首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Room-temperature powder x-ray diffraction profiles have been obtained at hydrostatic pressures P = 0 and 1.2 gigapascals on the solid phase of cubic C(60) ("fullerite"). Within experimental error, the linear compressibility d(ln a)/dP is the same as the interlayer compressibility d(ln c)/dP of hexagonal graphite, consistent with van der Waals intermolecular bonding. The volume compressibility -d(ln V)/dP is 7.0 +/- 1 x 10(-12) square centimeter per dyne, 3 and 40 times the values for graphite and diamond, respectively.  相似文献   

2.
Photochemically generated benzyl radicals react with C(60) producing radical and nonradical adducts Rn C(60) (R = C(6)H(5)CH(2)) with n = 1 to at least 15. The radical adducts with n = 3 and 5 are stable above 50 degrees C and have been identified by electron spin resonance (ESR) spectroscopy as the allylic R(3)C(60)(.) (3) and cyclopentadienyl R(5)C(60)(.) (5) radicals. The unpaired electrons are highly localized on the C(60) surface. The extraordinary stability of these radicals can be attributed to the steric protection of the surface radical sites by the surrounding benzyl substituents. Photochemically generated methyl radicals also add readily to C(60). Mass spectrometric analyses show the formation of (CH(3))nC(60) with n = 1 to at least 34.  相似文献   

3.
The appearance of superconductivity at relatively high temperatures in alkali metal-doped C(60) fullerene provides the challenge to both understand the nature and origin of the superconductivity and to determine the upper limit of the superconducting transition temperature (T(c)). Towards the latter goal, it is shown that doping with potassium-thallium and rubidium-thallium alloys in the 400 to 430 degrees C temperature range increases the T(c) of C(60)/C(70) mixtures to 25.6 K and above 45 K, respectively. Similar increases in T(c) were also observed upon analogous doping of pure C(60). Partial substitution of potassium with thallium in interstitial sites between C(60) molecules is suggested by larger observed unit cell parameters than for the K(3)C(60) and K(4)C(60) phases. Contrary to previous results for C(60) doped with different alkali metals, such expansion does not alone account for the changes in critical temperature.  相似文献   

4.
5.
A new formulation of the current within the London approximation allows the calculation of ring currents in topologically complex molecules. Application of this theory to C(60) demonstrates the existence of remarkable pi electron ring currents. Paramagnetic currents, in size comparable to the ones in benzene, flow within the pentagons, whereas weaker diamagnetic currents flow all around the C.(60) molecule. The overall vanishing ring-current magnetic susceptibility results from a cancellation of diamagnetic and paramagnetic contributions. The presence of ring currents significantly affects chemical shifts as measured in nuclear magnetic resonance experiments. In contrast to the magnetic susceptibility, which is a property of the molecule as a whole, chemical shifts are sensitive to the local magnetic field and the effect of ring currents does not vanish.  相似文献   

6.
High-resolution Raman spectroscopy of polycrystalline films of C(60) deposited under ultrahigh-vacuum conditions show that the spectrum below 244 +/- 3 kelvin consists of a superposition of two components whose relative contributions are temperature-dependent. The spectrum of the more intense of the two components is similar to that obtained for air- or oxygen-exposed samples of C(60) at room temperature, whereas the spectrum above 244 +/- 3 kelvin corresponds to one previously reported for oxygen-free samples of C(60). The results may indicate an order-disorder phase transition involving the percolation of a cluster of C(60) molecules engaged in coherent Raman scattering.  相似文献   

7.
The synthesis of a new family of spheroidal carbon molecules derived from the fullerenes is described. The fulleroids are produced by incremental addition of a divalent carbon equivalent that has two phenyl (Ph) rings to fullerene C(60). The fulleroids Ph(2)C(61), Ph(4)C(62), Ph(6)C(63), Ph(8)C(64), Ph(10)C(65), and Ph(12)C(66) have been prepared and characterized.  相似文献   

8.
Van der Waals forces that bind C(60) molecular solids are found to be sufficiently strong to allow the reproducible fabrication of free-standing C(60) membranes on (100) silicon wafers. Membranes, 2000 to 6000 angstroms thick, were fabricated by a modified silicon micro-machining process and were found to be smooth, flat, and mechanically robust. An important aspect of the silicon-compatible fabrication procedure is the demonstration that C(60) films can be uniformly and nondestructively thinned in a CF(4) plasma. Young's modulus and fracture strength measurements were made on membranes with areas larger than 6 millimeters by 6 millimeters. It may be possible to use C(60), membranes for physical property measurements and applications.  相似文献   

9.
The fullerene C(60) can be converted into two different structures by high pressure and temperature. They are metastable and revert to pristine C(60) on reheating to 300 degrees C at ambient pressure. For synthesis temperatures between 300 degrees and 400 degrees C and pressures of 5 gigapascals, a nominal face-centered-cubic structure is produced with a lattice parameter a(o) = 13.6 angstroms. When treated at 500 degrees to 800 degrees C at the same pressure, C(60) transforms into a rhombohedral structure with hexagonal lattice parameters of a(o) = 9.22 angstroms and c(o) = 24.6 angstroms. The intermolecular distance is small enough that a chemical bond can form, in accord with the reduced solubility of the pressure-induced phases. Infrared, Raman, and nuclear magnetic resonance studies show a drastic reduction of icosahedral symmetry, as might occur if the C(60) molecules are linked.  相似文献   

10.
Electrical resistances of polycrystalline fullerene (C(60)) films were monitored while the films were being doped in ultrahigh vacuum with potassium from a molecular-beam effusion source. Temperature- and concentration-dependent resistivities of K(chi) C(60) films in equilibrium near room temperature were measured. The resistance changes smoothly from metallic at chi approximately 3 to activated as chi --> = 0 or chi --> 6. The minimum resistivity for K(3)C(60) films is 2.2 microohm-centimeters, near the Mott limit. The resistivities are interpreted in terms of a granular microstructure where K(3)C(60) regions form nonpercolating grains, except perhaps at chi approximately 3. Stoichiometries at the resistivity extrema were determined by ex situ Rutherford backscattering spectrometry to be chi = 3 +/- 0.05 at the resistance minimum and chi = 6 +/- 0.05 at the fully doped resistance maximum.  相似文献   

11.
The properties of an organic molecular ferromagnet [C(60)TDAE(0.86); TDAE is tetrakis(dimethylamino)ethylene] with a Curie temperature ;T(c) = 16.1 kelvin are described. The ferromagnetic state shows no remanence, and the temperature dependence of the magnetization below ;T(c) does not follow the behavior expected of a conventional ferromagnet. These results are interpreted as a reflection of a three-dimensional system leading to a soft ferromagnet.  相似文献   

12.
13.
Kroto H 《Science (New York, N.Y.)》1988,242(4882):1139-1145
Although carbon has been subjected to far more study than all other elements put together, the buckminsterfullerene hollow-cage structure, recently proposed to account for the exceptional stability of the C(60) cluster, has shed a totally new and revealing light on several important aspects of carbon's chemical and physical properties that were quite unsuspected and others that were not previously well understood. Most significant is the discovery that C(60) appears to form spontaneously, and this has particularly important implications for particle formation in combustion and in space as well as for the chemistry of polyaromatic compounds. The intriguing revelation that 12 pentagonal "defects" convert a planar hexagonal array of any size into a quasi-icosahedral cage explains why some intrinsically planar materials form quasi-crystalline particles, as appears to occur in the case of soot. Although the novel structural proposal has still to be unequivocally confirmed, this article pays particular attention to the way in which it provides convincing explanations of puzzling observations in several fields, so lending credence to the structure proposed for C(60).  相似文献   

14.
On the basis of semiempirical and high-level ab initio calculations, theoretical evidence is presented of a "window" mechanism operable on the surface of C(60) and other fullerenes. Through this mechanism, large holes may be formed in fullerenes excited to their triplet state, openings through which atoms and small molecules can pass. This work provides a theoretical foundation for experiments that have prepared endohedral noble gas compounds of C(60) under thermal excitation. A method is proposed that could increase the efficiency of the process of noble gas insertion into C(60) and provide a more general means to create endohedral fullerene compounds.  相似文献   

15.
The specificity of complex formation between cytochrome b5 (cyt b5) and cytochrome c (cyt c) is believed to involve the formation of salt linkages between specific carboxylic acid residues of cyt b5 with lysine residues on cyt c. Site-directed mutagenesis was used to alter the specified acidic residues of cyt b5 to the corresponding amide analogues, which resulted in a lower affinity for complex formation with cyt c. The dissociation of the complex under high pressure resulted in specific volume changes, the magnitude of which reflected the degree of solvation of the acidic residues in the proposed protein-protein interface.  相似文献   

16.
The dielectric constant in and conductivity sigma of undoped C(60) single crystals have been measured as a function of temperature, 10 K < T < 330 K, and frequency, 0.2 kilohertz < f < 100 kilohertz. On cooling below the first-order structural phase transition at 260 K, a Debye-like relaxational contribution to the dielectric response is observed, which requires the presence of permanent electric dipoles. The relaxation rate is thermally activated with a broad distribution of energies centered at 270 millielectron volts. The existence of a dipole moment in C(60) is unexpected, because it is precluded by symmetry for the pure ordered cubic phase. These data suggest that the high degree of frozen-in orientational disorder of the C(60) molecules is responsible for the existence of electric dipolar activity.  相似文献   

17.
Laser vaporization of graphite generates C(60)(+) cluster ions that are fullerenes and a mixture of roughly planar polycyclic polyyne ring isomers. Experimental studies of the annealing of the non-fullerene C(60)(+) ions indicate that they can be converted (in the gas phase) into the fullerene and an isomer that appears to be a large monocyclic ring. Some fragmentation is associated with conversion to the fullerene geometry, but the majority of the non-fullerene C(60)(+) isomers are cleanly converted into an intact fullerene. The emergence of the monocyclic ring (as the clusters are annealed) suggests that this is a relatively stable non-spheroidal form of these all carbon molecules. The estimated activation energies for the observed structural interconversions are relatively low, suggesting that these processes may play an important role in the synthesis of spheroidal fullerenes.  相似文献   

18.
An x-ray crystal structure that confirms the soccer ball-shaped carbon framework of C(60) (buckminsterfullerene) is reported. An osmyl unit was added to C(60) in order to break its pseudospherical symmetry and give an ordered crystal. The crystal structure of this derivative, C(60)(OsO(4))(4-tert-butylpyridine)(2), reveals atomic positions within the carbon cluster.  相似文献   

19.
Electron diffraction patterns of the fullerene C(60) in the gaseous state have been obtained by volatilizing it from a newly designed oven-nozzle at 730 degrees C. The many peaks of the experimental radial distribution curve calculated from the scattered intensity are completely consistent with icosahedral symmetry for the free molecule. On the basis of this symmetry assumption, least-squares refinement of a model incorporating all possible interatomic distances led to the values r(g)(C(1)-C(2)) = 1.458(6) angstroms (A) for the thermal average bond length within the five-member ring (that is, for the bond fusing five- and six-member rings) and r(g)(C(1)-C(6)) = 1.401(10) A for that connecting five-member rings (the bond fusing six-member rings). The weighted average of the two bond lengths and the difference between them are the values 1.439(2) A and 0.057(6) A, respectively. The diameter of the icosahedral sphere is 7.113(10) A. The uncertainties in parentheses are estimated 2sigma values.  相似文献   

20.
The tribological properties of C(60) on the mesoscopic scale were investigated with a scanning force microscope, which allowed simultaneous measurements of normal and lateral forces under ultrahigh-vacuum conditions. Islands of C(60), deposited on NaCl(001), could be moved by the action of the probing tip in a controlled way. Different modes of motion, such as translation and rotation, were observed. An extremely small dissipation energy of about 0.25 millielectron volt per molecule and a cohesive energy of 1.5 electron volts were determined in these nanometer-scale experiments. The corresponding shear strength of 0.05 to 0.1 megapascal was smaller by one order of magnitude than typical values of boundary lubricants. For C(60) on graphite, disruption of the islands was observed and collective motion of the islands could not be achieved. These results could find use in the field of nanotechnology; for example, C(60) islands could be developed into a sled-type transport system on the nanometer scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号