共查询到18条相似文献,搜索用时 70 毫秒
1.
2.
柑橘成熟度多重分形无损检测 总被引:2,自引:0,他引:2
为无损检测柑橘成熟度,将柑橘主要色调分布范围30°~ 120°进行了等分,形成3幅色调图,分析每幅色调图标度不变域及多重分形谱,以多重分形谱高度和宽度表征柑橘果皮色泽特征,并以此作为BP神经网络的输入,可溶性总固形物含量为输出,建立柑橘成熟度模型,映射柑橘成熟度.试验的平均正确识别率为82%,表明通过柑橘果皮色调的多重分形谱能无损检测柑橘成熟度. 相似文献
3.
以水果分拣控制过程为研究对象,基于RGB图像检测方法建立分拣控制算法.同时,利用异步图像采集模式进行水果图像获取,并借助中值滤波和高斯滤波器两种方式实现水果图像噪音去除;采用全局自动阈值分割法进行水果图像特征提取,从而实现水果颜色特征及表面区域特征的识别分类.将特征数据与设定好的特征阈值进行对比,从而实现水果等级的鉴定... 相似文献
4.
基于高光谱图像技术的农产品品质无损检测 总被引:2,自引:0,他引:2
高光谱图像技术结合了计算机图像与光谱技术两者的优点,是农产品品质无损检测技术的发展趋势.为此,阐述了农产品品质检测中高光谱图像技术的基本原理;介绍了高光谱图像技术在农产品外部品质和内部品质检测中的应用现状及信息处理方法;并对高光谱图像技术应用于农产品品质检测技术的发展提出了建议. 相似文献
5.
针对传统方法无法高效、无损地对柑橘浮皮和枯水进行检测的问题,本研究自制了一套软X射线成像系统,包括载物传送装置、软X射线成像装置、触发装置和软X射线防护装置.本研究根据宽皮柑橘物理特性确定检测参数,以柑橘图像的清晰度、对比度、畸变率为评判标准,通过调节成像装置参数,确定了最佳的成像参数为:X射线源的管电压60 kV,管... 相似文献
6.
7.
8.
9.
10.
在机械加工过程中,对于无损检测技术的应用要求越来越高,因此,文章介绍了当前无损检测技术,包括射线、超声、渗透和磁粉等技术,并论述它们的工作原理、优缺点和应用范围。 相似文献
11.
基于图像处理多算法融合的杂草检测方法及试验 总被引:1,自引:0,他引:1
自动化除草是现代精确农业科学领域的研究热点。已有的自动化除草解决方案中普遍存在鲁棒性不强、过度依赖大量样本等问题,针对上述问题,本研究提出了基于图像处理多算法融合的田间杂草检测方法,设计了一套田间杂草自动识别算法。首先通过设置颜色空间的阈值从图像中分割土壤背景。然后采用面积阈值、模板匹配和饱和度阈值三种方法对作物和杂草进行分类。最后基于投票的方式,综合权衡上述三种方法,实现对作物和杂草的精准识别与定位。以大豆田间除草为对象进行了试验研究,结果表明,使用融合多图像处理算法的投票方法进行作物和杂草识别定位,杂草识别平均错误率为1.79%,识别精度达到98.21%。相较单一的面积阈值、模板匹配和饱和度阈值方法,基于投票权重识别杂草的精度平均提升5.71%。同时,针对复杂多变的农业场景,进行了存在雨滴和阴影干扰的鲁棒性测试,实现了90%以上的作物识别结果,表明本研究方法具有较好的适应性和鲁棒性。本研究算法可为智能移动机器人除草作业等智慧农业领域应用提供技术支持。 相似文献
12.
柑橘黄龙病严重影响柑橘的产量和品质。在自然背景下,柑橘叶片之间存在相互遮挡以及尺寸变化大的问题,使得遮挡及小尺寸的黄龙病叶片容易漏检,而且由于黄龙病叶片的颜色、纹理特征与柑橘其他病害十分相似,容易存在误检的问题,导致现有的算法对自然背景柑橘黄龙病检测的精度不高。本研究提出了一种结合剪切混合拼接(Shearing mixed splicing,SMS)增广算法和双向特征融合的自然背景柑橘黄龙病检测方法,该方法通过SMS、镜像翻转和旋转方法对训练集和验证集进行了增广,增加了训练集和验证集图像中背景目标的数量和多样性;为了自适应地改变柑橘黄龙病检测中的局部采样点,增大有效感受野,使用可变形卷积替换骨干网络后3个卷积层中所有的标准卷积;为了减小自然背景的影响,使用全局上下文模块对骨干网络后3个卷积层输出的特征图进行特征增强,来建立有效的长距离依赖,以便更好的学习到全局上下文信息;使用双向融合特征金字塔,改善浅层特征和深层特征的信息交流路径,用以降低因柑橘黄龙病叶片尺寸变化大导致的漏检,提高小尺寸的柑橘黄龙病叶片的检测精度。实验结果表明,本研究提出的方法用于自然背景柑橘黄龙病的检测,平均精度可达84.8%,性能优于SSD、RetinaNet、YOLO v3、YOLO v5s、Faster RCNN、Cascade RCNN等目标检测方法。 相似文献
13.
基于激光诱导荧光高光谱技术无损检测脐橙表面敌敌畏残留 总被引:1,自引:0,他引:1
常规化学方法检测农药残留不仅对样品具有破坏性,而且费时费力。本文以激光诱导荧光结合高光谱图像技术为手段,对脐橙表面的敌敌畏农药残留进行光谱无损检测;实验方法是在脐橙表面,喷施用自来水配制的不同浓度的敌敌畏农药溶液,在实验室条件下风干后,采集激光诱导荧光高光谱图像,再用气相色谱法检测脐橙表面的农药残留量,应用偏最小二乘(Partial least squares,PLS)方法建立农药残留的预测模型,并找出最佳光谱区间,然后应用支持向量机(Support vectormachine,SVM)方法在最佳光谱区间的基础上建立农药残留的预测模型;所建模型结果其预测集样品的农药残留量实测值(0.4862~10.3791mg/kg)和预测值之间的相关系数为0.8101;实验结果说明,以激光诱导荧光结合高光谱技术为手段的无损检测技术,在检测脐橙农药残留方面是有可行性的。 相似文献
14.
基于Sentinel-1和Sentinel-2数据融合的农作物分类 总被引:5,自引:0,他引:5
基于光学影像的遥感技术受云雨、昼夜影响较大,导致获取连续的作物时序生长曲线较困难,而雷达影像作为主动式成像,能够很好地克服这一缺陷。本文以陕西省渭南市大荔县某农场为研究区域,分别采用最大似然法(Maximum likelihood,ML)和支持向量机(Support vector machine,SVM)2种方法,融合Sentinel-1雷达影像和Sentinel-2光学影像,提高农作物的分类精度。研究结果表明,融合数据的农作物分类精度相比光学数据分类精度有所提高。在无云层覆盖的情况下,利用SVM方法融合Sentinel-2的红、绿、蓝、近红外4个波段数据与Sentinel-1数据,总体分类精度提高了2个百分点,Kappa系数提高了5个百分点;在有少量云层覆盖情况下,利用ML处理融合数据的分类结果精度和Kappa系数分别提高2个百分点和4个百分点,SVM方法下的分类精度提高了6个百分点,Kappa系数提高了8个百分点。 相似文献
15.
针对蓝莓果蝇虫害分类识别存在效率低、准确度差等问题,采用深度学习方法对采集的蓝莓高光谱图像进行数据处理与分析,以实现蓝莓果蝇虫害的无损检测。首先蓝莓高光谱图像采用PCA进行降维,优选数据集PC2与PC3并进行拼接得到最佳数据集PC23,对数据集中图像进行旋转90°、旋转180°、模糊、高亮、低亮、镜像和高斯噪声共7种增强操作,使各数据集容量扩增为原始容量的18倍。然后采用VGG16、InceptionV3与ResNet50深度学习模型对蓝莓果蝇虫害图像进行检测,均取得了较高的识别准确率。其中ResNet50模型效率最高,且ResNet50模型的准确率最高,达到92.92%,损失率最低,仅有3.08%,因此ResNet50模型在蓝莓果蝇虫害无损检测方面整体识别效果最佳。为了进一步提高蓝莓果蝇虫害无损检测性能,从ECA注意力模块、Focal Loss损失函数与Mish激活函数3方面对ResNet50模型进行了改进,构建了改进的im-ResNet50模型。得出im-ResNet50模型识别准确率达95.69%,损失率为1.52%。试验结果表明, im-ResNet50模型有效提升了蓝莓果蝇虫害识别能力。采用Grad-CAM分析了im-ResNet50模型可解释性,能够快速、准确地无损检测蓝莓果蝇虫害。 相似文献
16.
茶叶等级评价是检测茶叶品质的一项重要技术指标。通过提取红茶高光谱成像技术下的图像特征和光谱特征,构建一种基于图谱融合方法、适用于英德红茶等级评价的快速无损判别模型。首先制备3种不同等级的红茶样本,采用t分布-随机近邻嵌入和主成分分析对光谱数据进行降维可视化分析,然后从影响内在品质角度用连续投影法提取每种化学值的特征波长,通过多模型共识策略和竞争性自适应重加权算法-连续投影法筛选得出表征其内在品质的最佳特征波长组合,并建立基于遗传算法优化支持向量机的等级判别模型;其模型的训练集准确率为88%,预测集准确率为78.33%。为了融合外形纹理差异,先提取最佳特征波长组合对应的高光谱图像;采用图像掩膜消除背景的干扰和采用图像主成分分析消除多波长图像间的冗余信息,然后采用灰度共生矩阵和局部二值化算法提取主成分前三维主成分图像与特征光谱融合,并建立基于特征融合的遗传算法优化支持向量机等级判别模型,且基于第三主成分图像特征融合模型判别效果最佳,训练集准确率提升至98%,预测集准确率提升至96.67%。 相似文献
17.
地表覆盖产品是地理国情监测、生态系统评估、国土空间规划等活动的重要基础数据。GEE、PIE、微软行星云等遥感计算云平台具备丰富的数据源和强大算力。利用GEE云平台融合多套公开产品制作训练样本,可以显著降低产品更新的成本和周期,具有重要研究价值。本文以淮河流域为例,将欧洲航天局(ESA)和美国环境系统研究所(ESRI)存储在GEE平台上的2020年分辨率10 m地表覆盖产品作为训练样本数据源,选用Sentinel-1雷达和Sentinel-2多光谱影像构建特征空间,利用随机森林分类方法制作分辨率10 m的地表覆盖产品。为验证方法效果,进行了2组对比实验。实验1随机抽取1 116个公开产品类别一致的样点作为训练样本,并通过目视解译方式验证本文产品与多套公开产品的精度。结果显示,本文产品总体精度为80.35%,相较于公开产品的总体精度提升2.89~8.94个百分点,局部刻画也更加精细;在Sentinel-2基础上加入雷达影像,总体精度提高3.52个百分点,雷达影像辅助效果明显。实验2设置8组不同数量的训练样本,并分别以人工判读、ESA、ESRI、DW、GlobeLand30为参考数据源,研究... 相似文献