首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Butyrolactone I (BTL-I) is a butanolide isolated from the deep-sea-derived fungus, Aspergillus sp. It provides a potential new target for the prevention and treatment of food allergies. This study aimed to investigate the metabolic and pharmacokinetic profile of BTL-I in rats. The metabolic profiles were obtained by UHPLC–Q-TOF-MS. As a result, eleven metabolites were structurally identified, and the proposed metabolic pathways of BTL-I were characterized. The main metabolites were the oxidative and glucuronidative metabolites. In addition, a sensitive UHPLC–MS/MS method was established for the quantitation of BTL-I in rat plasma (LOQ = 2 ng/mL). The method was fully validated and successfully applied to the pharmacokinetic study of BTL-I in rats after oral administration or intravenous administration. The oral bioavailability was calculated as 6.29%, and the maximum plasma concentrations were 9.85 ± 1.54 ng/mL and 17.97 ± 1.36 ng/mL for intravenous and intragastric dosing groups, respectively.  相似文献   

2.
Fucoxanthin and its deacetylated metabolite fucoxanthinol are two major carotenoids that have been confirmed to possess various pharmacological properties. In the present study, fucoxanthinol was identified as the deacetylated metabolite of fucoxanthin, after intravenous (i.v.) and intragastric gavage (i.g.) administration to rats at doses of 2 and 65 mg/kg, respectively, by liquid chromatography-tandem mass spectrometric (LC-MS/MS) analysis. Next, an accurate and precise LC-MS/MS method was developed to quantitatively determine fucoxanthin and fucoxanthinol in rat plasma. Plasma samples were resolved by LC-MS/MS on a reverse-phase SB-C18 column that was equilibrated and eluted with acetonitrile (A)/aqueous 0.1% formic acid (B; 92/8, v/v) at a flow rate of 0.5 mL/min. Analytes were monitored by multiple-reaction monitoring (MRM) under positive electrospray ionization mode. The precursor/product transitions (m/z) were 659.3→109.0 for fucoxanthin, 617.2→109.0 for fucoxanthinol, and 429.4→313.2 for the internal standard (IS). Calibration curves for fucoxanthin and fucoxanthinol were linear over concentrations ranging from 1.53 to 720 and 1.17 to 600 ng/mL, respectively. The inter- and intraday accuracy and precision were within ±15%. The method was applied successfully in a pharmacokinetic study and the resulting oral fucoxanthin bioavailability calculated.  相似文献   

3.
In the present study, a selenium-chondroitin sulfate (SeCS) was synthesized by the sodium selenite (Na2SeO3) and ascorbic acid (Vc) redox reaction using chondroitin sulfate derived from shark cartilage as a template, and characterized by SEM, SEM-EDS, FTIR and XRD. Meanwhile, its stability was investigated at different conditions of pH and temperatures. Besides, its antioxidant activity was further determined by the DPPH and ABTS assays. The results showed the SeCS with the smallest particle size of 131.3 ± 4.4 nm and selenium content of 33.18% was obtained under the optimal condition (CS concentration of 0.1 mg/mL, mass ratio of Na2SeO3 to Vc of 1:8, the reaction time of 3 h, and the reaction temperature of 25 °C). SEM image showed the SeCS was an individual and spherical nanostructure and its structure was evidenced by FTIR and XRD. Meanwhile, SeCS remained stable at an alkaline pH and possessed good storage stability at 4 °C for 28 days. The results on scavenging free radical levels showed that SeCS exhibited significantly higher antioxidant activity than SeNPs and CS, indicating that SeCS had a potential antioxidant effect.  相似文献   

4.
The aim of the present work was to evaluate the effects of Thalassia testudinum hydroethanolic extract, its polyphenolic fraction and thalassiolin B on the activity of phase I metabolizing enzymes as well as their antimutagenic effects. Spectrofluorometric techniques were used to evaluate the effect of tested products on rat and human CYP1A and CYP2B activity. The antimutagenic effect of tested products was evaluated in benzo[a]pyrene (BP)-induced mutagenicity assay by an Ames test. Finally, the antimutagenic effect of Thalassia testudinum (100 mg/kg) was assessed in BP-induced mutagenesis in mice. The tested products significantly (p < 0.05) inhibit rat CYP1A1 activity, acting as mixed-type inhibitors of rat CYP1A1 (Ki = 54.16 ± 9.09 μg/mL, 5.96 ± 1.55 μg/mL and 3.05 ± 0.89 μg/mL, respectively). Inhibition of human CYP1A1 was also observed (Ki = 197.1 ± 63.40 μg/mL and 203.10 ± 17.29 μg/mL for the polyphenolic fraction and for thalassiolin B, respectively). In addition, the evaluated products significantly inhibit (p < 0.05) BP-induced mutagenicity in vitro. Furthermore, oral doses of Thalassia testudinum (100 mg/kg) significantly reduced (p < 0.05) the BP-induced micronuclei and oxidative damage, together with an increase of reduced glutathione, in mice. In summary, Thalassia testudinum metabolites exhibit antigenotoxic activity mediated, at least, by the inhibition of CYP1A1-mediated BP biotransformation, arresting the oxidative and mutagenic damage. Thus, the metabolites of T. testudinum may represent a potential source of chemopreventive compounds for the adjuvant therapy of cancer.  相似文献   

5.
A highly sensitive and specific LC-MS/MS method for the quantitation of largazole thiol, the active species of the marine-derived preclinical histone deacetylase inhibitor, largazole (prodrug), was developed and validated. Largazole thiol was extracted with ethyl acetate from human or rat plasma along with the internal standard, harmine. Samples were separated on an Onyx Monolithic C18 column by a stepwise gradient elution with 0.1% formic acid in methanol and 0.1% aqueous formic acid employing multiple reaction monitoring (MRM) detection. Linear calibration curves were obtained in the range of 12.5–400 ng/mL with 200 µL of human plasma. The overall intra-day precision was from 3.87% to 12.6%, and the inter-day precision was from 7.12% to 9.8%. The accuracy at low, medium and high concentrations ranged from 101.55% to 105.84%. Plasma protein bindings of largazole thiol in human and rat plasma as determined by an ultrafiltration method were 90.13% and 77.14%, respectively. Plasma drug concentrations were measured by this LC-MS/MS method. The pharmacokinetics of largazole thiol in rats was studied following i.v. administration at 10 mg/kg and found to follow a two-compartment model. Largazole thiol was rapidly eliminated from systemic circulation within 2 h. The established LC-MS/MS method is suitable for the analysis of largazole thiol in human plasma, as well.  相似文献   

6.
分散固相萃取法测定黄瓜中的喹啉铜残留量   总被引:1,自引:0,他引:1  
建立了分散固相萃取(d-SPE)-高效液相色谱(HPLC)分析测定黄瓜中喹啉铜残留量的方法。样品采用乙腈和0.1 mol/L盐酸混合溶液提取,C18填料净化,高效液相色谱仪分离,紫外检测器检测。其色谱条件为:色谱柱SunFireC18(4.6×150 mm,5 μm),流动相为十二烷基硫酸钠磷酸盐缓冲液-乙腈(65∶35)体系,流速0.6 mL/min,检测波长250 nm。结果表明:在0.02、0.2、2 mg/kg三个添加水平下,喹啉铜回收率在92.3%~107.7%之间,相对标准偏差(RSD)在2.0%~7.7%之间。该方法操作简单、灵敏度和准确度高,能够用于黄瓜中喹啉铜的残留分析。  相似文献   

7.
In this study, 33 different polysaccharides were prepared to investigate the structure-activity relationships between the polysaccharides, mainly from marine algae, and anti-complement activity in the classical pathway. Factors considered included extraction methods, fractionations, molecular weight, molar ratio of galactose to fucose, sulfate, uronic acid (UA) content, linkage, branching, and the type of monosaccharide. It was shown that the larger the molecular weights, the better the activities. The molar ratio of galactose (Gal) to fucose (Fuc) was a positive factor at a concentration lower than 10 µg/mL, while it had no effect at a concentration more than 10 µg/mL. In addition, sulfate was necessary; however, the sulfate content, the sulfate pattern, linkage and branching had no effect at a concentration of more than 10 µg/mL. Moreover, the type of monosaccharide had no effect. Laminaran and UA fractions had no activity; however, they could reduce the activity by decreasing the effective concentration of the active composition when they were mixed with the active compositions. The effect of the extraction methods could not be determined. Finally, it was observed that sulfated galactofucan showed good anti-complement activity after separation.  相似文献   

8.
N-acetyl-d-glucosamine (GlcNAc) is a monosaccharide that polymerizes linearly through (1,4)-β-linkages. GlcNAc is the monomeric unit of the polymer chitin. GlcNAc is a basic component of hyaluronic acid and keratin sulfate found on the cell surface. The aim of this study was to examine amino acid metabolism after oral GlcNAc administration in dogs. Results showed that plasma levels of ectoine were significantly higher after oral administration of GlcNAc than prior to administration (p < 0.001). To our knowledge, there have been no reports of increased ectoine concentrations in the plasma. The mechanism by which GlcNAc administration leads to increased ectoine plasma concentration remains unclear; future studies are required to clarify this mechanism.  相似文献   

9.
The study based on pretreatment, hydrolyzation and separation processes with the raw material rice hull, provides a comprehensive utilization of the hydrolyzed productions, such as glucose (C6H12O6) from cellulose, silica (SiO2), and byproduct crystalline sodium sulfate (Na2SO4·10H2O). The optimum hydrolysis conditions are as follows: the concentration of H2SO4 is 72% (wt.%), the temperature is 50 °C, the ratio of H2SO4 solution volume (mL) to the rice hull mass (g) is 10:1 and the time is 5 min, the glucose yield rate reaches 45.6% (wt.%). The concentration of glucose solution could be 0.1 g/mL after neutralization measured by ultraviolet spectrophotometer (UV-VIS). Silica powder was below 50 nm characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The main byproduct crystalline sodium sulfate was featured by XRD and photographs.  相似文献   

10.
Polymannuronic acid (PM) possesses more pharmacological activities than sodium alginate, but there have been few studies on its absorption mechanism, tissue distribution, and pharmacokinetics. Studies of pharmacokinetics and tissue distribution are necessary to elucidate the pharmacological effects of PM. Thus, we used fluorescein isothiocyanate (FITC) to produce fluorescently labeled PM (FITC-PM) and detected the distribution and pharmacokinetics of PM in vivo via tail vein injection. The results demonstrate that the FITC-PM showed high stability in different pH solutions. After the tail vein injection, FITC-PM tended to be distributed in the kidney, followed by the liver and in the heart, spleen, and lungs at lower concentrations. Pharmacokinetic analysis showed that the elimination rate constant of FITC-PM was 0.24, the half-life time was 2.85 h, the peak concentration was 235.17 μg/mL, the area under the curve was 631.48 μg/mL·h, the area under the curve by statistical moment was 1843.15 μg/mL·h2, the mean residence time was 2.92 h, and the clearance rate was 79.18 mL/h. These results indicate that FITC-PM could be used for PM distribution and pharmacokinetic studies, and the studies of pharmacokinetics and tissue distribution provided basic information that can be used to further clarify PM pharmacodynamic mechanisms.  相似文献   

11.

Background:

Oral vanadyl sulfate (vanadium) induces normoglycemia, proliferates beta cells and prevents pancreatic islet atrophy in streptozotocin-induced diabetic rats. Soteriological method is used to quantitate the proliferative effects of vanadium on beta-cell numbers and islet volumes of normal and diabetic rats.

Methods:

Adult male Sprague-Dawley rats were made diabetic with intravenous streptozotocin injection (40 mg/kg). Normal and diabetic rats were divided into four groups. While control normal and diabetic (CD) groups used water, vanadium-treated normal (VTN) and diabetic (VTD) groups used solutions containing vanadyl sulfate (0.5-1 mg/mL, VOSO4+5H2O). Tail blood samples were used to measure blood glucose (BG) and plasma insulin. Two months after treatment, rats were sacrificed, pancreata prepared, and stereology method was used to quantitatively evaluate total beta cell numbers (TBCN) and total islet volumes (TISVOL).

Results:

Normoglycemia persisted in VTN with significantly decreased plasma insulin (0.190.08 vs. 0.970.27 ng/dL, P<0.002). The respective high BG (53249 vs. 14446 mg/dL, P<0.0001) and reduced plasma insulin (0.260.15 vs. 0.540.19 ng/dL, P<0.002) seen in CD were reversed in VTD during vanadium treatment or withdrawal. While the induction of diabetes, compared to their control, significantly decreased TISVOL (1.90.2 vs. 3.030.6 mm3, P<0.003) and TBCN (0.990.1 vs. 3.20.2 x 106, P<0.003), vanadium treatment significantly increased TISVOL (2.90.8 and 4.071.0 mm3, P<0.003) and TBCN (1.50.3 and 3.80.6 x 106, P<0.03).

Conclusion:

Two-month oral vanadium therapy in STZ-diabetic rats ameliorated hyperglycemia by partially restoring plasma insulin. This action was through proliferative actions of vanadium in preventing islet atrophy by increasing beta-cell numbers.Key Words: Vanadium, Pancreas, Islet volumes, Rats  相似文献   

12.
Codium fragile and Chondrus crispus are, respectively, green and red seaweeds which are abundant along the North Atlantic coasts. We investigated the chemical composition and antiviral activity of enzymatic extracts of C. fragile (CF) and C. crispus (CC). On a dry weight basis, CF consisted of 11% protein, 31% neutral sugars, 0.8% sulfate, 0.6% uronic acids, and 49% ash, while CC contained 27% protein, 28% neutral sugars, 17% sulfate, 1.8% uronic acids, and 25% ash. Enzyme-assisted hydrolysis improved the extraction efficiency of bioactive materials. Commercial proteases and carbohydrases significantly improved (p ≤ 0.001) biomass yield (40%–70% dry matter) as compared to aqueous extraction (20%–25% dry matter). Moreover, enzymatic hydrolysis enhanced the recovery of protein, neutral sugars, uronic acids, and sulfates. The enzymatic hydrolysates exhibited significant activity against Herpes simplex virus (HSV-1) with EC50 of 77.6–126.8 μg/mL for CC and 36.5–41.3 μg/mL for CF, at a multiplicity of infection (MOI) of 0.001 ID50/cells without cytotoxity (1–200 μg/mL). The extracts obtained from proteases (P1) and carbohydrases (C3) were also effective at higher virus MOI of 0.01 ID50/cells without cytotoxity. Taken together, these results indicate the potential application of enzymatic hydrolysates of C. fragile and C. crispus in functional food and antiviral drug discovery.  相似文献   

13.
Fucoxanthin (FX) is a marine carotenoid that has proven to be a promising marine drug due to the multiple bioactivities it possesses. However, the instability and poor bioavailability of FX greatly limit its application in pharmaceuticals or functional foods. In this study, the creative construction of a solid lipid nanoparticle-microcapsule delivery system using mixed lipids of palm stearin and cholesterol wrapped with gelatin/Arabic gum to load lipophilic FX was fabricated, aiming to improve the stability and bioavailability of FX. The results showed that the encapsulated efficiency (EE) and drug loading capacity (LC) of optimized FX microcapsules (FX-MCs) obtained were as high as 96.24 ± 4.60% and 0.85 ± 0.04%, respectively, after single-factor experiments. The average particle size was 1154 ± 54 nm with negative Zeta potential (−20.71 ± 0.93 mV) as depicted with size-zeta potential spectrometer. The differential scanning calorimeter (DSC) and thermogravimetric analyzer (TG) results indicated that FX-MC has a higher Tg and slower weight loss than FX monomers (FX crystal) and blank MCs. Besides, The Fourier transform infrared spectrometer (FTIR) confirmed the good double encapsulation of FX into the solid lipid and composite coacervate. Moreover, the encapsulated FX showed higher storage stability, sustained release (55.02 ± 2.80% release in 8 h), and significantly improved bioavailability (712.33%) when compared to free FX. The research results can provide a principle theoretical basis for the development and application of FX in pharmaceuticals or functional foods.  相似文献   

14.
取健康家兔10只,随机分为2组,单剂量静注和灌服脂质体儿茶素(Catechin Liposome)25mg/kg。用高效液相色谱法测定血浆中儿茶素原药质量浓度。房室模型分析表明:健康家兔静注儿茶素脂质体的药时数据符合无吸收二室开放模型,主要药物动力学参数为:t1/2α0.18±0.01βh,t1/2β1.52±0.08βh,Vd4.48±0.24L,ClB2.05±0.07L/h,AUC29.20±1.00βmg/(L.h),K101.64±0.19h–1,K211.08±0.06h–1,K121.61±0.19h–1。健康家兔灌服脂质体儿茶素的药时数据符合一级吸收一室开放模型,主要药物动力学参数为:t1/2ka 0.27±0.03βh,t1/2ke 1.72±0.04βh,tmax0.87±0.05βh,Cmax6.53±0.62βmg/L,AUC 25.90±1.34βmg/(L.h),F 88.60±5.73%。脂质体儿茶素在健康家兔体内的药动学特征是:吸收迅速,达峰时间较短,消除慢,半衰期延长,表现分布容积大,口服生物利用度高。结果表明:儿茶素经脂质体包封后,药物动力学及组织分布均发生了明显改变。  相似文献   

15.
为改良检测技术,拓宽量子点探针在农产品安全领域的应用范围,制备了用于粮油中黄曲霉毒素检测的2种量子点探针,即碳量子点(CQD)探针和石墨烯量子点(GQD)荧光免疫探针,研究2种探针应用于黄曲霉毒素检测中的可行性。采用绿色合成方法,发现以0.375g/m L柠檬酸水溶液中获得的石墨烯量子点荧光强度最强。利用1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDC·HCL)和N-羟基琥珀酰亚胺(NHS),将碳量子点和GQD与抗黄曲霉毒素的单克隆抗体1C11进行共价偶联,发现偶联前后量子点的荧光光谱变化趋势一致,而且偶联后均保持了较好的荧光特性,因此均可作为黄曲霉毒素免疫检测的探针,且与抗体偶联后的碳量子点的荧光特性优于石墨烯量子点。  相似文献   

16.
In this study, we developed novel chitosan/fucoidan nanoparticles (CS/F NPs) using a simple polyelectrolyte self-assembly method and evaluated their potential to be antioxidant carriers. As the CS/F weight ratio was 5/1, the CS/F NPs were spherical and exhibited diameters of approximately 230–250 nm, as demonstrated by TEM. These CS/F NPs maintained compactness and stability for 25 day in phosphate-buffered saline (pH 6.0–7.4). The CS/F NPs exhibited highly potent antioxidant effects by scavenging 1,1-diphenyl-2-picrylhydrazyl (DPPH), reducing the concentration of intracellular reactive oxygen species (ROS) and superoxide anion (O2) in stimulated macrophages. The DPPH scavenging effect of CS/F NPs primarily derives from fucoidan. Furthermore, these CS/F NPs activated no host immune cells into inflammation-mediated cytotoxic conditions induced by IL-6 production and NO generation. The MTT cell viability assay revealed an absence of toxicity in A549 cells after exposure to the formulations containing 0.375 mg NPs/mL to 3 mg NPs/mL. Gentamicin (GM), an antibiotic, was used as a model drug for an in vitro releasing test. The CS/F NPs controlled the release of GM for up to 72 h, with 99% of release. The antioxidant CS/F NPs prepared in this study could thus be effective in delivering antibiotics to the lungs, particularly for airway inflammatory diseases.  相似文献   

17.
Chitosan/alginate nanoparticles (DG1-NPs and DG1/Cur-NPs) aiming to enhance the oral antithrombotic activity of clam heparinoid DG1 were prepared by ionotropic pre-gelation. The influence of parameters, such as the concentration of sodium alginate (SA), chitosan (CTS), CaCl2, clam heparinoid DG1, and curcumin (Cur), on the characteristics of the nanoparticles, were investigated. Results indicate that chitosan and alginate can be used as polymer matrices to encapsulate DG1, and nanoparticle characteristics depend on the preparation parameters. Nano-particles should be prepared using 0.6 mg/mL SA, 0.33 mg/mL CaCl2, 0.6 mg/mL CTS, 7.2 mg/mL DG1, and 0.24 mg/mL Cur under vigorous stirring to produce DG1-NPS and DG1/Cur-NPS with small size, high encapsulation efficiency, high loading capacity, and negative zeta potential from approximately −20 to 30 mV. Data from scanning electron microscopy, Fourier-transform infrared spectrometry, and differential scanning calorimetry analyses showed no chemical reaction between DG1, Cur, and the polymers; only physical mixing. Moreover, the drug was loaded in the amorphous phase within the nanoparticle matrix. In the acute pulmonary embolism murine model, DG1-NPs enhanced the oral antithrombotic activity of DG1, but DG1/Cur-NPs did not exhibit higher antithrombotic activity than DG1-NPs. Therefore, the chitosan/alginate nanoparticles enhanced the oral antithrombotic activity of DG1, but curcumin did not further enhance this effect.  相似文献   

18.
Ultrasound-assisted water extraction was optimized to recover gelling biopolymers and antioxidant compounds from Mastocarpus stellatus. A set of experiments following a Box–Behnken design was proposed to study the influence of extraction time, solid liquid ratio, and ultrasound amplitude on the yield, sulfate content, and thermo-rheological properties (viscoelasticity and gelling temperature) of the carrageenan fraction, as well as the composition (protein and phenolic content) and antiradical capacity of the soluble extracts. Operating at 80 °C and 80 kHz, the models predicted a compromise optimum extraction conditions at ~35 min, solid liquid ratio of ~2 g/100 g, and ultrasound amplitude of ~79%. Under these conditions, 40.3% carrageenan yield was attained and this product presented 46% sulfate and good mechanical properties, a viscoelastic modulus of 741.4 Pa, with the lowest gelling temperatures of 39.4 °C. The carrageenans also exhibited promising antiproliferative properties on selected human cancer cellular lines, A-549, A-2780, HeLa 229, and HT-29 with EC50 under 51.9 μg/mL. The dried soluble extract contained 20.4 mg protein/g, 11.3 mg gallic acid eq/g, and the antiradical potency was equivalent to 59 mg Trolox/g.  相似文献   

19.
dHG-5 (Mw 5.3 kD) is a depolymerized glycosaminoglycan from sea cucumber Holothuria fuscopunctata. As a selective inhibitor of intrinsic Xase (iXase), preclinical study showed it was a promising anticoagulant candidate without obvious bleeding risk. In this work, two bioanalytical methods based on the anti-iXase and activated partial thromboplastin time (APTT) prolongation activities were established and validated to determine dHG-5 concentrations in plasma and urine samples. After single subcutaneous administration of dHG-5 at 5, 9, and 16.2 mg/kg to rats, the time to peak concentration (Tmax) was at about 1 h, and the peak concentration (Cmax) was 2.70, 6.50, and 10.11 μg/mL, respectively. The plasma elimination half-life(T1/2β) was also about 1 h and dHG-5 could be almost completely absorbed after s.c. administration. Additionally, the pharmacodynamics of dHG-5 was positively correlated with its pharmacokinetics, as determined by rat plasma APTT and anti-iXase method, respectively. dHG-5 was mainly excreted by urine as the unchanged parent drug and about 60% was excreted within 48 h. The results suggested that dHG-5 could be almost completely absorbed after subcutaneous injection and the pharmacokinetics of dHG-5 are predictable. Studying pharmacokinetics of dHG-5 could provide valuable information for future clinical studies.  相似文献   

20.
Marine sponge-derived endozoic fungi have been gaining increasing importance as promising sources of numerous and unique bioactive compounds. This study investigates the phytochemical profile and biological activities of the ethyl acetate extract of Penicillium chrysogenum derived from Cliona sp. sponge. Thirty-six compounds were tentatively identified from P. chrysogenum ethyl acetate extract along with the kojic acid (KA) isolation. The UPLC-ESI-MS/MS positive ionization mode was used to analyze and identify the extract constituents while 1D and 2D NMR spectroscopy were used for kojic acid (KA) structure confirmation. The antimicrobial, antioxidant, and cytotoxic activities were assessed in vitro. Both the extract and kojic acid showed potent antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa with MIC 250 ± 0.82 µg/mL. Interestingly, the extract showed strong antifungal activity against Candida albicans and Cryptococcus neoformans with MIC 93.75 ± 0.55 and 19.53 ± 0.48 µg/mL, respectively. Furthermore, KA showed the same potency against Fusarium oxysporum and Cryptococcus neoformans with MIC 39.06 ± 0.85 and 39.06 ± 0.98 µg/mL, respectively. Ultimately, KA showed strong antioxidant activity with IC50 33.7 ± 0.8 µg/mL. Moreover, the extract and KA showed strong cytotoxic activity against colon carcinoma (with IC50 22.6 ± 0.8 and 23.4 ± 1.4 µg/mL, respectively) and human larynx carcinoma (with equal IC50 30.8 ± 1.3 and ± 2.1 µg/mL, respectively), respectively. The current study represents the first insights into the phytochemical profile and biological properties of P. chrysoenum ethyl acetate extract, which could be a promising source of valuable secondary metabolites with potent biological potentials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号