首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以干旱区和湿润区6个典型站点1989-2016年历史气象资料和2013-2016年天气预报数据为依据,以PM公式计算结果为对照,比较分析了率定Hargreaves-Samani(HS)模型和符号回归估算模型(SR)的ET_0预报精度。结果表明:率定后的HS模型在各站点的ET_0预报精度均维持在较高水平,且其在干旱区典型站点的预报精度略高于湿润区站点的值;而与HS公式预报结果相比,采用SR模型在不同气候区的ET_0预报精度均有不同程度的提高,其中在湿润区站点的平均MAE、RMSE值降低了18.98%和20.97%,在干旱区各站点的平均MAE、RMSE值减少了9.79%和7.53%。因此,根据不同模型在不同气候区的预报精度,结合气候特征,建议在湿润区和干旱区分别采用SR模型和HS公式进行ET_0预报,可为实时灌溉预报提供准确依据。  相似文献   

2.
为验证中国农业综合分区框架下Hargreaves-Samani(HS)公式线性回归修正方案的适用性,利用中国气象数据网发布的124个站点1957—2016年的逐月有效日平均气压、平均最低气温、平均最高气温、平均风速、平均水汽压、月总太阳辐射数据及站点经纬度数据,首先,分别基于Penman-Monteith(PM)公式和HS公式计算了各站点多年逐月的参考作物需水量ET_(0-PM)和ET_(0-HS)。然后,以ET_(0-PM)为真值,基于1957—2010年的逐月ET_(0-PM)和ET_(0-HS),利用线性回归分析方法获取了中国38个农业管理子区的HS公式校正系数a、b,并以2011—2016年为验证年份,通过比较ET_(0-HS)校正前后的相对误差变化,验证了HS公式线性回归校正方法在中国农业区的适用性,并结合验证年份的具体误差结果,确定了各农业区HS公式校正系数a、b的逐月最优取值。结果表明:大部分农业区的大部分月份ET_(0-PM)与ET_(0-HS)的相关系数超过0. 6,可以进行ET_(0-HS)的回归校正;回归校正得到的系数a存在显著的季节变化规律,系数b则表现较为平稳;系数a、b的大小及变化说明了ET_(0-PM)和ET_(0-HS)彼此之间存在差异,且季节性明显;校正前后的ET_(0-HS)均存在不同程度的相对误差,但校正后的ET_(0-HS)的误差范围已经显著缩小;在具体的验证应用中,校正后的ET_(0-HS)并不完全是最优结果,实践中系数a、b的优选使用才是最佳方案。本研究验证的HS公式线性回归校正方法是实践中简便、可行的方案,对大尺度区域快速获得较高精度的参考作物需水量具有实际意义和推广价值。  相似文献   

3.
潜在蒸散发(ET_0)是估算作物需水量的基础。根据石羊河流域5个气象站5年的气温、风速、相对湿度等日气象要素资料,采用Penman-Monteith公式计算石羊河流域的ET_0,建立六因子、四因子和三因子的支持向量机(SVM)模型与人工神经网络(ANN)模型模拟日ET_0,对模拟值与计算值进行比较,以均方根误差(RMSE)、平均绝对误差(MAE)、确定性系数(DC)以及皮尔逊相关系数(R)作为模型的性能评价指标,对模型进行检验以获得模拟精度较高的模型。结果表明:相同因子输入下ANN模型较SVM模型在石羊河流域模拟日ET_0有着更高的模拟精度。该研究可为气象要素资料不全的站点提供模拟日ET_0的可行方法。  相似文献   

4.
为实现参考作物蒸散量ET_0在资料缺失情况下的准确计算,对ET_0简化算法在车尔臣河流域的适用性进行科学评价,采用2个气象站点1961-2013年逐日气象资料,以Penman-Monteith(PM)法的计算结果为标准,对具有代表性的5种简易算法Hargreaves-Samani(HS)法、Pristley-Taylor(PT)法、Irmark-Allen(IA)法、Makkink(MAK)法和Penman-Van Bavel(PVB)法的计算精度进行对比,结果表明:研究区六七月蒸散发量最大,1、12月份最小,PT法计算结果偏大,HS法、IA法、MAK法与PVB法计算结果均偏小;5种方法在流域上、下游的计算精度差异明显,HS法和PVB法较为精准,PT法、IA法和MAK法误差较大;流域上、下游最优算法均为HS法。  相似文献   

5.
地表太阳辐射经验值对参考作物需水量计算的影响   总被引:2,自引:0,他引:2  
针对中国太阳辐射站点观测数据较少的客观条件,以联合国粮农组织(FAO)建议的通过Angstrom公式及其参数计算的地表太阳辐射(R_(s-c))对中国九大农业区基于Penman-Monteith(PM)公式计算的参考作物需水量(ET_(0-PM))的影响为目标,利用中国地面气候资料月值数据集和中国辐射月值数据集中的112个站点1957年1月—2017年3月的气象要素逐月有效观测日均值数据,通过对比分析和相关分析,讨论了站点R_(s-c)与观测的地表太阳辐射(R_(s-o))的时空差异,以及二者分别输入PM公式获得的ET_(0-c)和ET_(0-o)的时空差异。结果表明:基于年内时空尺度的各农业区R_(s-c)和R_(s-o)存在显著且不稳定的差异,R_(s-c)直接替代R_(s-o)参与计算ET_(0-c)可能出现较大的误差。基于R_(s-c)和R_(s-o)分别计算的ET_(0-c)和ET_(0-o),无论是在全国,还是各个农业区,均存在显著的线性相关性,R~2超过0.67,ET_(0-c)平均值只有0.06~0.26 mm/d的误差。考虑中国的农业地域类型,应对北方地区的"春旱"灌溉需求,可以直接以R_(s-c)计算获得ET_(0-c),而在全国范围内的夏季"伏旱"期,输入R_(s-c)计算的ET_(0-c)比输入R_(s-o)计算的ET_(0-o)偏大。在高精度的节水农业应用中,建议研究相应的校正模型对夏季ET_(0-c)进行校准。  相似文献   

6.
中国西北地区日参考作物腾发量模型适用性评价   总被引:1,自引:0,他引:1  
为推荐适宜中国西北地区参考作物腾发量(ET_0)简化计算模型,应用9个代表性站点近50 a逐日气象资料,以FAO-56 Penman-Monteith(PM)模型计算的ET0为标准值,选取5种基于综合法的Kimberly Penman(K-P),FAO 1979 Penman(PM 17),FAO 24 Penman(PM 24),FAO1948 Penman(PM 48),FAO 79 Penman(PM 79)模型,3种基于温度法的Hargreaves-Samani(HS),Mc Cloud (M-C),Hargreaves (Har)模型,5种基于辐射法的Priestley-Taylor-1 (PT-1),Priestley-Taylor-2(PT-2),FAO-24 Radiation(FAO-Ra),Makkink(Mak),Irmark-Allen(I-A),Irmark(Irm)模型,对其在西北地区ET_0进行适用性评价.结果表明:14种模型在中国西北地区计算精度差异明显.全区模拟精度最高的PM 48(综合法),H-S(温度法),PT-1(辐射法)模型的平均R2,MAE,RMSE和nRMSE分别为0.978,0.767 3 mm/d,0.842 3 mm/d和25.622%; 0.735,0.920 0mm/d,1.187 0 mm/d和36.556%; 0.736,1.392 0 mm/d,1.826 0 mm/d和57.992%.  相似文献   

7.
作物需水量ETc的计算方法有直接计算法及计算参考作物需水量ET_0两种方法,文章分析了各方法应考虑因素、适用条件及优缺点。重点通过对ET_0计算公式研究进展的总结,对有代表性的ET_0的综合性计算公式:修正彭曼(MP)公式、彭曼-蒙特斯(PM)公式及标准ASCE-PM公式进行对比分析。  相似文献   

8.
基于气温预报和HS公式的不同生育期参考作物腾发量预报   总被引:2,自引:0,他引:2  
根据南京站2001-2011年实测气象数据,以Penman-Monteith(PM)公式计算得到的参考作物腾发量ET0值作为基准值,对仅需要气温数据计算参考作物腾发量的Hargreaves-Samani(HS)公式进行参数率定,采用率定后的HS公式依据2012年6月-2015年6月气温预报数据对南京水稻、冬小麦不同生育期未来1~7d的ET0进行预报,并与基于实测气象数据的PM法计算的ET0值进行比较,评价HS法的ET0预报精度。结果表明:最低、最高气温实测值与预报值相关系数分别为0.97和0.93,最低气温预报精度略高于最高气温;预见期1~7d内,水稻、冬小麦不同生育期ET0预报值与PM法计算值变化趋势基本一致,整个生育期内冬小麦ET0预报值与PM法计算值吻合程度更好,水稻、冬小麦相关系数分别达0.60、0.80左右;水稻各生育期平均准确率为66.0%~97.5%,平均绝对误差为0.65~1.22mm/d,均方根误差为0.76~1.42mm/d,冬小麦各生育期平均准确率为75.4%~99.5%,平均绝对误差为0.33~1.06mm/d,均方根误差为0.43~1.23mm/d;作物生育期各阶段对气温预报误差越敏感,ET0预报精度越低,随着生育期的推进,水稻对气温预报误差的敏感程度逐渐减小,相应的ET0预报精度逐渐增加,而冬小麦反之;但整体上预见期1~7d的气温预报及ET0预报精度达到可利用程度,可为快速灌溉预报及灌溉决策提供数据支撑。  相似文献   

9.
为了深入认识内蒙古参考作物腾发量ET_0的变化特征,采用联合国粮农组织1998年推荐的Penman-Monteith公式计算内蒙古50个气象站点32 a(1981—2012年)的逐月参考作物腾发量ET_0,通过联合国防治荒漠化公约提出的全球干旱指数UNEP进行气候分区,利用空间插值和8 a滑动平均法对内蒙古各气候区ET_0时空变化特征进行分析.结果表明:特干旱气候区、干旱气候区、半干旱气候区、干旱半湿润气候区、湿润半湿润气候区的ET_0波动区间分别为1 401~1 573,1 145~1 269,900~1 013,710~857和571~735 mm,波动幅度均在200 mm以内,且其ET_0逐渐减小,即越湿润的气候区,年累计ET_0越小.根据ET_0最大、最小值出现的年份可知其表现出了很强的随机性.  相似文献   

10.
西藏高原灌区参考作物蒸散量模型的适用性研究   总被引:2,自引:0,他引:2  
为明确参考作物蒸散量(ET_0)计算模型在西藏高原灌区的适用性,推荐适宜于气象资料短缺条件下的ET_0计算模型,本研究基于满拉、墨达、江北3个灌区的气象站的长系列数据,以FAO推荐的Penman-Monteith(FAO 56 PM)模型计算的ET_0为标准,对ET_0的5种常用计算模型的适用性进行评价。结果表明:Makkink、Irmark-Allen、FAO 17Penman、Hargreaves-Samani和Priestley-Taylor 5种模型模拟的日尺度ET_0变化趋势与FAO 56 PM模型一致,在年际间均呈先增后减的变化规律,且峰值出现在6~7月份,但各模型适用性存在显著差异。Makkink模型的日尺度MAE、RMSE、NSE值分别为0.37 mm/d、0.45 mm/d和0.84,模拟精度及可信度最高;Irmark-Allen模型次之,MAE、RMSE、NSE分别为0.65 mm/d、0.71 mm/d、0.62;Priestley-Taylor模型最差,MAE值最大达4.91 mm/d且NSE值小于0。年尺度下,各模型较FAO 56 PM均存在高估现象,其中FAO 17Penman、Hargreaves-Samani、Priestley-Taylor模型的NSE值介于-3 571.76~-118.00之间,模拟结果不可信;Makkink模型的NSE值最接近于0,模拟结果可信,但模拟过程的误差较大。综合评定,推荐Makkink为西藏高原灌区气象资料短缺条件下的ET_0简化模型。  相似文献   

11.
针对传统PSO算法易陷入局部极值的缺点,提出了一种改进的粒子群算法(ADAPPSO)。该算法通过利用表现为非线性递减特性的自适应惯性权重来有效减少PSO算法在运算过程中出现局部极值的情况。利用ADAPPSO算法对BP神经网络所涉及的一系列参数进行优化,并在此基础上建立ADAPPSO-BP模型对参考作物腾发量(ET_0)进行预测。以商丘地区数据为例,通过平均影响值法(MIV)对变量进行筛选,并在此基础上建立了BP神经网络、PSO-BP和ADAPPSO-BP 3种预测模型。根据相关实验结果表明,BP模型、PSO-BP模型和ADAPPSO-BP模型的决定系数R~2分别为0.898 3、0.952 7和0.960 6,3种模型的平均绝对误差MAE分别为0.355 8、0.240 1和0.205 6。3种模型中,ADAPPSO-BP模型的R~2值最大,MAE最小,这表明提出的ADAPPSO-BP模型能够有效地提高ET_0的预测能力。  相似文献   

12.
为了明确贵州省参考作物腾发量(ET_0)的时空变化规律及其驱动原因,利用贵州省19个气象站点1959-2015年的日气象数据,运用FAO-56PM公式进行ET_0的计算,分别采用MK趋势检验法、IDW插值法和偏导数计算法分析了贵州省多年ET_0的年际变化趋势、空间分布特征和ET_0变化的气象因子灵敏度分析,并结合多年相对变化率进行贡献率分析。结果表明:贵州省不同地区的多年ET_0表现出不同程度的变化趋势和分布特征,多年年平均ET_0为785~989mm,总体上呈现为由西南到东北递减的分布特征;贵州省ET_0对相对湿度最为敏感,但日照时数(即太阳辐射)是引起贵州省多年ET_0变化的主要驱动因子。对于贵州省ET_0呈现上升趋势的地区应根据其主导驱动因子采取相应的科学措施,以缓解该区域水资源的供需水矛盾,研究结果可为贵州省农作物种植结构调整和水资源的合理配置提供指导依据。  相似文献   

13.
农田蒸散量(ET)是土壤—作物—大气连续体水分运移的关键参数,与作物生理活动和产量有着极为密切的关系,准确实时估算田间作物蒸散量对研究作物生长发育至关重要。基于无人机热红外传感器反演夏玉米的冠层温度,基于反演的冠层温度构建夏玉米蒸散模型(ET_(d,t))并验证了模型反演作物蒸散量的精度,分析了ET_(d,t)相关影响因子。结果表明:以热红外冠层温度作物蒸散模型计算的ET_(d,t)最低值出现在幼苗期为3.42 mm/d,最高值出现在灌浆期为10.94 mm/d,并与涡度相关实测值ET_(d,e)、FAO Penman-Monteith模型计算值ET_(d,f)进行验证,在P0.01水平上呈显著线性关系(R~2=0.739、0.742,RMSE=0.676、0.109 mm/d),ET_(d,t)估算精度达到80%以上。ET_(d,t)的计算受日净辐射、风速、气温、降雨等气象因子影响,不同气象条件的ET_(d,t)不同。叶面积指数(LAI)为夏玉米农田最主要的生物因子,LAI与ET_(d,t)呈线性正相关关系(R~2=0.700),空气动力学阻抗(r_a)是最主要的环境驱动因子,r_a与ET_(d,t)呈线性负相关关系(R~2=0.696)。随着植被覆盖度(NDVI)的变化,ET_(d,t)呈现相同变化趋势(R~2=0.656)。因此,基于无人机热红外反演的冠层温度计算的(ET_(d,t))能较好的反映田间夏玉米蒸散变化过程,从而为利用无人机热红外遥感估算作物蒸散量提供了科学依据。  相似文献   

14.
基于极限学习机模型的中国西北地区参考作物蒸散量预报   总被引:1,自引:0,他引:1  
为有效提高西北地区参考作物蒸散量(ET_0)预报精度,在西北地区选择6个代表性气象站点,以P-M模型计算的ET_0作为标准值,利用1993-2016年逐日气象资料构建10种极限学习机(extreme learning machine,ELM)ET_0预报模型,用k-折交叉验证估计模型泛化误差,并将其与Hargreaves-Samani、Chen、EI-Sebail和Bristow等4种在西北地区计算精度较高的模型进行比较。结果表明:ELM_1(输入T_(max)、T_(min)、RH、n和u_2)、ELM_2(输入T_(max)、T_(min)、n和u_2)、ELM_4(输入T_(max)、T_(min)、RH和u_2)及ELM_7(输入T_(max)、T_(min)和u~2)模型均具有较高模拟精度,其MAE分别为0.199、0.209、0.250、0.273 mm/d,RMSE分别为0.270、0.285、0.341、0.422 mm/d,NSE分别为0.983、0.981、0.973、0.987,R~2分别为0.984、0.982、0.975、0.960,整体评价指标(global performance indicator,GPI)排名分别为1、2、3、4;模型可移植性分析表明,ELM模型具有较强的泛化能力,除了ELM_7在喀什站、敦煌站的模拟精度相对较低之外,其余ELM模型在西北地区各站点模拟结果的MAE均在0.40 mm/d以下、RMSE均在0.49以下、NSE均在0.95以上、R~2均在0.96以上;在相同输入的情况下ELM模型模拟精度均高于HargreavesSamani、Chen、EI-Sebail和Bristow。因此,在气象资料缺乏情景下ELM模型可作为西北地区ET_0计算的推荐模型。  相似文献   

15.
为有效提高西北旱区参考作物蒸散量(Reference crop evapotranspiration,ET_0)预报精度,在西北旱区选择5个代表性气象站点,构建10种基于思维进化算法(Mind evolutionary algorithm,MEA)优化的误差反向传波神经网络(Back propagation neural network,BPNN)ET_0预报模型,并将其与Hargreaves-Samani模型、Irmak模型和48-PM模型等3种在西北旱区ET_0计算精度较高的模型进行比较。结果表明:在不同输入的情况下MEA-BPNN模型模拟精度具有相对较高水平,其中MEA-BPNN1(输入最高气温T_(max)、最低气温T_(min)、相对湿度R_H、日照时数n和距地面两米高处的风速u_2)、MEABPNN2(输入T_(max)、T_(min)、n和u_2)及MEA-BPNN3(输入T_(max)、T_(min)、R_H和u_2)模型的R~2、NSE均大于0.96,RMSE、MAE也分别小于0.34、0.25 mm/d,以上3种MEA-BPNN模型的整体评价指标(Global performance indicator,GPI)排名分别为1、2、3;MEA-BPNN7(输入T_(max)、T_(min)和u_2)的R~2、NSE分别为0.966 2、0.962 2,RMSE、MAE分别为0.3610、0.276 1 mm/d,模拟精度较高;MEA-BPNN模型可移植性的分析表明:MEA-BPNN模型在西北旱区具有较强的泛化能力,基于不同站点数据构建的预报模型也有较高精度;在相同输入的情况下MEA-BPNN模型模拟精度均高于Hargreaves-Samani模型、Irmak模型和48-PM模型。因此,在气象资料缺乏情景下MEA-BPNN模型可作为西北旱区ET_0计算的推荐模型,可为实时精准灌溉预报的实现提供科学依据。  相似文献   

16.
为了研究不同参考作物蒸发蒸腾量ET0估算方法在江苏地区的适用性,收集了江苏省徐州市、高邮市和昆山市1957年1月至2019年12月的气象数据,采用12种不同模型估算了各站点的ET0,其中模型Priestly-Taylor,Hansen,Jensen-Haise,Makkink是基于辐射数据的模型;MC-Cloud,1985 Hargreaves,Thornthwaite是基于温度数据的;Copais,Valiantzas 1和Valiantzas 2是综合法模型;XGBoost和SVM是机器学习模型.12种ET0的估算模型计算值分别与Penman-Monteith模型(PM)计算值进行比较,结果表明:各站点的综合评价指数GPI最高的为机器学习模型中的SVM模型;在输入参数相同的情况下,机器学习模型模拟精度优于综合法和温度法以及辐射法中的Pristley-Taylor和Makkink模型;机器学习模型随着输入参数减少,模拟精度依次降低.研究结果可以为江苏地区气象数据不完善时估算ET0提供科学依据.  相似文献   

17.
参考作物需水量(ET_0)是计算作物需水量、指导农田灌溉和水资源规划的重要依据。根据赤峰气象站34a长系列资料(包括最高气温、最低气温、相对湿度、平均风速和日照时数),利用FAO56-PM公式对3种ET_0估算方法(Hargreaves公式、Mc Cloud公式、Irmark-Allen公式)进行比较分析,主要依据平均偏差、平均相对偏差、相关系数3种指标分别对日、旬、月序列的吻合度进行评价。结果表明:Hargreaves公式和Irmark-Allen公式与FAO56-PM吻合较好,其次为Mc Cloud公式,从而说明Hargreaves公式和Irmark-Allen公式在该区运用的可行性,通过回归分析对二者进行修正,得出Harg公式与FAO56-PM计算结果更为接近,即Harg公式更适合燕山北部丘陵温热区ET_0的计算和预测。  相似文献   

18.
以气象数据为自变量,Penman Monteith方程计算值ET_0为应变量,分别建立了多元回归模型和自适应神经模糊推理系统(ANFIS)模型,对ET_0预测结果对比分析,ANFIS预测ET_0结果相对于多元线性回归具有精度高(1相似文献   

19.
[目的]提高机器学习模型模拟参考作物蒸散量在江西省适应性和精度.[方法]基于江西南昌等15个气象站2001—2015年日值气象数据(最高气温、最低气温、地表辐射、大气顶层辐射、相对湿度和2 m高风速),以FAO-56 Penman-Monteith(P-M)公式的计算结果作为对照,建立了计算ET0的高斯过程回归(GPR...  相似文献   

20.
为提高温室环境下参考作物蒸散量(Reference Crop Evapotranspiration,ET_0)的预测精度,提出烟花算法(Fireworks Algorithm, FWA)优化极限学习机(Extreme Learning Machine, ELM)的参考作物蒸散量预测模型,有效解决了极限学习机在数据预测过程中因随机输入权值矩阵和偏置矩阵导致的数据波动问题,提高了极限学习机的预测精度。以温室环境数据作为模型的输入,以参考作物蒸散量ET_0为输出,建立FWAELM模型,并将结果与ELM模型预测结果进行对比,结果表明,FWAELM模型的均方根误差、平均绝对误差和模型可决系数分别为:0.115 6、0.143 6、0.943 8,高于ELM模型的0.403 5、0.346 7和0.819 0,FWAELM模型预测精度较高。同时进行了气象参数缺失情况下的模型预测精度研究,结果表明参数在保留3个及以上时,模型的预测精度依然较高,适用于温室ET_0的预测研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号