首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Marine sponges commonly host a repertoire of bacterial-associated organisms, which significantly contribute to their health and survival by producing several anti-predatory molecules. Many of these compounds are produced by sponge-associated bacteria and represent an incredible source of novel bioactive metabolites with biotechnological relevance. Although most investigations are focused on tropical and temperate species, to date, few studies have described the composition of microbiota hosted by Antarctic sponges and the secondary metabolites that they produce. The investigation was conducted on four sponges collected from two different sites in the framework of the XXXIV Italian National Antarctic Research Program (PNRA) in November–December 2018. Collected species were characterized as Mycale (Oxymycale) acerata, Haliclona (Rhizoniera) dancoi, Hemigellius pilosus and Microxina sarai by morphological analysis of spicules and amplification of four molecular markers. Metataxonomic analysis of these four Antarctic sponges revealed a considerable abundance of Amplicon Sequence Variants (ASVs) belonging to the phyla Proteobacteria, Bacteroidetes, Actinobacteria and Verrucomicrobia. In particular, M. (Oxymycale) acerata, displayed several genera of great interest, such as Endozoicomonas, Rubritalea, Ulvibacter, Fulvivirga and Colwellia. On the other hand, the sponges H. pilosus and H. (Rhizoniera) dancoi hosted bacteria belonging to the genera Pseudhongella, Roseobacter and Bdellovibrio, whereas M. sarai was the sole species showing some strains affiliated to the genus Polaribacter. Considering that most of the bacteria identified in the present study are known to produce valuable secondary metabolites, the four Antarctic sponges could be proposed as potential tools for the discovery of novel pharmacologically active compounds.  相似文献   

2.
Surface-associated marine bacteria are an interesting source of new secondary metabolites. The aim of this study was the isolation and identification of epiphytic bacteria from the marine brown alga, Bifurcaria bifurcata, and the evaluation of the antioxidant and antimicrobial activity of bacteria extracts. The identification of epiphytic bacteria was determined by 16S rRNA gene sequencing. Bacteria extracts were obtained with methanol and dichloromethane (1:1) extraction. The antioxidant activity of extracts was performed by quantification of total phenolic content (TPC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity and oxygen radical absorbance capacity (ORAC). Antimicrobial activities were evaluated against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Salmonella enteritidis, Staphylococcus aureus, Saccharomyces cerevisiae and Candida albicans. A total of 39 Bifurcaria bifurcata-associated bacteria were isolated and 33 were identified as Vibrio sp. (48.72%), Alteromonas sp. (12.82%), Shewanella sp. (12.26%), Serratia sp. (2.56%), Citricoccus sp. (2.56%), Cellulophaga sp. (2.56%), Ruegeria sp. (2.56%) and Staphylococcus sp. (2.56%). Six (15.38%) of the 39 bacteria Bifurcaria bifurcata-associated bacteria presented less than a 90% Basic Local Alignment Search Tool (BLAST) match, and some of those could be new. The highest antioxidant activity and antimicrobial activity (against B. subtilis) was exhibited by strain 16 (Shewanella sp.). Several strains also presented high antimicrobial activity against S. aureus, mainly belonging to Alteromonas sp. and Vibrio sp. There were no positive results against fungi and Gram-negative bacteria. Bifurcaria bifurcata epiphytic bacteria were revealed to be excellent sources of natural antioxidant and antimicrobial compounds.  相似文献   

3.
Indole derivatives including bromoindoles have been isolated from the South Pacific marine sponges Rhopaloeides odorabile and Hyrtios sp. Their structures were established through analysis of mass spectra and 1D and 2D NMR spectroscopic data. Their potential inhibitory phospholipase A2 (PLA2), antioxidant and cytotoxic activities were evaluated. The new derivative 5,6-dibromo-l-hypaphorine (9) isolated from Hyrtios sp. revealed a weak bee venom PLA2 inhibition (IC50 0.2 mM) and a significant antioxidant activity with an Oxygen Radical Absorbance Capacity (ORAC) value of 0.22. The sesquiterpene aureol (4), also isolated from Hyrtios sp., showed the most potent antioxidant activity with an ORAC value of 0.29.  相似文献   

4.
The peculiarities of the survival and adaptation of deep-sea organisms raise interest in the study of their metabolites as promising drugs. In this work, the hemolytic, cytotoxic, antimicrobial, and enzyme-inhibitory activities of tentacle extracts from five species of sea anemones (Cnidaria, orders Actiniaria and Corallimorpharia) collected near the Kuril and Commander Islands of the Far East of Russia were evaluated for the first time. The extracts of Liponema brevicorne and Actinostola callosa demonstrated maximal hemolytic activity, while high cytotoxic activity against murine splenocytes and Ehrlich carcinoma cells was found in the extract of Actinostola faeculenta. The extracts of Corallimorphus cf. pilatus demonstrated the greatest activity against Ehrlich carcinoma cells but were not toxic to mouse spleen cells. Sea anemones C. cf. pilatus and Stomphia coccinea are promising sources of antimicrobial and antifungal compounds, being active against Gram-positive bacteria Bacillus subtilis, Staphylococcus aureus, and yeast Candida albicans. Moreover, all sea anemones contain α-galactosidase inhibitors. Peptide mass fingerprinting of L. brevicorne and C. cf. pilatus extracts provided a wide range of peptides, predominantly with molecular masses of 4000–5900 Da, which may belong to a known or new structural class of toxins. The obtained data allow concluding that deep-sea anemones are a promising source of compounds for drug discovery.  相似文献   

5.
This study aimed to assess the diversity and antimicrobial activity of cultivable bacteria associated with Vietnamese sponges. In total, 460 bacterial isolates were obtained from 18 marine sponges. Of these, 58.3% belonged to Proteobacteria, 16.5% to Actinobacteria, 18.0% to Firmicutes, and 7.2% to Bacteroidetes. At the genus level, isolated strains belonged to 55 genera, of which several genera, such as Bacillus, Pseudovibrio, Ruegeria, Vibrio, and Streptomyces, were the most predominant. Culture media influenced the cultivable bacterial composition, whereas, from different sponge species, similar cultivable bacteria were recovered. Interestingly, there was little overlap of bacterial composition associated with sponges when the taxa isolated were compared to cultivation-independent data. Subsequent antimicrobial assays showed that 90 isolated strains exhibited antimicrobial activity against at least one of seven indicator microorganisms. From the culture broth of the isolated strain with the strongest activity (Bacillus sp. M1_CRV_171), four secondary metabolites were isolated and identified, including cyclo(L-Pro-L-Tyr) (1), macrolactin A (2), macrolactin H (3), and 15,17-epoxy-16-hydroxy macrolactin A (4). Of these, compounds 2-4 exhibited antimicrobial activity against a broad spectrum of reference microorganisms.  相似文献   

6.
Ascidians have developed multiple defensive strategies mostly related to physical, nutritional or chemical properties of the tunic. One of such is chemical defense based on secondary metabolites. We analyzed a series of colonial Antarctic ascidians from deep-water collections belonging to the genera Aplidium and Synoicum to evaluate the incidence of organic deterrents and their variability. The ether fractions from 15 samples including specimens of the species A. falklandicum, A. fuegiense, A. meridianum, A. millari and S. adareanum were subjected to feeding assays towards two relevant sympatric predators: the starfish Odontaster validus, and the amphipod Cheirimedon femoratus. All samples revealed repellency. Nonetheless, some colonies concentrated defensive chemicals in internal body-regions rather than in the tunic. Four ascidian-derived meroterpenoids, rossinones B and the three derivatives 2,3-epoxy-rossinone B, 3-epi-rossinone B, 5,6-epoxy-rossinone B, and the indole alkaloids meridianins A–G, along with other minoritary meridianin compounds were isolated from several samples. Some purified metabolites were tested in feeding assays exhibiting potent unpalatabilities, thus revealing their role in predation avoidance. Ascidian extracts and purified compound-fractions were further assessed in antibacterial tests against a marine Antarctic bacterium. Only the meridianins showed inhibition activity, demonstrating a multifunctional defensive role. According to their occurrence in nature and within our colonial specimens, the possible origin of both types of metabolites is discussed.  相似文献   

7.
Marine sponges harbor a rich bacterioflora with which they maintain close relationships. However, the way these animals make the distinction between bacteria which are consumed to meet their metabolic needs and opportunistic and commensal bacteria which are hosted is not elucidated. Among the elements participating in this discrimination, bacterial cell wall components such as lipopolysaccharides (LPS) could play a role. In the present study, we investigated the LPS chemical structure of two bacteria associated with the sponge Suberites domuncula: a commensal Endozoicomonas sp. and an opportunistic Pseudoalteromonas sp. Electrophoretic patterns indicated different LPS structures for these bacteria. The immunomodulatory lipid A was isolated after mild acetic acid hydrolysis. The electrospray ionization ion-trap mass spectra revealed monophosphorylated molecules corresponding to tetra- and pentaacylated structures with common structural features between the two strains. Despite peculiar structural characteristics, none of these two LPS influenced the expression of the macrophage-expressed gene S. domuncula unlike the Escherichia coli ones. Further research will have to include a larger number of genes to understand how this animal can distinguish between LPS with resembling structures and discriminate between bacteria associated with it.  相似文献   

8.
Eryngium bornmuelleri Nab. (Tusî) is an endemic botanical from the Eastern Anatolia region of Turkey traditionally used for preparation of herbal tea. Within this study, phenolic composition, antioxidant capacities and inhibitory activities towards selected digestive enzymes of E. bornmuelleri leaf were investigated. Sequential extracts, obtained by extraction of plant tissue by ethanol, acetone and water exhibited pronounced antioxidant capacities and in a dose-dependent manner suppressed the metabolic syndrome related enzymes: α-amylase, α-glucosidase and pancreatic lipase. All extracts contained high levels of phenolic compounds. Flavonoid glycosides were the main phytochemicals detected, with rutin as the major compound (70 % of total phenolics). Chlorogenic, hydroxybenzoic and caftaric acids as well as traces of caffeic, ferulic and rosmarinic acids were also detected. Correlation analysis indicated that phenolic compounds were the major sources of the enzyme-inhibitory activities. This study suggests that E. bornmuelleri leaf extracts can modulate the metabolism of sugars and fats through inhibition of the relevant digestive enzymes.  相似文献   

9.
Four lipid-rich microalgal species from the Red Sea belonging to three different genera (Nannochloris, Picochlorum and Desmochloris), previously isolated as novel biodiesel feedstocks, were bioprospected for high-value, bioactive molecules. Methanol extracts were thus prepared from freeze-dried biomass and screened for different biological activities. Nannochloris sp. SBL1 and Desmochloris sp. SBL3 had the highest radical scavenging activity against 1,1-diphenyl-2-picrylhydrazyl, and the best copper and iron chelating activities. All species had potent butyrylcholinesterase inhibitory activity (>50%) and mildly inhibited tyrosinase. Picochlorum sp. SBL2 and Nannochloris sp. SBL4 extracts significantly reduced the viability of tumoral (HepG2 and HeLa) cells with lower toxicity against the non-tumoral murine stromal (S17) cells. Nannochloris sp. SBL1 significantly reduced the viability of Leishmania infantum down to 62% (250 µg/mL). Picochlorum sp. SBL2 had the highest total phenolic content, the major phenolic compounds identified being salicylic, coumaric and gallic acids. Neoxanthin, violaxanthin, zeaxanthin, lutein and β-carotene were identified in the extracts of all strains, while canthaxanthin was only identified in Picochlorum sp. SBL2. Taken together, these results strongly suggest that the microalgae included in this work could be used as sources of added-value products that could be used to upgrade the final biomass value.  相似文献   

10.
Pine wilt disease (PWD), a destructive disease for pine trees, is caused by the pine wood nematode (PWN), Bursaphelenchus xylophilus and additional bacteria. In this study, extracts of Zostera marina showed a high nematicidal activity against PWN and some of the bacteria that it carries. Light yellow crystals were obtained from extracts of Z. marina through solvent extraction, followed by chromatography on AB-8 resin and crystallization. The NMR and HPLC analysis showed that the isolated compound was rosmarinic acid (RosA). RosA showed effective nematicidal activity, of which the LC50 (50% lethal concentration) to PWN at 24 h, 48 h and 72 h was 1.18 mg/g, 1.05 mg/g and 0.95 mg/g, respectively. To get a high yield rate of RosA from Z. marina, single factor experiments and an L9 (34) orthogonal experiment were performed. This extraction process involved 70% ethanol for 3 h at 40 °C. The extraction dosage was 1:50 (w/v). The highest yield of RosA from Zostera was 3.13 mg/g DW (dried weight). The crude extracts of Zostera marina (10 mg/mL) and RosA (1 mg/mL) also showed inhibitory effects to some bacterial strains carried by PWN: Klebsiella sp., Stenotrophomonas maltophilia, Streptomyces sp. and Pantoea agglomerans. The results of these studies provide clues for preparing pesticide to control PWD from Z. marina.  相似文献   

11.
We report on screening tests of 66 extracts obtained from 35 marine sponge species from the Caribbean Sea (Curaçao) and from eight species from the Great Barrier Reef (Lizard Island). Extracts were prepared in aqueous and organic solvents and were tested for hemolytic, hemagglutinating, antibacterial and anti-acetylcholinesterase (AChE) activities, as well as their ability to inhibit or activate cell protein phosphatase 1 (PP1). The most interesting activities were obtained from extracts of Ircinia felix, Pandaros acanthifolium, Topsentia ophiraphidites, Verongula rigida and Neofibularia nolitangere. Aqueous and organic extracts of I. felix and V. rigida showed strong antibacterial activity. Topsentia aqueous and some organic extracts were strongly hemolytic, as were all organic extracts from I. felix. The strongest hemolytic activity was observed in aqueous extracts from P. acanthifolium. Organic extracts of N. nolitangere and I. felix inhibited PP1. The aqueous extract from Myrmekioderma styx possessed the strongest hemagglutinating activity, whilst AChE inhibiting activity was found only in a few sponges and was generally weak, except in the methanolic extract of T. ophiraphidites.  相似文献   

12.
Turbo cornutus, the horned turban sea snail, is found along the intertidal and basaltic shorelines of Jeju Island, Korea. T. cornutus feeds on seaweeds (e.g., Undaria sp., and Ecklonia sp.) composed of diverse antioxidants. This study identified potential antioxidant properties from T. cornutus viscera tissues. Diverse extracts were evaluated for their hydrogen peroxide (H2O2) scavenging activities. T. cornutus viscera protamex-assisted extracts (TVP) were purified by gel filtration chromatography (GFC), and potential antioxidant properties were analyzed for their amino acid sequences and its peroxidase inhibition effects by in silico molecular docking and in vitro analysis. According to the results, T. cornutus viscera tissues are composed of many protein contents with each over 50%. Among the extracts, TVP possessed the highest H2O2 scavenging activity. In addition, TVP-GFC-3 significantly decreased intracellular reactive oxygen species (ROS) levels and increased cell viability in H2O2-treated HepG2 cells without cytotoxicity. TVP-GFC-3 comprises nine low molecular bioactive peptides (ELR, VGPQ, TDY, ALPHA, PAH, VDY, WSDK, VFSP, and FAPQY). Notably, the peptides dock to the active site of the myeloperoxidase (MPO), especially TDY and FAPQY showed the MPO inhibition effects with IC50 values of 646.0 ± 45.0 µM and 57.1 ± 17.7 µM, respectively. Altogether, our findings demonstrated that T. cornutus viscera have potential antioxidant properties that can be used as high value-added ingredients.  相似文献   

13.
Phycobiliprotein-containing water and carotenoid-containing methanolic extracts of three different cyanobacteria, Pseudanabaena sp., Spirulina sp. and Lyngbya sp., were studied for their DPPH scavenging, iso-bolographic studies, and anti-nephrolithe activities. The best EC50 values for DPPH scavenging were in Lyngbya water (LW, 18.78 ± 1.57 mg·mg−1 DPPH) and Lyngbya methanol (LM, 59.56 ± 37.38 mg·mg−1 DPPH) extracts. Iso-bolographic analysis revealed most of the combinations of extracts were antagonistic to each other, although LM—Spirulina methanol (SM) 1:1 had the highest synergistic rate of 86.65%. In vitro digestion studies showed that DPPH scavenging activity was considerably decreased in all extracts except for Pseudanabaena methanol (PM) and LM after the simulated digestion. All of the extracts were effective in reducing the calcium oxalate crystal size by nearly 60%–65% compared to negative control, while PM and Spirulina water (SW) extracts could inhibit both nucleation and aggregation of calcium oxalate by nearly 60%–80%.  相似文献   

14.
Background:This study was devoted to assessing the inhibitory potential of acetone, methanol, and ethanol extracts of Acroptilon repens against disease-associated enzymes, as well as their antioxidant/antibacterial activity and phytochemical composition. Methods:Comparative assessment using various antioxidant evaluation methods, including FRAP, scavenging ability on DPPH radical and hydrogen peroxide, and RP, indicated that the acetone extract presented the highest antioxidant activity, due to its highest total antioxidant content. Results:The TPC and TFC of these extracts were 3.44 ± 0.32 mg GAE/g DW and 2.09 ± 0.2 mg QE/g DW, respectively. The hydrodistillation essential oil from A. repens was analyzed by GC/MS, and 17 compounds were identified. All extracts showed good inhibitory activities against disease-related enzyme acetylcholinesterase and α-amylase, with the lowest IC50 for acetonic extract. Extracts of A. repens exhibited inhibiting activities against the Gram-positive bacteria, with the most effect of acetone extract. Conclusion:Our findings suggest A. repens as a promising source of natural antioxidant, antimicrobial, anti-cholinesterase and anti-amylase agents for the management of oxidative damage, and pharmaceutical, food, and cosmeceutical purposes. Key Words: Acroptilon repens, Antioxidants, Phytochemicals  相似文献   

15.
Sunscreen and sunblock are crucial skincare products to prevent photoaging and photocarcinogenesis through the addition of chemical filters to absorb or block ultraviolet (UV) radiation. However, several sunscreen and sunblock ingredients, mostly UV filters, have been associated with human and environmental safety concerns. Therefore, the exploration and discovery of promising novel sources of efficient and safer compounds with photoprotection-related activities are currently required. Marine invertebrates, particularly their associated microbiota, are promising providers of specialized metabolites with valuable biotechnological applications. Nevertheless, despite Actinobacteria members being a well-known source of bioactive metabolites, their photoprotective potential has been poorly explored so far. Hence, a set of methanolic extracts obtained from Cliona varians-derived actinomycetes was screened regarding their antioxidant and UV-absorbing capacities (i.e., photoprotection-related activities). The active extract-producing strains were identified and classified within genera Streptomyces, Micrococcus, Gordonia, and Promicromonospora. This is the first report of the isolation of these microorganisms from C. varians (an ecologically important Caribbean coral reef-boring sponge). The in vitro cytotoxicity on dermal fibroblasts of oxybenzone and the selected active extracts revealed that oxybenzone exerted a cytotoxic effect, whereas no cytotoxic effect of test extracts was observed. Accordingly, the most active (SPFi > 5, radical scavenging > 50%) and nontoxic (cell viability > 75%) extracts were obtained from Streptomyces strains. Finally, LC-MS-based characterization suggested a broad chemical space within the test strains and agreed with the reported streptomycetes’ chemodiversity. The respective metabolite profiling exposed a strain-specific metabolite occurrence, leading to the recognition of potential hits. These findings suggest that marine Streptomyces produce photoprotectants ought to be further explored in skincare applications.  相似文献   

16.
Agelasines, asmarines and related compounds are natural products with a hybrid terpene-purine structure isolated from numerous genera of sponges (Agela sp., Raspailia sp.). Some agelasine analogs and related structures have displayed high general toxicity towards protozoa, and have exhibited broad-spectrum antimicrobial activity against a variety of species, including Mycobacterium tuberculosis, and also an important cytotoxic activity against several cancer cell lines, including multidrug-resistant ones. Of particular interest in this context are the asmarines (tetrahydro[1,4]diazepino[1,2,3-g,h]purines), which have shown potent antiproliferative activity against several types of human cancer cell lines. This review summarizes the sources of isolation, chemistry and bioactivity of marine alkylpurines and their bioactive derivatives.  相似文献   

17.
To improve the economic viability of the biofuel production from biomass resource, a value-added lignin byproduct from this process is increasingly important. Antioxidant and antimicrobial activities of lignin extracted from residue of corn stover to ethanol production were investigated. The lignin extracts exhibited strong antioxidant activities in hydrophilic oxygen radical absorbance capacity (ORAC) assay and Folin-Ciocalteu test. The extracts also exhibited antimicrobial activities against Gram-positive bacteria (Listeria monocytogenes and Staphylococcus aureus) and yeast (Candida lipolytica), but not Gram-negative bacteria (Escherichia coli O157:H7 and Salmonella Enteritidis) or bacteriophage MS2. Different extraction conditions (temperature and residue/solvent ratio) affected the antioxidant and antimicrobial activities of lignin extracts. Generally, the bioactivities of lignin extracts were consistent with FTIR analysis results. Lignin byproducts showed the potential for their antioxidant and antimicrobial application.  相似文献   

18.
In our continuous interest to study the diversity of halogenated metabolites of Malaysian species of the red algal genus Laurencia, we examined the chemical composition of five populations of unrecorded Laurencia sp. A new brominated diterpene, 10-acetoxyangasiol (1), and four other known metabolites, aplysidiol (2), cupalaurenol (3), 1-methyl-2,3,5-tribromoindole (4), and chamigrane epoxide (5), were isolated and identified. Isolated metabolites exhibited potent antibacterial activities against clinical bacteria, Staphylococcus aureus, Staphylococcus sp., Streptococcus pyogenes, Salmonella sp. and Vibrio cholerae.  相似文献   

19.
Cylindrospermopsin (CYN) is a toxic secondary metabolite produced by filamentous cyanobacteria which could work as an allelopathic substance, although its ecological role in cyanobacterial-algal assemblages is mostly unclear. The competition between the CYN-producing cyanobacterium Chrysosporum (Aphanizomenon) ovalisporum, and the benthic green alga Chlorococcum sp. was investigated in mixed cultures, and the effects of CYN-containing cyanobacterial crude extract on Chlorococcum sp. were tested by treatments with crude extracts containing total cell debris, and with cell debris free crude extracts, modelling the collapse of a cyanobacterial water bloom. The growth inhibition of Chlorococcum sp. increased with the increasing ratio of the cyanobacterium in mixed cultures (inhibition ranged from 26% to 87% compared to control). Interestingly, inhibition of the cyanobacterium growth also occurred in mixed cultures, and it was more pronounced than it was expected. The inhibitory effects of cyanobacterial crude extracts on Chlorococcum cultures were concentration-dependent. The presence of C. ovalisporum in mixed cultures did not cause significant differences in nutrient content compared to Chlorococcum control culture, so the growth inhibition of the green alga could be linked to the presence of CYN and/or other bioactive compounds.  相似文献   

20.
Turk T  Frangez R  Sepcić K 《Marine drugs》2007,5(4):157-167
Polymeric 3-alkylpyridinium salts (poly-APS) present in the marine sponge Reniera sarai show a broad spectrum of biological activities. They are lytic to erythrocytes and various other mammalian cells, enabling the transfection of the latter with alien DNA. Furthermore, they show inhibitory effects to marine bacteria and can inhibit fouling of micro- and macroorganisms to submerged surfaces. Finally, poly-APS act as potent cholinesterase inhibitors. The kinetics of acetylcholinesterase inhibition by poly-APS in vitro is complex and comprises several successive phases ending in irreversible inhibition of the enzyme. The latter is accounted for by aggregation and precipitation of the enzyme-inhibitor complexes. Poly-APS are lethal to rats in concentrations above 2.7 mg/kg. Monitoring of the basic vital functions and histopathological analysis showed that the effects directly ascribable to acetylcholinesterase inhibition are only observed after application of lower concentrations of poly-APS. At higher concentrations, such effects were masked by other, more pronounced and faster developing lethal effects of the toxin, such as haemolysis and platelet aggregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号