首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The optimum environmental temperature for a biodegrading machine using wood particles as a matrix was investigated using a small-scale degradation reactor and model waste. The biodegradation rate was evaluated by weight loss of waste and CO2 evolution. The degradation reaction was restricted only by adjusting the environmental temperature while sufficient oxygen and substrates were supplied. Results suggested that the optimum temperature for degradation was 30°–40°C for exploiting biological activity effectively with the lowest use of energy. Bacteria from the environment propagated in the reactor with no inoculum added. The microbial flora changed during the operation time but had no effect on the biodegradation rate.Part of this report was presented at the 48th Annual Meeting of the Japan Wood Research Society, Tokyo, April 1998  相似文献   

2.
We determined the ultrasonic velocity and en-ergy attenuation value of three tree species (basswood, elm, and fir) 1 per tree in different moisture content levels, using RSM-SY5 ultrasonic testing inst...  相似文献   

3.
Simulated organic waste was biodegraded in a laboratory-scale machine using matrices prepared from four wood species to investigate the effects of wood species on the degradation rate and the bacterial community. The degradation rate, estimated by measuring weight loss and CO2 evolution, was found to be equal among the four wood species. Changes in viable cell counts and microbial communities over time were examined. Viable cell counts were also similar among the wood species, but initial bacterial communities differed owing to differences in wood species, although these communities became similar with time. The sensitivity of isolates to wood extractives was examined using paper discs. The extractive-insensitive bacteria species were dominant at the initial stage of biodegradation. However, occupancy of sensitive bacteria increased with time. It was thought that antibacterial extractives were degraded or inactivated after some time.Part of this report was presented at the 50th annual meeting of the Japan Wood Research Society, Kyoto. Japan, April 2000  相似文献   

4.
In our previous report, we investigated the effect of the microfibril angle (MFA) in the middle layer of the secondary wall (S2) on the longitudinal creep behavior of a thin homogeneous earlywood specimen sugi. In the present study, we investigated the role of moisture on the tensile creep behavior of wood. We discuss the creep behavior of the wood cell wall from the viewpoint of the composite structure of the cell wall and the properties of the constituent materials. A microtomed thin specimen of earlywood of sugi (Cryptomeria japonica D.Don) was used for the longitudinal tensile creep test. Creep tests were conducted at three moisture stages (oven-dry, air-dry, fiber saturation point) over a broad range of MFA. Results showed that the longitudinal tensile creep behavior was highly dependent on both the moisture content and the MFA. With a small MFA, the variation in the creep function among the three moisture states was very small. For a large MFA, the variation in the creep function was larger. At low moisture contents, the magnitude of the creep function was very small, while at high moisture content, it was very large except for the case of specimens with very small MFA. Those results show that the longitudinal tensile creep behavior was directly affected by the fine composite structure and the internal properties of the cell wall constituents.  相似文献   

5.
The vibrational property of hematoxylinimpregnated wood was investigated from the aspect of moisture content dependence. The specific dynamic Young's modulus (E/) and loss tangent (tan) of hematoxylin-impregnated wood were determined in the relative humidity (RH) range of 0%–97%, and were compared with those of the untreated and some conventional chemically treated woods. The changes in theE/ and tan of wood with increasing RH were suppressed by acetylation and formaldehyde treatment because of a marked reduction in the hygroscopicity of the wood. Although the hematoxylin impregnation did not significantly affect the hygroscopicity of the wood, its influence onE/ and tan were similar to that of formaldehyde treatment at low RH and of acetylation at medium RH. It was supposed that at low to medium RH hematoxylin restrains the molecular motion of amorphous substances in the cell wall because of its bulkiness and rigidity. On the other hand, at high RH it seems to work as a plasticizer with adsorbed water molecules.  相似文献   

6.
木材含水率测定方法的比较研究   总被引:1,自引:0,他引:1  
曾其蕴 《木材工业》1990,4(2):20-23,40
为修订国家标准“CB1931—80木材含水率测定方法”提供依据,本文对含树脂和挥发性物质较多的马尾松等5种木材,采用烘干法、真空干燥法和蒸馏法进行含水率测定的比较。结果表明,烘干法简便实用,但所测得的含水率结果比真空干燥法和蒸馏法为高,如果试样含有较多的挥发性物质,应用烘干法测定含水率误差偏大时,可采用真空干燥法。  相似文献   

7.
The purpose of this study was to use images from a microwave sensor on a pixel level for simultaneous prediction of moisture content and density of wood. The microwave sensor functions as a line-scan camera with a pixel size of 8mm. Boards of Scots pine (Pinus sylvestris), 25 and 50mm thick, were scanned at three different moisture contents. Dry density and moisture content for each pixel were calculated from measurements with a computed tomography scanner. It was possible to create models for prediction of density on a pixel level. Models for prediction of moisture content had to be based on average values over homogeneous regions. Accuracy will be improved if it is possible to make a classification of knots, heartwood, sapwood, etc., and calibrate different models for different types of wood. The limitations of the sensor used are high noise in amplitude measurements and the restriction to one period for phase measurements.  相似文献   

8.
A technique for nondestructive evaluation of moisture content distribution in Japanese cedar (sugi) during drying using a newly developed soft X-ray digital microscope was investigated. Radial, tangential, and cross-sectional samples measuring 100 × 100 × 10 mm were cut from green sugi wood. Each sample was dried in several steps in an oven and upon completion of each step, the mass was recorded and a soft X-ray image was taken. The relationship between moisture content and the average grayscale value of the soft X-ray image at each step was linear. In addition, the linear regressions overlapped each other regardless of the sample sections. These results showed that soft X-ray images could accurately estimate the moisture content. Applying this relationship to a small section of each sample, the moisture content distribution was estimated from the image differential between the soft X-ray pictures obtained from the sample in question and the same sample in the oven-dried condition. Moisture content profi les for 10-mm-wide parts at the centers of the samples were also obtained. The shapes of the profiles supported the evaluation method used in this study. Part of this work was presented at the 57th Annual Meeting of the Japan Wood Research Society, Hiroshima, August 2007  相似文献   

9.
Changes in moisture content of sugi (Cryptomeria japonica D. Don) wood during high-temperature saturated and superheated steam treatments were investigated. A system for in situ weighing of specimens was used, and the reduction of wood substance by heating was taken into consideration. At 160°C the loss of wood substance due to heating was significant and influenced the moisture content values, but it was almost negligible at 120°C. Treatment time and temperature affected the moisture content in saturated steam but not in superheated steam. Excess water in a saturated closed system appears to promote the decomposition of wood and condensation in or on specimens.Parts of this work was presented at the 49th, 50th, and 52nd Annual Meetings of the Japan Wood Research Society in Tokyo, April 1999; Kyoto, April 2000; and Gifu, April 2002  相似文献   

10.
尚德库  王矛棣 《木材工业》1993,7(4):15-17,14
通过实验,对杨木,桦木,椴木和榆木四种树种的木片散堆料床,在不同含水率及堆密度条件下的透气率作了研究。实验研究结果表明,当绝干密度不变时,木片料床的透气率随木片含水率的增大而减小。含水率在30%-80%范围内,透气率随含水率的变化比较平缓。当含水率从绝干增至10%时,木片料床的透气率急剧减小,说明木片从绝干至含水率略有长高时,含水率对木片料床透气率的影响极为显著。木片的含水率不变,透气率随木片料床  相似文献   

11.
This study was designed to investigate the effects of moisture content (MC) and specific gravity (SG) on the bending strength and hardness of six wood species including Japanese cedar (Cryptomeria japonica D. Don), China fir (Cunninghamia lanceolata), western hemlock (Tsuga heterophylla), red meranti (Shorea spp.), Selangan batu (Shorea spp.), and red oak (Quercus spp.). The experimental results are summarized as follows: Effects of MC and SG on the strength (MOR), stiffness (MOE), and hardness (H B) could be represented by a multiregression formulas. A negative correlation existed between these properties and MC, whereas a postive correlation showed between them and the SG. The changing rate of these properties induced by 1% MC changes varied with the wood species: 2.6% change in MOR was observed in Japanese cedar, China fir, western hemlock, red meranti, and Selangan batu; and 3.9% was found in red oak. For MOE, a 0.58% change was observed in Japanese cedar, China fir, and red meranti; western hemlock and Selangan batu exhibited 1.2% and red oak 2.5%. For hardness, a 1.1% change was observed in Japanese cedar, western hemlock, and red oak; red meranti and China fir exhibited 3.3%; and Selangan batu 1.8%.A part of this report was presented at the 48th annual meeting of the Japan Wood Research Society in Shizuoka, Japan, April 3-5, 1998  相似文献   

12.
The dynamic shear modulus and the loss modulus of Betula alba, Ulmus parvifolia, Quercus robur, Acer platanoides, Tilia cordata, Fraxinus excelsior and Pinus sylvestris wood were measured using an inverted torsion pendulum within a wide temperature range. The glass transition temperature of the lignin–carbohydrate complex and the decomposition temperature of the wood cellulose were estimated. The temperature band from 170°C to 240°С shows the transition of the lignin–cellulose complex from the glassy to the rubbery state. Mechanical properties of different types of wood are affected by moisture and anatomical differences, but glass transition and decomposition temperatures are the same. More than 5% of moisture in the wood stored at normal conditions were found. After drying, the increase of dynamic shear modulus of wood over the entire region of the glassy state was observed. The intensity of maximum peak of dynamic loss modulus is also increased due to activation of the segmental motion of macromolecules of the ligno-carbon complex. The decomposition temperature of the cellulose crystallites was unchanged for specimens containing moisture and for dried specimens.  相似文献   

13.
A new method for monitoring moisture content during radio-frequency (RF)/vacuum drying was developed by measurement of temperature and pressure in wood. Temperature and pressure inside the wood were measured simultaneously during RF/vacuum drying at the same point. The relative humidity (RH) and moisture content (MC) below the fiber saturation point (FSP) were calculated based on temperature and pressure, and the relationship between the temperature, RH, and equilibrium moisture content (EMC) at the measurement point. When the moisture content was below the FSP, the calculated MC was slightly greater than the value given by oven drying. The absolute error was within 0.8% near the open cross side, and was within 1.8% at another measurement point. Thus, we concluded that it was practicable to monitor the moisture content below the FSP according to the temperature and pressure inside the wood. Part of this study was presented at the 15th Annual Meeting of the Chugoku Shikoku Branch of the Japan Wood Research Society, Higashi-Hiroshima, Japan, September 2003  相似文献   

14.
The effects of high temperature steam pretreatment on the change in wood moisture content (MC) and characteristics of vacuum drying were investigated in this study. Poplar and manchurian walnut woods were pretreated with high temperature steam at 100°C and 140°C, prior to vacuum drying. A comparison of the characteristics of vacuum drying between steam pretreated wood and untreated wood was carried out. The results show that during steam pretreatment, the MC of wood decreased within a few hours. The reduction of MC varied with the temperature; the higher the temperature, the faster the MC dropped. During the vacuum drying stage, the rates of drying of pretreated samples were higher than those of untreated samples when MC was below the fiber saturation point. Furthermore, the total drying time of samples treated at a steam temperature of 140°C was lower than that of untreated samples. Therefore, a vacuum procedure after steam pretreatment can effectively shorten the drying time when drying wood.  相似文献   

15.
To investigate the effect of moisture content (MC) of members on the mechanical properties of timber joints, bending tests of precut joints and shear tests of dowel-type joints were carried out using timbers of Japanese cedar (Cryptomeria japonica D. Don) with three moisture conditions: green, kiln-dried with a MC target of 15%, and over-kiln-dried with a MC target of 5%. For the bending test, timbers were processed with a precut processing machine into “koshikake-ari” (a kind of dovetail joint) and “koshikake-kama” (a kind of mortise and tenon joint). A pair of members was jointed together without mechanical fasteners. Bolts (diameter = 12 mm) and nails (diameter = 2.45 mm) were used as dowels in the shear test. Bolted joints were constructed with one bolt and two metal side plates. Two nails and two metal side plates were used for the nailed joint. For precut joints, no clear effect of MC was recognized on maximum moment and initial stiffness. The maximum strength of mechanical joints assembled with kiln-dried wood was changed by the degree of drying. Stiffness of the joints assembled with kiln-dried specimens was larger than that of the joints assembled with green specimens.Part of this study was presented at the 7th International IUFRO Wood Drying Conference, Tsukuba, July 2001  相似文献   

16.
This paper investigates the basic hygroscopic properties and formaldehyde content (FC) of particleboards produced with wood biomass from fruit tree branches and evergreen hardwood shrubs as substitute raw materials for fir particles. One-layer laboratory particleboards with two distinct target densities (0.63 g/cm3 and 0.69 g/cm3) were produced using various mixtures of the above materials. Industrially produced wood particles were also used for comparison purposes. The results showed that the replacement of fir wood (FW) by evergreen hardwood material significantly upgraded board's quality in terms of thickness swelling (TS) and water absorption (WA) (except boards with density of 0.63 g/cm3) after immersion in water for 24 h and residual swelling (RS) after reconditioning. The contribution of branch-wood (BW) particles in the production of FW boards with density of 0.63 g/cm3 induced increase of TS, WA, and RS while for boards with density of 0.69 g/cm3 did not result to significant changes except for RS. In terms of FC, boards made of BW and evergreen hardwood showed significantly lower FC compared to those produced by FW and industrial particles.  相似文献   

17.
Woodpermeabilityhascloserrelationshipwiththemanyfiledsofwoodworkingandusing,woodfluidpermeabi1-ityisrelatedtoinprocessingsuchaswooddrying;fireretartenttreatmen;pup1ingandpaper;woodpreservation.Theflowoffluidinwoodincludestwokindsoftransportprocess.Oneispenetrationfromwoodoutsidetoinside,suchas'woodpreservationandfireretartenttreatment,anotherisdiffusionfromwoodinsidetooutside'suchaswooddrying,Infact,woodpermeabilityinfulenceddirectlythequalityofwoodwaterheattreatment,Forthisreasontheresearchin…  相似文献   

18.
Industries that trade in biomaterials require new and reliable methods for rapidly determining the moisture content (MC) of solid biomass. It is therefore important to develop and test alternative technologies that can fulfil the requirements of all parties in the wood fuel trading chain and provide real-time, accurate and representative MC measurements. The aim of this study was to evaluate the accuracy of a commercial high-frequency (HF) technology (originally developed to analyse potting soils) as a tool for determining the MC of comminuted solid biofuels. The measurements obtained using the HF technology were compared to measurements obtained using the gravimetric method from the European standard EN 14774-2:2009. The HF measurements were most accurate for feedstocks with homogeneous particle size distributions such as wood chips, sawdust and peat [root mean square error (RMSE) 3.1–4.5%]. Less accurate results were achieved for wood fuels with large particles and gaps between particles, such as crushed stem wood (RMSE 8.4%). If the system was adapted to improve its performance for heterogeneous particle size distributions, it should yield acceptably accurate MC estimates. Because of its potential in online analysis, it should therefore be regarded as a potential alternative to existing methods for MC measurement and merits further investigation.  相似文献   

19.
For our research, a new hybrid experimental-computational method is presented. We applied a least squares fitting  相似文献   

20.
This paper presents a new method to determine the moisture content of solid wood based on the principle of dual-energy X-ray absorptiometry. The study investigates the theoretical relationship between X-ray wavelength and mass attenuation coefficients of wood, water, and reference substance. In accordance with this relationship, a theoretically obtained equation is proposed to calculate the moisture content in wood. The proposed equation is compared to experimental results using small blocks of sugi wood, which showed that the change in mass attenuation coefficient of wood with X-ray tube voltage increased with increasing moisture content as expected from the theoretical equation. A regression equation for moisture content estimation was determined based on the experimental results, and the standard error of estimate in the 0–120 % dry-basis moisture content range using the regression equation was determined to be 21.9 % with the most appropriate pair of tube voltages, 15 and 40 kVp. The accuracy of the method will be improved by reducing the duration of X-ray radiography and by increasing the disparity between paired tube voltages. This method has the potential to determine moisture content of solid wood using X-ray without oven-drying or assuming oven-dry density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号