials and methods

Soil was mixed with tannery sludge containing 6.03 g Cr kg?1. All Cr was in the form of Cr(III). Three treatments were disposed: control without sludge, and two treatments with 10 and 20 g sludge kg?1, respectively. Control and the 10 g sludge kg?1 treatments received NPK fertilizer to adjust the concentrations of major mineral nutrients to similar levels in all treatments. Soils were potted and planted with fenugreek. Plants harvested at the initial flowering stage were analysed for total Cr, Fe, Zn and Pb. Sequential soil extraction was applied to obtain operationally defined soil Cr fractions.

Results and discussion

Total Cr in all treatments was below or within the allowable range for agricultural soils (100–150 mg kg?1). In control soils, most Cr was in the residual fraction (HF/HClO4 digest). Tannery sludge-amended soils incorporated most Cr into the moderately reducible fraction (oxalic acid/ammonium oxalate extract). In fenugreek shoots, Cr concentrations reached 3.2 mg Cr kg?1, a higher concentration than that reported for other leafy vegetables. Lead concentrations in plant shoots from this treatment were enhanced but hardly exceeded 1 mg Pb kg?1.

Conclusions

Tannery sludge-amended soils containing Cr within the range of permissible concentrations can increase shoot Cr in fenugreek. Only sludge with low Pb concentrations should be used for Cr biofortification of fenugreek.  相似文献   

12.

Purpose

This paper addresses the application of bioproducts produced by plants (locust bean, guar, and mesquite seed gums) to enhance remediation processes of different nature: soil washing and biodegradation methodologies.

Materials and methods

These natural gums were tested at laboratory scale to remove total petroleum hydrocarbons-diesel fraction (TPH-diesel) from oil-contaminated volcanic soils sampled from a polluted site in an agricultural area of western Mexico. TPH-diesel removal by natural gums was compared to common synthetic surfactants.

Results and discussion

There is a strong evidence of contamination caused by the presence of TPH-diesel at a concentration of 32,100 mg/kg, which is above the legal limit of 1,200 mg/kg for agricultural soils in Mexico. Regarding the surfactant soil washing experiments, ionic surfactants showed removal rates above the control test of about 78.51 % (Maranil LAB), 71.27 % (Texapon 40), 60.13 % (SDS), and 48.19 % (Surfacpol G). In contrast, some nonionic surfactants showed removal rates below soil-washing background rate (40 %). On the other hand, natural gums showed interesting and promising results. Guar gum and locust bean gum showed efficiencies of 54.38 % and 53.46 %, respectively. Biodegradation experiments confirmed the effectiveness of natural gums as biodegradation enhancers in diesel-contaminated soils. Specifically, guar gum showed an excellent performance. An 82 % TPH-diesel removal rate was achieved for a very low gum concentration (2 ppm). In this particular context, reported surfactant concentrations to assist biodegradation are, in general, higher.

Conclusions

This work demonstrated the applicability of natural gums as soil remediation enhancers in diesel-contaminated systems. Particularly, guar gum might represent a cost-effective alternative for biodegradation enhancement processes.  相似文献   

13.

Purpose

The influence of bone sorbent addition onto distribution of 90Sr in artificially contaminated soil was preliminary studied to assess the possibility of biogenic apatite utilization for reduction of 90Sr mobility and availability. Simultaneously, the disruption of soil micro- (Cd, Zn, Co, Cu, Cr, and Ni,) and macroelements (Al, Fe, Mn, K, Mg, and Ca) upon Sr contamination and sorbent addition was monitored.

Materials and methods

The model soil was contaminated by inactive Sr, in the form of Sr(NO3)2 solution. As a soil additive, sorbent obtained by annealing bovine bones at 400 °C (B400) was applied. Both the uncontaminated and Sr-contaminated soils were mixed with 1, 3, 5, and 10 % of sorbent, suspended in distilled water (initial pH?5; solid/solution ratio, 1:2), and equilibrated for 15 days on a rotary shaker. Solid residues were subjected to modified Tessier five-step sequential extraction analysis, and the amounts of chosen metals in each fraction were determined by inductively coupled plasma–optical emission spectroscopy.

Results and discussion

In the original soil, Sr was mainly found in exchangeable (61 %) and carbonate phase (16 %), whereas after contamination, the content of Sr in exchangeable phase raised to 94 %. With the addition of B400, the decrease in Sr amounts in exchangeable fraction was detected, whereas increase occurred mainly in operationally defined carbonate phase and in the residual. High level of Sr contamination caused the increase in Zn, Ni, Co, Cu, Cd, and Mn and decrease in Ca content in exchangeable phase. Sorbent addition resulted in a migration of these cations to less soluble fractions. This effect was observed even for major soil elements such as Fe, Al, and Mn, regardless of the excessive amounts of Sr in the soil.

Conclusions

Mixing the soil with B400 resulted in reduced Sr mobility and bioavailability. B400 acted as a stabilizing agent for heavy metals, as well. Apatite distinguished selectivity towards heavy metals may interfere with the Sr immobilization and disrupt original cation distribution. Further studies should include more realistic (lower) Sr concentrations in the soil, different soil types, pH, and longer incubation times.  相似文献   

14.
Can root exudate components influence the availability of pyrene in soil?   总被引:1,自引:0,他引:1  

Purpose

Little information is currently available regarding the influence of different root exudate components (RECs) on the availability of persistent organic pollutants in the soil environment. In this study, we investigated the impacts of different RECs including organic acids, amino acids, and fructose on the availability of pyrene as a representative polycyclic aromatic hydrocarbon (PAH) in soils.

Materials and methods

Citric acid, oxalic acid, malic acid, serine, alanine, and fructose were used in the experiments as representative RECs. Pyrene-spiked soils (TypicPaleudalfs) with present RECs were incubated for 30 days, and the available fraction of pyrene was determined using n-butanol extraction procedure.

Results and discussion

The amount of n-butanol-extractable pyrene in soil increased with the addition of tested RECs and increased when REC concentrations are enhanced within the range of 0–21 g kg?1. The extractability of pyrene in soil with REC treatments and the enhancement ratio (r, %) of the extractable pyrene in soil by the addition of RECs after a 30-day incubation decreased in the following order: organic acids (oxalic acid ≥ citric acid > malic acid) > amino acid (alanine > serine) > fructose. This decrease was observed irrespective of soil sterilization, although the concentrations of extractable pyrene were lower in non-sterilized soils compared to sterilized soils. The concentrations of metal cations and dissolved organic matter (DOM) in solution increased when organic acids were added.

Conclusions

The tested RECs at concentrations of 0–21 g kg?1 clearly enhanced the availability of pyrene in soils, and larger amounts of RECs resulted in higher pyrene availabilities in the tested soils. Microbial biodegradation diminished the amount of available pyrene irrespective of the presence of RECs. The mechanism of REC-influenced availability of pyrene in soil may be related to the metal dissolution and release of DOM from soil solids. The results of this study will be useful in assessing PAH-related risks to human health and the environment and will be instructive in food safety and remediation strategies at contaminated sites.  相似文献   

15.

Purpose

Sorption of humic substances on other soil components plays an important role in controlling their function and fate in soil. Sorption of humic substances by individual soil components has been studied extensively. However, few studies reported the sorption characteristic of humic substances on composites of soil components. This study aimed to investigate the sorption characteristics of humic acid on Fe oxide-bacteria composites and improve the understanding on the interaction among humic substance Fe oxide bacteria in soil.

Materials and methods

Humic acid was purchased from Sigma-Aldrich and was purified. Hematite and ferrihydrite were synthesized in the lab. Bacillus subtilis and Pseudomonas putida were cultivated in Luria-Broth medium and harvested at stationary growth phase. Batch sorption experiments were carried out at pH 5.0. Various amounts of humic acid were mixed with 20 mg of Fe oxide, bacteria, or Fe oxide-bacteria composite (oxide to bacteria of 1:1) in 10 mL of KCl (0.02 mol L?1) to construct sorption isotherms. The effects of phosphate concentration and addition order among humic acid, Fe oxide, bacteria on the sorption of humic acid were also studied. The sorption of humic acid was calculated by the difference between the amount of humic acid added initially and that remained in the supernatant.

Results and discussion

The maximum sorption of humic acid on hematite, ferrihydrite, B. subtilis and P. putida was 73.2, 153.5, 69.1, and 56.7 mg C g?1, respectively. The maximum sorption of humic acid on examined Fe oxide-bacteria composite was 28.2–57.2 % less than the predicted values, implying that the sorption of humic acid was reduced by the interaction between Fe oxides and bacteria. The presence of phosphate exerted negligible influence on the sorption of humic acid on bacteria while it inhibited the sorption of humic acid on Fe oxides. On Fe oxide-bacteria composites, inhibiting influences followed by promoting or weak inhibiting effects of phosphate with increasing concentration on the sorption of humic acid were found.

Conclusions

The interaction between Fe oxides and bacteria reduced the sorption of humic acid; moreover, the reduction was greater by the interaction of bacteria with ferrihydrite than that with hematite. Phosphate exerted negligible and inhibiting influence on the sorption of humic acid by bacteria and Fe oxides, respectively. On Fe oxide-bacteria composites, humic acid sorption was initially inhibited and then promoted or weakly inhibited by phosphate with increasing concentration.  相似文献   

16.

Purpose

Remediation of soils contaminated with Cr (as Cr(III) complexes/precipitates and/or Cr(VI) oxyanion) and cationic metals (Cu, Ni, Zn, and Pb) by ethylenediaminetetraacetate (EDTA) flushing has been challenging and rarely investigated. This study aimed to evaluate the efficiency of EDTA flushing for metal extraction of soil from an electroplating site, with a specific focus on chromium release and soil dissolution.

Materials and methods

Column flushing tests were performed on a sandy soil contaminated by electroplating activities in the field. Three EDTA concentrations (5, 10, and 20 mM) and flow interruptions were employed to investigate the operation of EDTA flushing.

Results and discussion

Results demonstrated that Cr, Cu, and Ni were continuously released along with dissolution of Fe, Al, Mg, and Mn throughout the entire flushing process (up to 600 pore volumes), whereas Zn and Pb removal primarily occurred in the first 50–200 pore volumes. By comparing the Cr and Fe release patterns, the observed Cr release by EDTA flushing possibly resulted from a combination of dissolution of Fe oxides, dissolution of metal–chromate precipitates, and ligand competition for the surface sites (substitution reaction). The latter two mechanisms appeared to be more influential at the early stage. It was also revealed that soil dissolution was predominant, and metal extraction became inefficient at the later stage of flushing, especially with the concentrated EDTA solution. On the other hand, when the flushing process was temporarily paused (i.e., flow interruptions), Cr, Cu, Ni, and Zn concentrations elevated, whereas Pb levels in the effluent decreased, indicating the significance of rate-limited metal exchange of newly formed metal–EDTA complexes.

Conclusions

In consideration of EDTA utilization efficiency and potential ecological risks, diluted EDTA solution is recommended for field applications.  相似文献   

17.

Purpose

Analyzing organic pollutants in forest soil is challenging because they are strongly physical and chemical bound to soil organic matter (SOM). Within the framework of a forest soil inventory, an analytical protocol for the determination of polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB), and organochlorine pesticides (OCP) should be established and validated using one and the same extraction and cleanup procedure. The protocol should be applicable for reliable analysis of a high number of samples in a short timeframe.

Materials and methods

Two different soil samples representative for the humic layer from a typical mixed and coniferous forest soil had been used for the analysis. Three solvents of different polarity, namely cyclohexane (CH), ethylacetate (EA)/CH (1/1, v/v), and acetone (AC)/CH (2/1, v/v), and the six standard extraction techniques (pressurized liquid extraction (PLE), soxhlet extraction, fluidized bed extraction, sonication, shaking, and one-step extraction recommended for analyzing agricultural soil in Germany (VDLUFA 2008)) were compared concerning their extraction efficiency. For additional matrix separation, two different cleanup procedures (gel permeation chromatography (GPC) and solid-phase extraction (SPE) with different sorbents) were tested. Quantification was carried out using gas chromatography combined with mass spectrometry (GC–MS) and two different injection systems (split/splitless injection and programmable temperature vaporizer (PTV) injection). Labeled internal standards, added prior to extraction, were used for method evaluation.

Results and discussion

For the simultaneous extraction of PAH, PCB, and OCP from organic forest soil PLE with acetone/cyclohexane (2/1, v/v) provided the highest extraction efficiency. A two-step cleanup procedure consisting of GPC followed by SPE with silica gel was entirely sufficient for the separation of humic substances without discrimination of analytes. Recovery rates for the different extraction and cleanup steps ranged between 89% and 106%. For quantification, a GC–MS method was developed using two different injection systems and two capillary columns of different selectivity.

Conclusions

By comparing six standard extraction techniques for PAH, PCB, and OCP from forest soil, we obtained the highest extraction efficiency when using PLE with AC/CH (2/1). For sample injection, we achieved best results using an optimized PTV injection system as it highly reduced the breakdown of thermolabile pesticides. Using this combination of technical equipment, it is possible to determine a concentration of the analytes in the trace level range of 1–2 μg kg?1 in humic soil.  相似文献   

18.

Purpose

Metal distribution patterns among geochemical fractions are informative for metal phytoavailability. Compost added to polluted soils may adsorb metals on the less phytoavailable fractions. A bioassay experiment was conducted to establish possible correlations between metal concentrations in different soil fractions and metal contents in edible plant parts and to investigate the influence of different compost loads on heavy metal availability to plants.

Materials and methods

Chinese cabbage plants were grown in pots with sandy and clayey soils and soils mixed with different doses of biosolid compost spiked with soluble heavy metal salts (Cd, Cu, and Pb). The metals’ distribution pattern in the soil and mixed samples was determined by sequential extraction procedure (modified BCR protocol). The studied fractions, from most to least bioavailable, were water-extractable (WE), exchangeable-adsorbed (EXC), associated with carbonates and acetic acid-soluble forms (CARB), occluded by reducible (hydro)oxides of Fe and Mn (RO), and associated with organic matter (OM) and a residual fraction (RES). Metal concentrations in soil extracts and in the digested plant tissue were measured by ICP-AES.

Results and discussion

The highest compost doses (72 and 115 Mg ha?1) enhanced cabbage yield significantly. No excessive phytoaccumulation of metals was observed in plants grown in the clayey soil or its mixtures with compost. The compost dose of 72 Mg ha?1 was optimal in decreasing Cu accumulation by plants grown in sandy soil, and 28.8 Mg ha?1 was found to be effective in reducing Cd and Pb uptake. Metals were accumulated in plants primarily from the WE, EXC, and CARB fractions, whereas other fractions decreased phytoaccumulation. Compost addition suppressed heavy metal mobility, but different fractions were active in pollutant sorption, depending on soil type and metal.

Conclusions

Compost addition increased metal proportions in the RO and OM fractions, reducing metal phytoavailability. This is especially important for sandy soils with low adsorption ability and higher vulnerability to metal pollution than clayey soils. A compost dose of 20% v/v (or 28.8 Mg ha?1) effectively reduced plant accumulation of Cd and Pb. We propose using the first three steps of the modified BCR protocol as a three-step sequential-extraction procedure for the most phytoavailable fractions of heavy metal: WE, EXC, and CARB.  相似文献   

19.
Impact of organic matter addition on pH change of paddy soils   总被引:1,自引:1,他引:0  

Purpose

The objective of the present study was to explore the effect of initial pH on the decomposition rate of plant residues and the effect of residue type on soil pH change in three different paddy soils.

Materials and methods

Two variable charge paddy soils (Psammaquent soil and Plinthudult soil) and one constant charge paddy soil (Paleudalfs soil) were used to be incubated at 45 % of field capacity for 105 days at 25 °C in the dark after three plant residues (Chinese milk vetch, wheat straw, and rice straw) were separately added at a level of 12 g?kg?1 soil. Soil pH, CO2 escaped, DOC, DON, MBC, MBN, NH 4 + , and NO 3 ? during the incubation period were dynamically determined.

Results and discussion

Addition of the residues increased soil pH by 0.1–0.8 U, and pH reached a maximum in the Psammaquent and Plinthudult soils with low initial pH at day 105 but at day 3 in the Paleudalfs soil with high initial pH. Incorporation of Chinese milk vetch which had higher concentration of alkalinity (excess cations) and nitrogen increased soil pH more as compared with incorporation of rice and wheat straws. Microbial activity was the highest in Chinese milk vetch treatment, which resulted in the highest increase of soil pH as compared with addition of rice and wheat straws. However, nitrification seemed to be inhibited in the variable charge soils of Psammaquent and Plinthudult but not in the constant charge soil of Paleudalfs.

Conclusions

The effectiveness of increasing soil pH after incorporation of the plant materials would be longer in low initial pH soils of Psammaquent and Plinthudult than in high initial pH soil of Paleudalfs. In order to achieve the same degree of pH improvement, higher amounts of plant residues should be applied in constant charge soils than in variable charge soils.  相似文献   

20.

Purpose

Heavy metal contamination is a priority issue affecting millions of hectares of soil throughout the world. One of the most promising, environmentally friendly, and cost-effective approaches to restore polluted soils could be applying organic amendments. We investigated the remediation potential of three types of humic products with regard to their effect on the bioavailability of Pb and Zn, content of nutrients, and the ability to mitigate acute phytotoxicity in contaminated soil.

Materials and methods

Spodosol samples were spiked with Pb (550 mg kg?1) and Zn (880 mg kg?1). Then, two different commercial humic products (from peat and lignosulfonate) and natural humic acids (from brown oxidized coal) were added in two doses to reach an equal content of carbon: a 10% increment and a 30% increment of the initial total organic carbon in the soil. After 30 days, the content of metals and nutrients (S, K, Na, Ca, Mn, P) was determined by the sequential extraction (i?H2O, ii?NH4COOH pH 4.8, iii–CH3COOH). The effect of humic products on heavy metals bioavailability was evaluated using the calculated partition indexes. Seed germination and root elongation of Sinapis alba were also determined. Chemical and biochemical variables were aggregated by the principal component analysis.

Results and discussion

Humic products reduced the amount of bioavailable fractions of Pb and Zn in soils. The partition index, which quantitatively describes bioavailable fractions of the Zn and Pb in the soil, was 28–49% lower than in the spiked (Pb+Zn) control. The inhibition of root elongation and seed germination of mustard by Zn and Pb was significantly mitigated by humic products; in the soil test, the root length and seed germination were up to 36–87% higher than those of the Pb+Zn control and did not differ from those in the non-amended treatments. This effect may have been associated with the structural differences (H/C and O/C ratio) and content of nutrients (Na and K) in humic products.

Conclusions

Commercial humic products used in poor multi-contaminated soils can maintain plant growth by improving nutrient status due to heavy metals immobilization and can be a promising approach to remediate the soil contaminated with heavy metals at extremely high concentrations.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号