首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
Because domoic acid, a neurotoxic secondary metabolite produced by marine diatoms in the genus Pseudo-nitzschia, is hypothesized to be part of a high affinity iron uptake system, we investigated whether domoic acid could improve the competitive ability of Pseudo-nitzschia delicatissima, and whether the availability of iron changed the outcome of competition experiments. We found that domoic acid had a slight negative effect on growth of the diatom Skeletonema marinoi when it was grown in monocultures. However, when S. marinoi was cultured with P. delicatissima the presence of domoic acid resulted in a reduction of S. marinoi cells by up to 38% and an increase in P. delicatissima cell numbers by up to 17% under iron replete conditions. Similar effects were not observed in low iron treatments. Domoic acid was not taken up by P. delicatissima cells. Overall, our results indicate that domoic acid can improve the competitive ability of Pseudo-nitzschia spp. and that iron is likely to be involved. This study provides an unusual example of indirect inhibition of competitor growth mediated by a secondary metabolite.  相似文献   

2.
Bacteria are known to influence domoic acid (DA) production by Pseudo-nitzschia spp., but the link between DA production and physiology of diatoms requires more investigation. We compared a toxic P. multiseries to a non-toxic P. delicatissima, investigating links between DA production, physiological parameters, and co-occurring bacteria. Bacterial communities in cultures of both species were reduced by antibiotic treatment, and each of the diatoms was inoculated with the bacterial community of the other species. The physiology of P. delicatissima was minimally affected by the absence of bacteria or the presence of alien bacteria, and no DA was detected. P. multiseries grew faster without bacteria, did not produce a significant amount of DA, and exhibited physiological characteristics of healthy cells. When grown with alien bacteria, P. multiseries did not grow and produced more DA; the physiology of these cells was affected, with decreases in chlorophyll content and photosynthetic efficiency, an increase in esterase activity, and almost 50% mortality of the cells. The alien bacterial community had morphological and cellular characteristics very different from the original bacteria, and the number of free-living bacteria per algal cell was much higher, suggesting the involvement of bacteria in DA production.  相似文献   

3.
Domoic acid (DA), the toxin causing amnesic shellfish poisoning (ASP), is produced globally by some diatoms in the genus Pseudo-nitzschia. DA has been detected in several marine mammal species in the Alaskan Arctic, raising health concerns for marine mammals and subsistence communities dependent upon them. Gastrointestinal matrices are routinely used to detect Harmful Algal Bloom (HAB) toxin presence in marine mammals, yet DA stability has only been studied extensively in shellfish-related matrices. To address this knowledge gap, we quantified DA in bowhead whale fecal samples at multiple time points for two groups: (1) 50% methanol extracts from feces, and (2) raw feces stored in several conditions. DA concentrations decreased to 70 ± 7.1% of time zero (T0) in the 50% methanol extracts after 2 weeks, but remained steady until the final time point at 5 weeks (66 ± 5.7% T0). In contrast, DA concentrations were stable or increased in raw fecal material after 8 weeks of freezer storage (−20 °C), at room temperature (RT) in the dark, or refrigerated at 1 °C. DA concentrations in raw feces stored in an incubator (37 °C) or at RT in the light decreased to 77 ± 2.8% and 90 ± 15.0% T0 at 8 weeks, respectively. Evaporation during storage of raw fecal material is a likely cause of the increased DA concentrations observed over time with the highest increase to 126 ± 7.6% T0 after 3.2 years of frozen storage. These results provide valuable information for developing appropriate sample storage procedures for marine mammal fecal samples.  相似文献   

4.
Over the last century, human activities have altered the global nitrogen cycle, and anthropogenic inputs of both inorganic and organic nitrogen species have increased around the world, causing significant changes to the functioning of aquatic ecosystems. The increasing frequency of Pseudo-nitzschia spp. in estuarine and coastal waters reinforces the need to understand better the environmental control of its growth and domoic acid (DA) production. Here, we document Pseudo-nitzschia spp. growth and toxicity on a large set of inorganic and organic nitrogen (nitrate, ammonium, urea, glutamate, glutamine, arginine and taurine). Our study focused on two species isolated from European coastal waters: P. multiseries CCL70 and P. australis PNC1. The nitrogen sources induced broad differences between the two species with respect to growth rate, biomass and cellular DA, but no specific variation could be attributed to any of the inorganic or organic nitrogen substrates. Enrichment with ammonium resulted in an enhanced growth rate and cell yield, whereas glutamate did not support the growth of P. multiseries. Arginine, glutamine and taurine enabled good growth of P. australis, but without toxin production. The highest DA content was produced when P. multiseries grew with urea and P. australis grew with glutamate. For both species, growth rate was not correlated with DA content but more toxin was produced when the nitrogen source could not sustain a high biomass. A significant negative correlation was found between cell biomass and DA content in P. australis. This study shows that Pseudo-nitzschia can readily utilize organic nitrogen in the form of amino acids, and confirms that both inorganic and organic nitrogen affect growth and DA production. Our results contribute to our understanding of the ecophysiology of Pseudo-nitzschia spp. and may help to predict toxic events in the natural environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号