首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
不同沉水植物对水体氮磷的净化效果   总被引:2,自引:0,他引:2  
通过6种沉水植物金鱼藻(Ceratophyllum demersum)、苦草(Vallisneria natans)、大苦草(Vallisneria gigantea Graebner)、黑藻(Hydrilla verticillata)、矮慈姑(Sagittaria pygmaea)、皇冠草(Echinodorus amazonicus)在模拟污水中的培养试验,研究其对模拟污水中氮、磷的净化效果,从中筛选出适用于治理城市污水的沉水植物。试验结果表明,随着培养时间的延长6种沉水植物对水体氮的净化率降低,除金鱼藻外,其他5种沉水植物对水体磷的净化率增加。苦草的氮净化效果最好(12.16%);黑藻和苦草对磷的净化率高,分别为96.69%和92.98%。随着处理时间的增加,氨氮比例降低、硝态氮比例增高。苦草对氮磷均有较好的净化效果,是较好的沉水植物。  相似文献   

2.
农村生活污水及养殖废水导致河道水污染情况愈发严重.以南昌县向塘镇礼坊村农村河道水环境治理为例,研究活性生物炭复合调节剂技术在农村河道污水治理中的应用.通过模拟试验和实地应用对活性生物炭复合剂不同投加量条件下的污水治理研究得出:活性生物炭复合调节剂对富营养化污水中氮、磷元素的去除具有良好的处理效果.模拟试验中,活性生物炭...  相似文献   

3.
农村生活污水及养殖废水导致河道水污染情况愈发严重。以南昌县向塘镇礼坊村农村河道水环境治理为例,研究活性生物炭复合调节剂技术在农村河道污水治理中的应用。通过模拟试验和实地应用对活性生物炭复合剂不同投加量条件下的污水治理研究得出:活性生物炭复合调节剂对富营养化污水中氮、磷元素的去除具有良好的处理效果。模拟试验中,活性生物炭复合调节剂与河道污水的投放质量体积比为1∶150时,净化效果最佳。在第5天时,T3处理对总磷、总氮和氨氮的去除率分别为21.77%、14.32%和23.05%。实地应用中,活性生物炭复合调节剂与河道污水质量体积比为1∶200时,处理效果最佳。在第9天时,M2处理对总磷、总氮和氨氮的去除率分别为53.05%、55.46%和72.84%。由此可知,活性生物炭复合调节剂推荐适宜用量在1∶150~1∶200之间。  相似文献   

4.
生物炭对土壤氮磷流失和油菜产量的影响   总被引:1,自引:0,他引:1  
明确生物炭对土壤氮磷流失和作物产量的影响是生物炭应用技术中的关键问题。采用测筒试验,在20 cm土壤中添加不同比例(0.5%、1.0%、1.5%)的生物炭,并模拟降雨淋溶后收集测筒淋溶液分析氮磷含量,研究生物炭对土壤氮磷淋溶流失和油菜产量的影响。结果表明:(1)与不施用生物炭处理相比,1.5%生物炭处理极显著降低了TN淋溶损失量、TN淋溶浓度比率、NO~-_3-N淋溶损失量、NO~-_3-N淋溶浓度比率、TP淋溶损失量和TP淋溶浓度比率;各处理间NH~(+2)_4-N和PO~-_4-P淋溶损失量差异不显著。(2)油菜生长期间,TN、NO~-_3-N的淋溶损失量随生物炭施用量增加而减少,且以NO~-_3-N的淋溶流失为主;受施肥和作物生长吸收利用的影响,NH~+_4-N、TP和PO~(2-)_4-P的淋溶流失规律不明显。(3)施用生物炭增加了油菜的产量,主要表现为油菜一次有效分支数、单株有效角果数和每果粒数的增加。  相似文献   

5.
热解温度是影响生物炭表面性质的重要因素。在250~450℃范围内制备玉米秸秆生物炭(CB)和杨木生物炭(PB)。采用X-射线光电子能谱仪对生物炭的表面元素进行分析,发现各元素含量随热解温度而变化,2种生物炭的变化规律不同。傅里叶变换红外分析表明,热解温度升高造成生物炭基团的变化,C=O基团增多,芳香性增强。研究生物炭在水中的氮磷释放行为发现,随着热解温度的升高,NH4+-N和NO3--N的释放呈现先增加后减少的趋势;CB的总磷释放有所增加,PB的总磷释放先增加后降低。不同热解温度的生物炭,其营养元素的释放速率在初期存在一定差别,释放过程在48 h内基本完成。生物炭的表面性质及氮磷释放行为与热解温度及生物质来源密切相关。  相似文献   

6.
玉米生物炭和改性炭对土壤无机氮磷淋失影响的研究   总被引:3,自引:2,他引:3  
利用玉米秸秆为原料制作生物炭,并用氯化铁进行改性,考察了改性前后生物炭对硝态氮和磷的吸附等温和吸附动力学过程,将生物炭和改性炭制作3 cm厚的物理隔离层,施入土柱50 cm处,通过淋溶实验,研究生物炭改性前后对土壤无机氮磷淋失的影响。结果表明,炭化温度为500℃时,铁炭比为0.7的生物炭和改性炭对氮磷的吸附能力最强。吸附动力学和等温吸附曲线分析表明:生物炭改性后对硝态氮和磷的吸附增大,生物炭和改性生物炭对硝态氮的最大吸附量分别为0 mg·g-1和2.414 mg·g-1、对磷的最大吸附量分别为1.723 mg·g-1和16.062 mg·g-1。与对照相比,生物炭处理和改性炭处理硝态氮的淋失量分别降低11.2%和31.6%,磷的淋失量分别显著降低33.1%和82.9%,氨氮的淋失量分别显著降低44.3%和68.6%。淋溶试验后对土壤残留养分分析表明,隔离层的添加并不会对0~50 cm土层内NO-3-N、NH+4-N和PO3-4-P含量产生明显影响,同时改性生物炭能有效减少NH+4-N和PO3-4-P向更深土层中迁移,表明土壤中添加改性生物炭能够有效降低土壤无机氮磷的淋失风险。  相似文献   

7.
化肥配施生物炭对稻田田面水氮磷流失风险影响   总被引:6,自引:5,他引:6  
在控制外源氮输入相同的前提下,通过大田试验研究生物炭部分替代化肥作为底肥,不同生物炭施用量(5、10、20 t·hm~(-2))对水稻生长期内稻田田面水氮磷迁移转化特征的影响。研究结果表明:各处理的田面水总氮、硝氮、铵氮浓度在施肥后第3 d达到最高,然后迅速下降,并逐渐稳定;田面水总磷浓度在施肥后2~4 d内增幅较小,而后迅速下降至稳定,施加生物炭对田面水总磷的影响不大;可溶性磷浓度在施肥后2~4 d内处于平稳下降的状态,之后迅速下降至稳定。稻田施肥后10 d内是控制氮磷流失的最佳时段。采用生物炭代替部分化肥的施肥方式,在一定范围内能降低稻田田面水的氮磷浓度,稻田退水氮、磷的输出负荷分别减少了39%~50%和38%~50%,显著提高了水稻生态效益。通过综合效益评估可知,施加5 t生物炭代替化肥是综合效益最高的施肥方法,该施肥方式下氮、磷的年输出负荷分别为16.83、1.89 kg·hm~(-2)。  相似文献   

8.
生物炭及生物炭基肥在农业中的应用研究进展   总被引:7,自引:0,他引:7  
生物炭可作为土壤改良剂单独施入土壤,改善土壤环境条件,也可与肥料混合制成生物炭基肥,其具有养分缓释、增产稳定等一系列优点,在农业上的应用越来越广泛。主要从生物炭对土壤理化性质、微生物、农业温室气体排放、作物生长和产量的影响,对农田土壤污染的治理,以及生物炭基肥对肥料养分、作物生长和产量的影响这几个方面,对生物炭及生物炭基肥在农业中的应用研究进展进行综述,阐明其优点和不足,并提出了进一步的研究方向,旨在为生物炭和生物炭基肥在农业中的应用研究提供参考。  相似文献   

9.
为探究苦草、黑藻、菹草等沉水植物修复对养殖池塘底泥中重金属的去除效果及其生物有效性,对沉水植物修复前后底泥中重金属Cu、Zn、Pb、Cd、Hg、As、Cr的总量和赋存形态进行测定。结果表明,沉水植物修复可以有效去除底泥中重金属污染并降低生态风险,其中对底泥中Cu、Pb、Cd、Hg的去除率较高,但对Cr的去除率较低。不同季节生长的沉水植物对不同重金属的修复效果不同。聚类分析显示,苦草、黑藻等春夏季生长沉水植物对Cd、As、Cu、Zn、Pb的去除效果较好,而菹草等越冬沉水植物对Cr的去除作用较好。形态分析显示,底泥中生物有效态含量和迁移率(MF)较高的Cu和Cd在沉水植物修复后底泥中生物有效态含量和迁移率相比其他元素显著增加。此外,相关性分析显示,底泥中重金属的去除率与其生物有效态含量和迁移率均呈现极显著正相关(P0.01)。因此,底泥中重金属的生物有效态含量和迁移率可以有效表征沉水植物对底泥中复合重金属污染的去除效果。  相似文献   

10.
目前以生物炭为代表的生物质对重金属的吸附表现出良好的应用前景。为确定生物炭对造纸废水中污染物的吸附性能,本研究采用自制装置进行试验,将供试基质材料置于同等大小且底部有孔的塑料花盆内,研究生物炭对造纸废水pH值、CODcr和Pb2+的去除效果,并运用正交矩阵分析所有有效变量。结果表明:生物炭能够有效降低不同浓度造纸废水pH值、CODcr和Pb2+含量。在整个试验周期内,生物炭条件下,浓度为50,175,300mg·L-1的造纸废水pH值依次减少0.89,0.86,1.29,生物炭可效降低造纸废水pH;生物炭对造纸废水CODcr去除率为91.88%,在50mg·L-1条件下,去除效果较为稳定,同时还表明,温度对造纸废水CODcr影响较大,CODcr随温度升高增大后减小;生物炭对造纸废水中Pb2+的吸收值明显高于其他两种基质,表明生物炭对Pb2+有较强的吸附能力,且在pH值为6~8时,生物炭对Pb2+的吸附量随着pH的升高呈减小,说明生物炭可作为一种廉价高效吸附剂用于水体污染修,并提供一定的理论基础。  相似文献   

11.
4种沉水植物对再生水中氮磷的去除速率和耐受范围   总被引:1,自引:0,他引:1  
【目的】研究4种沉水植物对再生水中氮、磷的去除速率和耐受范围,为以再生水作为补水的景观水体沉水植物的选择提供依据。【方法】以野外选取的伊乐藻(Elodea canadensis)、罗氏轮叶黑藻(Hydrilla verticillata)、菹草(Potamogeton crispus)和金鱼藻(Ceratophyllum demersum)4种沉水植物作为供试材料,设置含不同质量浓度TN和TP的再生水,测定有这4种沉水植物的再生水体中TN和TP质量浓度的变化,构建TN和TP质量浓度与培养时间的回归方程,并在回归方程的基础上,研究4种沉水植物对再生水中的氮、磷的去除规律。【结果】在有4种沉水植物的再生水体中,TN和TP质量浓度均随着培养时间的延长呈负指数衰减变化,沉水植物的净化能力不仅与其种类有关,而且与TN和TP初始质量浓度相关。罗氏轮叶黑藻对TN的去除能力最强,金鱼藻最低;伊乐藻对TP的去除能力最强,金鱼藻最小。菹草对氮素的耐受范围较宽,金鱼藻最窄;伊乐藻对磷素的耐受范围最宽,金鱼藻较窄。【结论】当再生水体中TN初始质量浓度为5~15mg/L、TP初始质量浓度为0.5~1.5mg/L时,罗氏轮叶黑藻和伊乐藻对氮磷营养盐的去除速率较高,可作为维持和改善再生水景观水体水质的先锋植物。  相似文献   

12.
载镁香蕉秆基生物炭对氮磷的吸附性能研究   总被引:3,自引:0,他引:3  
以香蕉秸秆为原料,氯化镁(MgCl2)为改性剂,通过限氧热解法(温度673 K)制备生物质炭。利用扫描电镜、傅里叶红外光谱、X射线衍射等技术分析了镁改性生物质炭对氮、磷的吸附机理。结果表明,通过镁改性,生物质炭对氮、磷的吸附量得到显著提高,最大吸附量分别达13.80、18.21 mg·g-1;对氮、磷的等温吸附曲线均符合Langmuir曲线,为单层吸附,吸附机理主要以化学吸附为主;吸附平衡时间约为150 min,氨氮和磷的吸附动力学均符合准二级动力学拟合方程,吸附过程受多步骤控制。该载镁生物质炭可以作为潜在吸附剂去除废水和富营养化水体中过量的氮、磷。  相似文献   

13.
生物炭-化肥配施对稻田土壤氮磷迁移转化的影响   总被引:7,自引:1,他引:7  
在控制外源氮输入量相同的前提下,通过设置不同梯度生物炭配施量[N1+B0(磷酸氢二铵750 kg·hm~(-2));N_2+B5(磷酸氢二铵583 kg·hm~(-2)+生物炭5000 kg·hm~(-2));N3+B10(磷酸氢二铵416 kg·hm~(-2)+生物炭10 000 kg·hm~(-2));N0+B20(生物炭20 000 kg·hm~(-2))],探讨无机肥减量配施生物炭对土壤氮、磷动态变化的影响。结果表明:4种处理土壤NH_4+-N和TP浓度均呈单峰变化趋势,分别于施肥后第9 d(NH_4+-N)、25 d(TP:N0+B20、N1+B0)和55 d(TP:N_2+B5、N3+B10)达到峰值;N_2+B5和N3+B10处理土壤NO3--N浓度呈双峰变化趋势,于施肥后第10 d和55 d达到峰值,而N0+B20和N1+B0处理土壤NO3--N浓度施肥初期(1~10 d)基本保持稳定状态,之后缓慢下降至稳定水平;N1+B0处理土壤TN浓度在施肥后1~55 d内缓慢下降,此后呈单峰变化趋势,于施肥后第85 d达到峰值;N_2+B5、N3+B10和N0+B20处理土壤TN浓度呈双峰变化趋势,分别于施肥后的第9 d和85 d达到峰值。与单施无机肥N1+B0处理比较,配施生物炭N_2+B5、N3+B10和N0+B20处理土壤TN和TP浓度分别提高了11.1%、33.3%、11.1%和40.0%、40.0%、40.0%,土壤脲酶和磷酸酶活性分别提高了25.0%、30.0%、10.0%和9.76%、18.3%、15.9%,表明生物炭较化肥具有更持久肥效。施肥初期,配施生物炭可提高土壤氮磷比;水稻成熟期,配施生物炭处理田面水氮磷比显著高于单施无机肥处理,能够持续地给水稻提供营养。N3+B10处理下水田面源污染物NO3--N、NH_4+-N、TN和TP的输出负荷分别降低了29.6%、48.1%、49.7%和50.0%,是较适合东北黑土区水田的施肥方式。  相似文献   

14.
采用有孔洞的泡沫板为栽培定植板,研究水稻对3种不同浓度污水中N、P的去除作用.结果表明,水稻对低、中、高浓度污水的TN去除率分别为54.5%、71.0%、66.3%,对低、中、高浓度污水的NH4+-N去除率分别为67.2%、75.6%、72.7%,对低、中、高浓度污水的TP去除率分别为69.4%、72.3%、55.1%.水稻对中浓度污水中TN、NH4+-N和TP的去除率最高,均超过了70%.水稻可用于受损水体的生物/生态修复.  相似文献   

15.
陆建兰 《广东农业科学》2014,41(9):182-183,188
对总氮和总磷分别超过30 mg/L 和8 mg/L 的富营养化水体,用芦苇和香蒲进行了3 个月的试验净化。 结果表明,两种植物对氮和磷具有很好的去除作用,芦苇的去除率均高于香蒲。通过控制水生植物的水体覆盖率和 定期收割植株的方式能有效降低水体中氮磷含量。  相似文献   

16.
生物质炭是一种具有前景的土壤改良剂,目前针对铁改性油菜秸秆生物质炭对茶园土壤养分淋失的研究相对较少。通过向茶园土壤中添加改性、未改性油菜秸秆生物质炭(炭土质量比分别为1 %、3 %和5 %)后开展土柱淋溶及土壤培养实验,研究铁改性或未改性油菜秸秆生物质炭作用于土壤养分淋失及酶活性(蔗糖酶、酸性磷酸酶、脲酶和过氧化氢酶)的变化规律,旨在分析和比较铁改性及未改性生物质炭对茶园土壤微生物活性及养分循环的影响。结果表明,添加生物质炭可增加茶园土壤的保水能力, 土壤水分累积淋溶量随生物质炭添加量的增加显著减少, 添加5 %的改性生物质炭(g3)及未改性生物质炭(w3)分别较未添加生物质炭的土壤(CK)减小7.70 %和16.98 %。g3处理对土壤硝态氮和磷酸盐的固持作用最为显著,淋失量较CK处理分别减少31.82 %和60.56 %。生物质炭对茶园土壤酶活性存在一定促进作用,但添加改性或未改性生物炭对土壤酶活性的影响存在明显差异。其中, w3中土壤脲酶、蔗糖酶分别显著高于其他处理14.85 %~25.10 %和19.00 %~48.98 %,添加3 %未改性生物质炭(w2)后,土壤过氧化氢酶活性高出其他处理2.14~29.33 μmol·h-1·g-1;g3处理对酸性磷酸酶促进作用最强。总的来说,未改性生物炭在增强茶园土壤持水能力及促进土壤酶活性方面要优于铁改性生物炭,而改性生物质炭对土壤氮磷养分的固持作用更为显著。因此,为改善茶园土壤质量,提高土壤肥力,应适量选取铁改性生物质炭。  相似文献   

17.
为研发原料来源广泛和吸附性能高的磷酸盐吸附剂,在400、500、600℃和700℃高温热解法制备羊粪生物炭基础上,采用浸载法进行La改性,得到高效脱磷的La改性新材料。结果表明,500℃热解温度的La改性羊粪生物炭吸附性能最佳,Langmuir方程拟合的最大吸附量为56.35 mg·g-1,达到或优于农林秸秆生物炭吸附水平。通过等温吸附方程和动力学方程推测吸附行为是单分子层的化学吸附。新材料在磷酸盐初始浓度小于100 mg·L-1时,随浓度增加吸附量快速增大。即便溶液pH值在3~11较大范围内变动,新材料对磷酸盐去除能力仍然很高。通过表征分析表明材料吸附磷酸盐的机理主要为配体交换。本研究为羊粪的资源化利用提供了一种新方法,该方法制备工艺简单,获得的材料吸附量高达58.33 mg·g-1,为同类生物炭材料的制备提供一定的参考。  相似文献   

18.
为探究土壤不同水分条件下生物炭对红壤磷素形态转化及磷酸酶活性的影响,以期为土壤磷素管理和生物炭合理利用提供参考。通过设置土壤不同含水量(33%、66%、100%)与生物炭添加量(0、0.5%、2%)进行培养试验,测定土壤的有效磷、各磷素形态(Al-P、Ca-P、Fe-P、O-P)及土壤酸性磷酸酶与碱性磷酸酶活性。结果表明:生物炭的施入显著提高了土壤有效磷含量;在培养前期,生物炭主要增加土壤中难溶态的Al-P含量,这主要是由生物炭带来的可溶性磷进入土壤中转化所导致;在培养后期,水分与生物炭都能够在一定程度上活化土壤中的Ca-P、Fe-P与O-P,释放更多磷素。生物炭本身呈碱性,添加到土壤中,有效中和了土壤酸度,使得土壤pH值上升2.82~3.13个单位,土壤酸性磷酸酶活性下降。此外,淹水条件能够降低土壤的酸性磷酸酶与碱性磷酸酶活性。研究表明,生物炭的添加能够有效提高土壤pH值、有效磷含量,同时降低土壤酸性磷酸酶的活性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号