首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The protective immunity induced by 3 experimental FeLV vaccines were evaluated: Prototype inactivated FeLV vaccine developed from a molecularly cloned FeLV isolate (FeLV-FAIDS-61E-A); a mixture of immunodominant synthetic peptides corresponding to regions of the FeLV-Gardner-Arnstein-B (FeLV-GA-B) envelope proteins; and an adjuvant-disrupted but non-activated virus prepared from a non-cloned FeLV field isolate comprised of subgroup A and B viruses (FeLV-05821-AB). Included as controls were parallel groups of cats inoculated with adjuvants alone or with an established commercial FeLV vaccine. After each inoculation and after virulent virus challenge exposure, sera from all cats were assayed for ELISA-reactive antibody against purified FeLV, FeLV neutralizing (VN) antibody, and FeLV antigenemia/viremia--viral p27 antigen in serum and within circulating leukocytes. Immunity was challenged by oral/nasal exposure of vaccinated and control cats with FeLV-FAIDS-61E-A or FeLV-05821-AB, an infective, noncloned, tissue-origin, FeLV field isolate containing subgroup-A and -B viruses. Vaccine-induced immunity was assessed by comparing the postchallenge-exposure incidence of persistent viremia and the pre- and postchallenge exposure titers of VN and ELISA antibody in cats of the control and vaccine groups. The percentage of cats, that resisted development of persistent viremia after FeLV challenge exposure and the preventable fraction (PF) for the vaccine groups (which adjusts for the severity of the challenge and the degree of innate resistance in the controls) were as follows: adjuvant controls, 26%; FeLV-FAIDS-61E-A inactivated virus vaccine, 95% (PF = 93.2%); FeLV-GA-B peptide vaccine, 5% (-28.4%); FeLV-05821-AB noninactivated vaccine, 67% (55.4%); and commercial FeLV vaccine, 35% (12.2%). The prechallenge exposure mean VN antibody titer for each group was: less than 1:8 in the adjuvant controls; 1:43 in the FeLV-FAIDS-61E-A-vaccinated cats; less than 1:8 in the peptide-vaccinated cats; 1:38 in the noninactivated virus-vaccinated cats group; and 1:12 in the cats vaccinated with the commercial vaccine. Thus, induction of VN antibody in the vaccinated cats, although modest, appeared to be correlated with induction of protective immunity as defined by resistance to FeLV challenge exposure. Results of these studies indicate that inoculation of cats with an experimental inactivated virus vaccine prepared from a molecularly cloned FeLV isolate was most effective in stimulating protective immunity against heterologous and homologous FeLV challenge exposure.  相似文献   

2.
3.
Twelve cats were vaccinated at 8 and 11 weeks of age with a commercially available inactivated FeLV vaccine (Nobivac FeLV, Intervet/Schering-Plough Animal Health). Eleven cats served as age-matched, placebo-vaccinated controls. All cats were kept in isolation for 2 years after vaccination and were then challenged with virulent FeLV to evaluate vaccine efficacy and duration of immunity. Cats were monitored for 12 weeks after challenge for development of persistent viremia using a commercial FeLV p27 ELISA. Persistent viremia developed in all 11 (100%) of the control cats, whereas 10 of 12 (83%) vaccinated cats were fully protected from persistent viremia following challenge. The results demonstrate that the vaccine used in this study protects cats from persistent FeLV viremia for at least 2 years after vaccination.  相似文献   

4.
A new recombinant gp70 vaccine was found to be safe and effective for prevention of infection by FeLV. The vaccine incorporates a unique purified saponin adjuvant with the recombinant antigen. Serious systemic reactions were not observed during the efficacy trial. Local reactions were transient and mild. More than 2,000 doses were administered to a cross section of household cats in a field safety trial. Only 1 cat had hypersensitivity reaction, which resolved. Among veterinarians who used the vaccine and the cat owners, the vaccine was judged satisfactory and safe. After rigorous intraperitoneal challenge exposure without use of immunosuppressants, 100% of the controls in the efficacy trial became infected, 70% of which remained persistently infected with FeLV. Among vaccinates, 45% were never viremic and 40% cleared transient infection within 12 weeks after challenge exposure. Of the 20 vaccinated cats, 3 were persistently infected. Overall, 85% of cats vaccinated with this recombinant DNA FeLV vaccine resisted persistent FeLV infection after stringent challenge exposure, which translates to preventable fraction of 78.6%.  相似文献   

5.
A genetically engineered subunit vaccine against FeLV infection was developed. The protective immunogen in the vaccine was a purified recombinant protein containing the entire amino acid sequence of FeLV subgroup A gp70 envelope protein. The optimal adjuvant was determined to be a highly purified saponin, QS-21, derived from Quillaja saponaria Molina. A vaccine formulation containing the recombinant protein, QS-21, and aluminum hydroxide was tested in specific-pathogen-free kittens and was shown to induce neutralizing antibodies as well as appreciable antibody responses to native gp70 by enzyme immunoassay and protein (western) immunoblot analysis and of whole virus preparations.  相似文献   

6.
The efficacy of a new recombinant FeLV vaccine (rFeLV), delivered transdermally via a needle-free delivery device was compared to that of an inactivated FeLV vaccine (FeLV-k), administered subcutaneously, with a conventional needle and syringe. Kittens were immunized with either rFeLV (0.25 ml, transdermal) or FeLV-k (1 ml, subcutaneous); or they were sham-vaccinated with physiologic saline (0.25 ml, transdermal). Two vaccinations were administered 21 days apart. Injection sites were monitored for any acute or subacute reactions relative to vaccine administration. Four weeks following the final vaccination, all cats were subject to oro-nasal FeLV challenge. Blood was collected for determination of FeLV antigenemia (p27) at weekly intervals beginning three weeks post-challenge. All of the vaccinated cats from both groups resisted FeLV challenge; and 90% of the control cats developed persistent FeLV antigenemia in response to challenge. No acute or persistent injection site reactions were observed. The rFeLV, delivered transdermally, provides protection against persistent FeLV antigenemia following a robust challenge that is equivalent to that of FeLV-k.  相似文献   

7.
8.
OBJECTIVE: To assess short- and long-term efficacy of an inactivated bovine respiratory syncytial virus (BRSV) vaccine administered i.m. to calves with maternally derived antibodies. ANIMALS: 28 two-week-old calves with neutralizing, maternally derived antibodies against BRSV. PROCEDURE: For evaluation of short-term efficacy, 6 calves were vaccinated i.m. at 2 and 6 weeks of age and challenged intranasally and intratracheally along with a matched group of 4 unvaccinated control calves at 10 weeks of age. For evaluation of long-term efficacy, 2 groups of 6 calves each were vaccinated i.m. at 2, 6, and 18 weeks of age or 14 and 18 weeks of age; these calves were challenged intranasally and intratracheally along with 6 matched unvaccinated control calves at 43 weeks of age. Serum virus neutralizing antibody titer, clinical reactions, and virus shedding in nasal mucus and lung washings were assessed. RESULTS: None of the vaccination regimens resulted in a significant increase in serum virus neutralizing antibody titer. As judged by virus shedding in nasal mucus and lung washings, vaccinated calves were protected against challenge, compared with unvaccinated control groups. Clinical signs attributable to challenge were coughing (short-term efficacy study) and tachypnea and dyspnea (long-term efficacy study). The severity and incidence of disease were significantly lower in the vaccinated groups, compared with that in the unvaccinated groups. CONCLUSIONS AND CLINICAL RELEVANCE: Through vaccination, it is possible to protect vulnerable calves with maternal antibodies against BRSV infection and reduce respiratory tract disease.  相似文献   

9.
10.
Serological response and reproductive performance were estimated in field trials of an inactivated virus vaccine against porcine parvovirus. Experiments were carried out in 10 selected pig breeding herds. A total of 277 seronegative gilts were used. Two hundred and twenty animals were vaccinated twice before mating, fourteen days apart and revaccinated after farrowing. Blood samples were obtained from both vaccinated and non-vaccinated (57 animal) control gilts, one week after the 2nd dose of vaccination, at farrowing time and one week after revaccination. Although there were considerable variations among the herds, the number of returns to oestrus in all herds was higher in vaccinated gilts (11.81%) than in the controls (10.52%). This difference, however, was not statistically significant. The reproductive performance results revealed the absence of an increase in the total born, as pooled values, in vaccinated gilts compared to controls. However, when these results are interpreted in relation to serological data, many control gilts were already seropositive before mating, or remained seronegative at farrowing. According to our results, the duration of immunity with this vaccine is apparently short, as there is a clear decrease in the titres between the 1st and the 2nd sampling times (2.35 +/- 0.14 and 1.97 +/- 0.08, respectively).  相似文献   

11.
12.
Canine parvovirus type 2a (CPV-2a) and type 2b (CPV-2b) have recently been isolated from cats throughout the world, and CPV-2b strain FP84 has been reported to be virulent in domestic cats. Although live feline panleucopenia virus (FPLV) vaccines protect domestic cats from CPV infection, the efficacy of inactivated FPLV vaccines has not been established. In this study, two domestic cats were vaccinated with a commercial inactivated FPLV vaccine and challenged with CPV-2b strain FP84 isolated from a domestic cat. The cats were protected against CPV-2b strain FP84 infection and their clinical signs were suppressed, although the two unvaccinated cats showed the typical clinical signs of parvovirus infection.  相似文献   

13.
14.
15.
OBJECTIVE: To determine prevalence of FeLV infection and serum antibodies against feline immunodeficiency virus (FIV) in unowned free-roaming cats. DESIGN: Cross-sectional serologic survey. ANIMALS: 733 unowned free-roaming cats in Raleigh, NC, and 1,143 unowned free-roaming cats in Gainesville, Fla. RESULTS: In Raleigh, overall prevalence of FeLV infection was 5.3%, and overall seroprevalence for FIV was 2.3%. In Gainesville, overall prevalence of FeLV infection was 3.7%, and overall seroprevalence for FIV was 4.3%. Overall, FeLV prevalence was 4.3%, and seroprevalence for FIV was 3.5%. Prevalence of FeLV infection was not significantly different between males (4.9%) and females (3.8%), although seroprevalence for FIV was significantly higher in male cats (6.3%) than in female cats (1.5%). CONCLUSIONS AND CLINICAL RELEVANCE: Prevalence of FeLV infection and seroprevalence for FIV in unowned free-roaming cats in Raleigh and Gainesville are similar to prevalence rates reported for owned cats in the United States. Male cats are at increased risk for exposure to FIV, compared with female cats.  相似文献   

16.
Clinically ill feline leukemia virus (FeLV)-infected cats, treated with Staphylococcus protein A (SPA) or oral interferon alpha (IFN), or both, were compared with cats treated with saline (SAL). Nine cats received SPA/SAL, nine received SPA/IFN, 10 received SAL/IFN, and eight received SAL/SAL. Twelve cats survived and completed the 100-week therapy. Significantly more owners of cats treated with SPA/SAL thought their cat's health improved during treatment compared to owners of cats treated with SAL/SAL (P=0.05, pair-wise comparison) or SPA/IFN (P=0.05, pair-wise comparison). No significant differences in body weight, temperature, hematocrit, red blood cell counts, mean corpuscular hemoglobin concentration, reticulocyte counts, white blood cell or neutrophil numbers, lymphocyte concentrations, bone-marrow cytopathology, FeLV status, survival time, activity, or appetite scores were observed. No significant differences in the owners' subjective assessment of their cat's health following treatment with SAL/IFN, SPA/IFN, or SAL/SAL were seen. Therapy with SPA as a single agent results in the owners' subjective impression of improved health of their FeLV-infected cats.  相似文献   

17.
One hundred feline leukemia virus-positive cats with evidence of anemia were examined to determine characteristics of the anemia. The anemia was usually normochromic and normocytic, with low reticulocyte counts but with normal white blood cell and platelet counts. About one third of the cats had splenomegaly. The bone marrow was usually hypocellular or normally cellular, with an increased myeloid to erythroid ratio. A history of recent stress or infection in many cases indicated that the immunosuppressive effect of feline leukemia virus may have been involved. Supportive treatment with periodic blood transfusions was successful in prolonging survival. Corticosteroids and androgens may have been beneficial in some cases.  相似文献   

18.
A whole killed FeLV vaccine was developed. By use of a chromatography method of purification and concentration, the resulting vaccine has been shown to be significantly lower in bovine serum albumin and total protein contents than were the same ingredients in the starting materials. The virus was inactivated or killed as an essential part of the vaccine development process. Vaccination trials with the vaccine without use of adjuvants indicated appreciable virus-neutralizing serum titer (greater than or equal to 1:10) in 107 of 110 vaccinated cats. Of 43 cats vaccinated and subsequently challenge exposed with virulent FeLV, only 2 developed persistent virus antigenemia (longer than 1 month), whereas 14 of 22 nonvaccinated control cats developed persistent viremia. In field tests, 2,770 cats from 6 states were vaccinated and observed. Postvaccinal reactions were not observed.  相似文献   

19.
Evaluation of an inactivated rabies virus vaccine in domestic ferrets   总被引:1,自引:0,他引:1  
Efficacy of an SC-administered commercial inactivated vaccine for prevention of rabies was evaluated in domestic ferrets. Ferret immunity was challenged by the IM inoculation of street rabies virus. All ferrets developed titers of rabies virus-neutralizing antibodies within 30 days of vaccination (geometric mean titer [GMT] = 154, n = 41) that were maintained for at least one year (GMT = 106, n = 36), compared with no seroconversion in controls (GMT less than 5, n = 39). Following rabies virus challenge inoculation, 89% (32/36) of vaccinated ferrets survived vs less than 6% (2/38) survival in control ferrets. These results demonstrate the protective efficacy of a commercial, inactivated rabies vaccine of at least one year's duration for domestic ferrets.  相似文献   

20.
Feline leukemia virus (FeLV) and feline immunodeficiency virus (FIV) are retroviruses with a global impact on the health of domestic cats. The two viruses differ in their potential to cause disease. FIV can cause an acquired immunodeficiency syndrome that increases the risk of developing opportunistic infections, neurological diseases, and tumors. In most naturally infected cats, however, FIV itself does not cause severe clinical signs, and FIV-infected cats may live many years without any health problems. FeLV is more pathogenic, and was long considered to be responsible for more clinical syndromes than any other agent in cats. FeLV can cause tumors (mainly lymphoma), bone marrow suppression syndromes (mainly anemia) and lead to secondary infectious diseases caused by suppressive effects of the virus on bone marrow and the immune system. Today, FeLV is less important as a deadly infectious agent as in the last 20 years prevalence has been decreasing in most countries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号