首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reports the pasting, gelatinisation and leaching behaviour of 11 cultivars of rice, the starch structural properties of which were determined in the preceding paper. The results show that the contents of leached amylose in the cooking water, as determined by both size exclusion–high performance liquid chromatography (SE–HPLC) and iodine colorimetry, were correlated positively with the texture of cooked rices, which possessed total amylose contents in the range 18·4–29·5%. The amount of leached amylose depended on the total amylose content of the rice. A similar correlation between the conventional «setback» value, measured using the Viscoamylograph, and the texture of cooked rice may be a result of the leached starch content. The gelatinisation temperatures of rice starches determined by differential scanning calorimetry (DSC) were not correlated with the texture of cooked rice, but were significantly related to the crystallinity of the rice starch. The longest chain population (92–98 DPn), which had been detected previously in the hard rice samples, was not found in their corresponding leached starches. This observation may well support the suggestion in the preceding paper that the longest amylopectin chains could interact with other components in rice, the resultant complexes being retained in the cooked grain and inhibiting softening.  相似文献   

2.
3.
Milled rice from 11 varieties, with amylose levels from 1.2 to 35.6% dry base, were collected to study the impacts of amylose content on starch retrogradation and textural properties of cooked rice during storage. The relationship between amylose content and different properties was determined using Pearson correlation. Starch retrogradation enthalpy (ΔHr) of cooked rice was determined by differential scanning calorimetry. ΔHr values were found to be positively correlated with amylose content (0.603 ≤ r ≤ 0.822, P < 0.01) during storage. Textural properties were determined by a Texture Analyser. The hardness of cooked rice showed a positive correlation with amylose content (0.706 ≤ r ≤ 0.866, P < 0.01) and a positive correlation with ΔHr of cooked rice (r = 0.650, P < 0.01) during storage. The adhesiveness showed a negative correlation with amylose content (−0.929 ≤ r ≤ −0.678, P < 0.01) and a negative correlation with ΔHr of cooked rice (r = −0.833, P < 0.01) during storage. Hardness showed a negative correlation with adhesiveness (r = −0.820, P < 0.01). These results indicated that amylose content has significant effects on starch retrogradation and textural properties of cooked rice. The cooked rice with high amylose content is easy to retrograde, the cooked rice with low amylose content retrograded slowly. Sarch retrogradation contributes to the changes of textural properties of cooked rice during storage.  相似文献   

4.
Storage retrogradation behavior and properties of sorghum, maize, and rice starches were compared to better understand the relationship of amylopectin fine structure to quality issues. Long-term changes in texture of starch gels were attributed to amylopectin retrogradation. In starch pastes aged 7 days at 4 °C, change in the storage modulus (ΔG) during heating (representing intermolecular associations) was highly and positively correlated (r = 0.93, p < 0.01) with the proportion of fraction I (FrI) long chains from debranched amylopectin. One sorghum cultivar, Mota Maradi, showed a dramatic increase in the storage modulus (G′) over the 7 day storage period that was related to its high proportion of FrI. Pastes/gels made from starches with normal (20–30%) amylose content and higher proportions of FrI long chains from debranched amylopectin tended to become firmer with more syneresis during extended storage. Both degree of polymerization measurements and previous models for amylopectin structure indicate that FrI represents long B chains of amylopectin. Cereal cultivars having amylopectin structures with lower proportion of long B chains were speculated to give improved quality products with lower rates of retrogradation and staling. This is particularly an issue in sorghum foods where products generally lack storage stability and tend to stale relatively quickly.  相似文献   

5.
Flours derived from rice varieties with different amylose content possess distinct physicochemical and molecular properties. The aim of this study was to determine optimal processing conditions for preparing rice flour-based foods with reduced starch digestibility. To do so, we evaluated the in vitro starch digestibility of rice flours with five varieties. Reducing the amount of water (from 10-fold to 4-fold of rice flour) used for cooking rice flour lowered its starch digestibility, and the magnitude of the decrease was positively correlated with amylose content. When retrogradation of cooked rice flour proceeded for 7 days, the digestibility of high-amylose rice flours declined rapidly in the first 3 days, whereas the digestibility of low-amylose rice flours declined continuously. Our analysis also demonstrated that the chain length distribution of starch molecules and the final and setback viscosity pasting properties were the most important parameters affecting the digestibility of rice flours. Based on our results, it appears possible to reduce rice starch digestibility by establishing optimum processing conditions for different varieties. We suggest a 7-fold addition of water and retrogradation for 1 day for high-amylose rice varieties and a 4-fold addition of water with 3 days of retrogradation for low-amylose rice.  相似文献   

6.
7.
Rice fragrance, cooked rice elongation and amylose content are some of the traits used in determining rice grain quality. 2-acetyl-1-pyrroline (2-AP) is the major compound that is responsible for fragrance in rice.This experiment was conducted with two indica rice cultivars: Meixiangzhan 2 and Xiangyaxiangzhan. Three temperature-controlled chambers: High (32 °C from 06:00 to 17:59 and 26 °C from 18:00 to 05:59), medium (27 °C from 06:00 to 17:59 and 21 °C from 18:00 to 05:59) and low (22 °C from 06:00 to 17:59 and 16 °C from 18:00 to 05:59) were used for the study. At the onset of heading, both cultivars were transferred to the three temperature-controlled chambers. Our results showed that in both cultivars, low temperature growth had the highest 2-AP content, while high temperature growth recorded the lowest 2-AP content. Principal component analysis showed remarkable differences in the metabolomes of rice grown in high, medium and low regimes. In the grains of both cultivars, we observed significant reduction in 2-AP content after 6 and 9 months of storage, however; 2-AP retention differed greatly in both cultivars. We also reported that low temperature growth increased cooked rice elongation percentage and the biosynthesis of amylose in rice. In conclusion, our findings will provide more information to breeders working on the improvement of rice grain quality.  相似文献   

8.
Solids content and amylose/amylopectin ratios were determined in different parts of tubers of White Rose, Red La Soda, Kennebec, Russet Burbank, Norchip and Lenape at harvest, after storage at 7 C for 2 and 4 mo, and after reconditioning at 20 C for 3 wk following each storage period. In all cultivars, solids content was greatest in stem-end, lower in bud-end and lowest in core tissue. The relationships for distribution of solids among the different parts of the tubers was not changed by storage treatments in any of the cultivars. Amylose/amylopectin ratios were similar in all parts of the tuber. Both the solids content and amylose/amylopectin ratio were changed by storage, but not uniformly in all cultivars.  相似文献   

9.
The effects of different process conditions on the pasting behavior of the 14%, w/w suspensions of high amylose, waxy and normal maize starches at mixing speeds of 50, 160 and 250 rpm with the heating rates of 2.5, 5 and 10 °C/min were investigated. In addition, the impact of the starch mixture with an amylose-amylopectin ratio of 0–70% at 160 rpm and a heating rate of 5 °C/min on the pasting parameters was studied. According to the results, when stirring speed decreased from 250 rpm to 50 rpm, the peak viscosity dramatically increased. Furthermore, both heating and stirring rates significantly affected the pasting properties (p < 0.05). The amylose content of maize starch had a negative correlation with peak viscosity, trough viscosity, breakdown viscosity, final viscosity, and setback viscosity. Besides, syneresis values decreased as amylose content decreased from 70% to 0%. According to the kinetic modelling of pasting curves, starch coefficients were found to be higher than 1 for all starches, indicating that the penetration of water into starch granules increased granule swelling rate. The findings of the present study confirmed that both process conditions and amylose/amylopectin ratio can be optimized without necessity of starch modification to obtain the products with the desired quality.  相似文献   

10.
This work fractionated waxy and normal wheat starches into highly purified A- and B-type granule fractions, which were representative of native granule populations within parent native wheat starches, to accurately assess starch characteristics and properties of the two granule types. Wheat starch A- and B-type granules possessed different morphologies, granule specific surface area measurements, compositions, relative crystallinities, amylopectin branch chain distributions, and physical properties (swelling, gelatinization, and pasting behaviors). Within a genotype, total and apparent amylose contents were greater for A-type granules, while lipid-complexed amylose and phospholipid contents were greater for B-type granules. B-type (relative to A-type) granules within a given genotype possessed a greater abundance of short amylopectin branch chains (DPn < 13) and a lesser proportion of intermediate (DPn 13–33) and long (DPn > 33) branch chains, contributing to their lower relative crystallinities. Variation in amylose and phospholipid characteristics appeared to account for observed differences in swelling, gelatinization, and pasting properties between waxy and normal wheat starch fractions of a common granule type. However, starch granule swelling and gelatinization property differences between A- and B-type granules within a given genotype were most consistently explained by their differential amylopectin chain-length distributions.  相似文献   

11.
This study aimed at investigating the effects of amylose content (AC) of 0.12–19.00% w/w on dry basis, cooling rate (1, 3, 5, and 9 °C/min), and aging time (24, 48, and 72 h) on structure, physical properties and sensory attributes of rice starch-based puffed products. They had an influence upon the crystalline type, and the relative crystallinity (RC). The thermal and physical properties of starch gels were also determined. Amorphism was found for starch gels with 0.12% AC. The polymorphisms (B and V) and differential scanning calorimetric endotherms were found for those with AC ≥4.00%. The RC, retrogradation enthalpy (ΔHr) and gel hardness increased with AC and aging time. The cooling rate did not affect RC, but increased ΔHr and gel hardness. The higher AC and aging time resulted in higher hardness, fracturability, crispiness and bulk density, but lower expansion ratio and less oiliness of the puffed products. The hardness, fracturability, crispiness and bulk density of puffed products were well correlated with the RC of starch gel.  相似文献   

12.
Summary Small amounts of potato tuber and leaf tissues are extracted in perchloric acid. After staining with I2-KI solution absorbancies at 618 and 550 nm are measured. The amylose/amylopectin ratio can be estimated from the ratio of the absorbancies by using a formula or a graph in which the specific absorptions of the two compounds are introduced. Weighing of samples is not required. The method can be used for the estimation of the starch composition of minitubers and is especially suitable for the detection of mutants with an altered starch composition.  相似文献   

13.
Preharvest sprouting (PHS) is one of the most serious defects that impacts rice production and grain quality. Knowledge about the effects of PHS on the eating and cooking quality (ECQ) of milled rice is limited. Here, we selected four japonica rice varieties to study the influences of PHS on grain quality. The results showed that PHS strongly led to poor grain appearance and the development of small starch granules whose surfaces were eroded. Analysis of starch fine structure revealed that PHS resulted in amylose (AM) degradation; in particular, PHS caused a decrease in the content of long AM chains. Moreover, PHS led to a decrease in the content of short amylopectin (AP) chains in the varieties Yandao 815 (YD815), Wuyugeng 27 (WY27) and Yangeng 13 (YG13), while the variety Sidao 785 (SD785) displayed the opposite trend. We propose that the main reasons for the decrease in starch crystallinity and the pasting profiles of the germinated rice were due to both the tendency of the AM content to decrease and the degree of this decrease in the content of the different AM chains along with changes in AP and other major components. All these changes caused by PHS led to a decrease in both ECQ and palatability of milled rice.  相似文献   

14.
15.
16.
17.
Gluten- and additive-free rice bread is suitable for consumption by individuals who are sensitive to gluten and prefer to avoid additives. Here, we prepared 100% rice bread, which is a gluten-free rice bread prepared in the absence of additives, using 19 rice flour samples containing amylose contents ranging from 9.6 to 22.3%. The amylose content was positively correlated with the specific volume of the 100% rice bread, whereas no correlation was observed between the protein content and the specific volume. The amylose content was also positively correlated with the specific volume of gluten-free rice bread prepared following protease treatment of the dough. The dough of 100% rice bread prepared from rice flour containing higher amylose contents was better stabilized during leavening than that prepared from rice flour containing a lower amylose content. It was therefore apparent that amylose plays an important role in the preparation of 100% rice bread with a high loaf volume through stabilization of the dough.  相似文献   

18.
《Field Crops Research》2004,87(1):13-21
The potential of near-infrared reflectance spectroscopy (NIRS) for simultaneous analysis of grain weight (mg), brown rice weight (mg) and milled rice amylose content (AC, %) in single rice grains was studied. Calibration equations were developed using 474 single grain samples, scanned as both rice grain and brown rice. An independent set containing 90 F2 generation grains was used to validate the equations. In general, equations developed using the first derivative resulted in superior calibration and validation statistics compared with the second derivative and those developed using brown rice were superior to those developed from the rice grain. Fitting equations were developed and monitored with an external validation set. The standard error of prediction (corrected for bias) SEP(C) for AC, brown rice weight and rice grain weight for equations developed using brown rice were 2.82, 1.09 and 1.30, with corresponding coefficient of determinations (r2) of 0.85, 0.71 and 0.67, and SEP(C)/S.D. of 0.39, 0.57 and 0.59, respectively. It was demonstrated that NIRS provides a convenient way to screen single intact grains. This will be advantageous in early generation selection in rice breeding programs.  相似文献   

19.
20.
Parboiling, a hydrothermal treatment of paddy or brown rice, impacts the texture and nutritional characteristics of cooked rice. We investigated the impact of parboiling conditions on the extractability and molecular weight (MW) distribution of proteins in brown rice. Brown rice was parboiled using different soaking and steaming conditions. The extractability and MW distribution of proteins extracted with sodium phosphate buffer (50 mmol/L; pH 6.8) containing (i) 2.0% sodium dodecyl sulfate (SDS), (ii) 2.0% SDS/1.0% dithiothreitol (DTT)/6.0 mol/L urea, (iii) 2.0% SDS/1.0% DTT, and (iv) 2.0% SDS/6.0 mol/L urea was examined by size exclusion-high performance liquid chromatography. Depending on the parboiling conditions, protein extractabilities in media (i), (ii), (iii), and (iv) ranged from 14 to 25%, 83 to 100%, 40 to 82%, and 19 to 37%, respectively. Unlike soaking conditions, steaming conditions had pronounced effects on the level of extractable protein. In general, more severe steaming conditions caused greater reductions in protein extractability, indicating a denser protein network. Apparent MW profiles revealed that especially glutelins polymerize upon severe steaming. Albumins, globulins and prolamins either polymerize through disulfide bonds and/or interact with one another through hydrogen bonds or hydrophobic interactions to form a separate protein network or become incorporated in the glutelin network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号