首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An intensive 42-day growth trial conducted in ourdoor tanks with Penaeus vannamei (stocking weight of 5.3g, density of 30/m2) indicated that there was a significant interaction between salinity and protein level of the feed. In 46 ppt water, shrimp fed feed containing 45% protein grew faster (2.98%/day) than shrimp fed 35 and 25% protein rations (2.84 and 2.73%/day, respectively). At 12 ppt, growth of shrimp fed 35% feed was faster (3.23%/day) than growth of shrimp fed 25% protein feed (3.07%/day). Shrimp fed the 45% protein feed did not grow faster 3.14%/day) than shrimp fed 35 an 25% protein feeds. At each protein level, growth at 12 ppt was greater than at 46ppt. Survival was not affeted by either salinity or feed protein level and averaged 86%. Results indicate that nutritional requirements vary with culture salinity and suggest that use of higher protein feeds under hypersaline culture conditions may produce higher yields.  相似文献   

2.
A 8‐week feeding experiment was conducted to evaluate the effect of different dietary protein and lipid levels on growth and energy productive value of juvenile Litopenaeus vannamei, at 30 and 2 ppt, respectively. Nine practical diets were formulated to contain three protein levels (380, 410 and 440 g kg?1) and three lipid levels (60, 80 and 100 g kg?1). Each diet was randomly fed to triplicate groups of 30 shrimps per tank (260 L). The effects of salinity and an interaction between dietary protein level and lipid level on growth and energy productive value of shrimp were observed under the experimental conditions of this study. At 30 ppt seawater, shrimp fed with 440 g kg?1protein diets had significantly higher weight gain (WG) than those fed with 380 g kg?1 protein diets at the same dietary lipid level, and the 60 g kg?1 lipid group showed higher growth than 80 g kg?1and 100 g kg?1 lipid groups at the same dietary protein level. At 2 ppt seawater, the growth of shrimp was little affected by dietary protein treatments when shrimp fed the 80 and 100 g kg?1 lipid, shrimp fed the 80 g kg?1 lipid diets had only slightly higher growth than that fed 60and 100 g kg?1 lipid diets when fed 380 and 410 g kg?1 dietary protein diets. A significant effect of salinity on growth of shrimp was detected with the growth responses at 30 ppt > 2ppt (P < 0.05). Final body lipid content, body protein content and energy productive value of shrimp was significantly higher in animals exposed to 30 ppt than in shrimp held at 2 ppt.  相似文献   

3.
The present study assessed the effects of different types of feeds and salinity levels on water quality, growth performance, survival rate and body composition of the Pacific white shrimp, Litopenaeus vannamei, juveniles in a biofloc system. Shrimp juveniles (2.56 ± 0.33 g) were cultured for 35 days in 300 L fibreglass tanks (water volume of 180 L) with a density of 1 g/L in six treatments. Three sources of feed (100% formulated feed, mixture of 66.6% formulated diet and 33.3% wet biofloc, and 100% wet biofloc) and two levels of salinity (10 and 32 ppt) were considered in two control groups and four biofloc treatments. Water quality parameters in the biofloc treatments were significantly better than control groups (p < .05). The highest increase in growth performance and survival rate were obtained in salinity of 32 ppt and mixed feed sources. Analysing the proximate composition of body shrimp indicates an increase in lipid and ash levels in biofloc treatments, which was more evident in the salinity of 32 ppt. In addition, the proximate analysis of shrimp body showed significant differences between biofloc treatments and control groups (p < .05). The highest FCR was found in the treatment with salinity level of 10 ppt and fed only with floc. Overall, it was found that the artificial diet supplemented with biofloc at the salinity of 32 showed better performance in the juvenile stage of Pacific white shrimp.  相似文献   

4.
Two 12‐wk rearing experiments were conducted to examine the effect of rearing salinities of 10–35 ppt on the growth of 3‐ and 170‐g‐size tiger puffer, Takifugu rubripes. Fish were reared in a closed recirculation system without introducing fresh culture water at 23 C and were fed commercial pellet diet for tiger puffer twice or three times daily to apparent satiation each, almost everyday. Growth of 3‐g‐size fish seemed to increase with decreasing salinity; however, there were no significant differences in the specific growth rate and weight gain among treatments because of differences in initial body weight. Final body weight and length of fish reared at 10 ppt were significantly higher than those for fish reared at 30 ppt although initial sizes were similar. Differences were not found for the feed efficiency (FE) and daily feed consumption. Apparent relationships were not observed between salinity and blood characteristics or proximate compositions of muscle of the cultured fish. Differing from smaller fish, growth of 170‐g‐size fish tended to decrease with decreasing salinity from 30 to 10 ppt and with increasing salinity from 30 to 35 ppt. Similar trends for FE were observed.  相似文献   

5.
Penaeus semisulcatus (bear shrimp) was used for biological and culture studies. A peak of reproductive periodicity was shown in the months of May, June and July. Increase in body weight and in gonad weight coincided with the increase in sea water temperature. This suggested that sexual maturation might be a direct response to increased sea water temperature. Fecundity of mature female shrimp was estimated as 415,000 to 479,000 ova. In most cases, half-spent spawnings led to the production of poor eggs, characterized by irregular cytoplasmic formation and final autolysis. The embryonic and larval development of P. semisulcatus proceeded satisfactorily in a slightly alkaline medium (pH range from 7.5–8.5), and in water of salinity ranging from 28 to 35 ppt for egg and nauplius stages, and thereafter 25–35 ppt for zoea and mysis stages. The shrimps exhibited faster increase in body length than body weight in early growth. Later, after the shrimps had reached a body length of about 7.0 cm, the growth rate of body weight increased more markedly than body length. The rate of daily increase in weight was 1.01% in 7.0 cm shrimp. The feed efficiency of the formulated shrimp pellets was found to be 31.4%. During the nutritional study of P. semisulcatus, it was found that the combination of high dietary protein (about 40%) and low dietary lipid produced best growth and survival of bear shrimp. High increase of biomass of the shrimp fed with clam meat and high quality fish meal demonstrated the favorable response of shrimp to these diets. The use of cages for culturing bear shrimp was found to be practicable, but not efficient.  相似文献   

6.
Effects of dietary supplementation of β-glucans and nucleotides on growth, survival and immune responses of the Pacific white shrimp (Litopenaeus vannamei) at a low salinity (5 ppt) were evaluated during a 30 d feeding trial. Final mean weight of shrimp fed nucleotides at 0.5%?was highest and significantly different from those fed the basal diet or diets supplemented with β-glucans. Survival was significantly higher for shrimp fed the diet with 0.2%?β-glucans compared to all other diets and was lowest for shrimp fed the basal diet. Shrimp fed diets containing β-glucans and nucleotides had generally better immune responses than shrimp fed the basal diet with higher total hemocyte count (THC) recorded for shrimp fed 0.2%?β-glucans followed by those fed 0.2%?nucleotides. Shrimp fed diets with 0.2%?and 0.5%?nucleotides and 0.2%?β-glucans had significantly higher respiratory burst values than shrimp fed the basal diet. These results indicated that dietary supplementation of either nucleotides or β-glucans has beneficial effects in improving shrimp performance when cultured at low salinity.  相似文献   

7.
ABSTRACT

Litopenaeus vannamei postlarvae were exposed to 0, 6, 13, and 19 mg/L total ammonia nitrogen (TAN) treatments. After 45 days, shrimp weight and length were lowest under TAN concentrations of 13 and 19 mg/L (P ≤ 0.05). Maximum weight gain was observed in control and 6 mg/L treatments. Mortality was highest (80.55 ± 4.80%) under 19 mg/L reared in 35 ppt salinity. Average intermolt periods of PLs exposed to 0, 6, 13, and 19 mg/L TAN were 11.5 ± 0.7, 10.8 ± 1.3, 9.4 ± 1.0, and 8.7 ± 0.6 days under 35 ppt and 11.1 ± 0.5, 10.7 ± 0.6, 10.1 ± 0.5, and 9.5 ± 0.2 days under 45 ppt salinity. Although TAN increased postlarvae molting frequency, its negative effects on the shrimp growth and survival of PLs was directly linked to its concentration and exposure duration. Higher salinity reduces the effects of ammonia and increases the survival.  相似文献   

8.
A feeding trial was carried out to determine the effects of bioflocs on dietary protein requirement in juvenile whiteleg shrimp, Litopenaeus vannamei. Four bioflocs treatments (BFT) and one control group were managed: BFT fed diets 25% of crude protein (CP) (BFT‐25%), 30% CP (BFT‐30%), 35% CP (BFT‐35%) and 40% CP (BFT‐40%), and clear water control without bioflocs fed with 40% CP (CW‐40%). Triplicate groups of shrimp (initial body weight, 1.3 g) were fed one of the test diets at a ratio of 7% body weight daily for 8 weeks. At the end of the feeding trial, significantly (P < 0.05) higher weight gain and specific growth rate were obtained in shrimp fed BFT‐35% and BFT‐40% compared to BFT‐25% and BFT‐30%. Shrimp fed BFT‐35% exhibited the lowest feed conversion ratio. Significantly higher muscle nucleic acid indices were also recorded such as DNA content in BFT‐30%, RNA content in BFT‐35% and RNA/DNA ratio than that of shrimp fed control. Total protein level in the haemolymph of shrimp fed BFT‐40% was significantly higher than those of shrimp fed BFT‐25% and BFT‐30%. Therefore, the present results demonstrated that, when L. vannamei juveniles were reared in bioflocs‐based tanks, dietary protein level could be reduced from 40% to 35% without any adverse effect on shrimp growth performance, body composition and haemolymph characteristics. [Correction added on 20 May 2015, after first online publication: sentence modified to clarify the reduction in dietary protein level.].  相似文献   

9.
A 10‐week growth trial was run to evaluate effects of myo‐inositol (MI) on growth performance, haematological parameters, antioxidative capacity and salinity stress tolerance of Litopenaeus vannamei. Six practical diets supplemented with graded levels of MI (designated as MI0, MI600, MI1200, MI2400, MI 3600 and MI4800 for 448.8, 974.2, 1568.0, 2810.6, 3835.5 and 4893.6 mg/kg diet, respectively) were fed to six replicate groups of L. vannamei (mean initial body weight 0.63 ± 0.00 g). The results showed that significant increment of growth performance was observed in shrimp fed MI600 diet than those fed MI1200 diet. Lipid concentration in whole body of the shrimp fed MI600 diet was significantly increased. Shrimp fed MI0 diet had lower total protein (TP) as compared to shrimp fed the MI‐supplemented diets (except MI4800 diet). In general, lower activities of antioxidant enzymes and higher malondialdehyde (MDA) content in haemolymph and hepatopancreas were recorded in shrimp fed MI0 diet, compared to those fed the MI‐supplemented diets. Reduced survival after 7‐h salinity stress was present in shrimp fed MI0 diet as compared to those fed MI4800 diet. Dietary MI requirement for glutathione peroxidase activity of L. vannamei was 2705 mg/kg diet.  相似文献   

10.
The effect of low salinity on survival and growth of the Pacific white shrimp Litopenaeus vannamei was examined in the laboratory due to the interest of raising shrimp inland at low salinities. In three separate experiments, individual L. vannamei postlarvae (∼ 0.1 g) were cultured at salinities of either 0.5, 1, 1.5, 2, or 3 ppt ( N = 5 or 10/treatment) for 18 to 40 d at 30 C in individual 360-mL containers. In each experiment controls of 0 and 30 ppt were run. There was no postlarval survival at salinities < 2 ppt. Survival was significantly different ( P < 0.01) at 2 ppt (20%) compared to 30 ppt (80%). Growth was also significantly different ( P < 0.01) at 2 and 3 ppt compared to 30 ppt (416%, 475%, and 670%, respectively). A fourth experiment compared juveniles (∼ 8 g) and postlarvae (∼ 0.05 and 0.35 g). Shrimp were cultured at salinities of 0, 2, 4, and 30 ppt for 40 d at 25 C, in individual 360-mL and 6-L containers ( N = 7/treatment). There was no postlarval survival at < 2 ppt. Postlarval survival at 4 ppt (86%) was not significantly different (P > 0.05) from 30 ppt (100%). Juveniles exhibited better survival at lower salinities (100% at 2 ppt) than 0.05 and 0.35 g postlarvae (29% and 14% respectively, at 2 ppt). The effects of salinity on growth varied with sizdage. Final growth of 0.05 g postlarvae at 2 ppt (693%) was significantly less ( P < 0.01) than at 4 ppt (1085%) and 30 ppt (1064%). Growth of 0.35 g postlarvae was significantly less ( P < 0.01) for 4 ppt (175%) than for 30 ppt (264%). There was no growth data for juveniles (8 g). It appears from these experiments that the culture of L. vannamei poses risks when performed in salinities less than 2 ppt.  相似文献   

11.
A protein‐rich product (PP) with 46% protein and less than 1% fibre was recovered from brewery's spent grain. This study aimed to investigate the effects of replacing dietary fishmeal with PP on the growth, feed utilization efficiency and nutritional composition of Pacific white shrimp, Litopenaeus vannamei. The control diet (PP0, containing 35% fishmeal) was compared with four isonitrogenous (44% crude protein), isolipidic (10% crude fat) and isocaloric (20 kJ/g) test diets, PP10, PP30, PP50 and PP70, which were formulated using PP protein to replace 10%, 30%, 50% and 70% of fishmeal protein. Sextuplicate groups of shrimp (averaging 1.10 g) were fed each of the five diets for 8 weeks. The results showed that up to 50% of fishmeal replaced with PP did not negatively affect the shrimp survival, growth performance, feed utilization efficiency, or the protein content and amino acid profile of shrimp. However, replacing 70% of fishmeal protein with PP protein negatively affected the percent weight gain and specific growth rate of shrimp, although the shrimp survival rate and feed conversion ratio were not affected.  相似文献   

12.
Failing to initiate first feeding during the transition from endogenous nutrition to exogenous feeding will lead to starvation of fish larvae. However, little is known about the mechanism of first feeding selection of fish. Golden mandarin fish larvae (3 d after hatch, 2.05 ± 0.03 mg) were fed with four different foods for 7 d, including the following: M – Megalobrama amblycephala (prey fish larvae as natural food); S – surimi of M. amblycephala; A – Artemia (zooplankton); and MA –mixed M. amblycephala with Artemia (mixed food). Larvae fed with the mixed food achieved an appropriate balance between high survival and good growth through elevating the expression of growth genes (GH, IGF‐I, and IGF‐II) and fatty acid synthesis genes (FAD and ELO). Growth performance of fish fed with MA reared at different salinities (0, 5, and 10 ppt) was examined. The salinity of 5 ppt produced the best growth performance of the three salinity levels tested. Fish larvae adapted to high‐ or low‐salinity environments through increasing the expression of lipolysis genes (HSL, LPL, and HL). Therefore, both food type and salinity affect the growth, survival, and lipometabolism of golden mandarin fish larvae during initial feeding stage, and mixed food and 5 ppt salinity improved its survival and growth.  相似文献   

13.
Cobia Rachycentron canadum juveniles (119.7 mm TL, weight 8.5 g) were reared for 10 wk at three salinity levels: 5 ppt, 15 ppt. and 30 ppt. Growth and survival were determined through biweekly sampling. Blood samples obtained at termination of the study were analyzed to determine hematocrit, blood osmolality, and total protein. Results indicated that the overall growth of fish was significantly affected by salinity. Mean (± SE) total length (TL) and weight of fish reared at a salinity of 30 ppt were 201.7 ± 2.6 mm and 47.6 ± 1.9 g, respectively, followed by fish reared at 15 ppt (182.2 ± 1.7 mm, 34.1 ± 1.6 g). and 5 ppt (168.3 ± 5.8 mm TL, 28.3 ± 2.3 g). Differences in specific growth rates among treatments for the 10-wk period were also significant. No differences were detected in mean survival among fish reared at salinities of 5, 15, and 30 ppt (84, 94, and 94%, respectively). However, fish reared at salinity 5 ppt appeared to be in poor health as skin lesions, fin erosion, and discoloration were evident. Analysis of blood revealed that, while no differences existed among treatments with respect to plasma total protein, fish reared at a salinity of 5 ppt exhibited significantly reduced hematocrit (25% vs. > 30%) and plasma osmolality values (318 vs. > 353 mmolkg) relative to fish reared at higher salinities. Cobia can tolerate exposure to low salinity environments for short periods of time without mortality; however, moderate to high salinities are required for sustained growth and health of this species.  相似文献   

14.
Three isonitrogenous diets containing 60 g kg–1, 90 g kg–1 or 120 g kg–1 lipid were formulated and fed to the Litopenaeus vannamei (2.00 ± 0.08 g) under two salinities (25 or 3 psu) in triplicate for 8 weeks. Shrimp fed 90 g kg–1 lipid had higher weight gain and specific growth rate than shrimp fed the other two diets regardless of salinity, and the hepatosomatic index increased with increasing dietary lipid at both salinities. The shrimp at 3 psu had significantly lower survival and ash content, higher condition factor, weight gain and specific growth rate than the shrimp at 25 psu. Increasing dietary lipid level induced the accumulation of serum MDA regardless of salinity, and at 3 psu, it reduced the serum GOT and GPT activities and the mRNA expression of TNF‐α in intestine and gill of L. vannamei. The hepatopancreatic triacylglycerol lipase (TGL) and CPT‐1 mRNA expression showed the highest value in shrimp fed 90 g kg–1 lipid diet at 3 psu. This study indicates that 120 g kg–1 dietary lipid may negatively affect the growth and induce oxidative damage in shrimp, but can improve immune defence at low salinity; 60 g kg–1 dietary lipid cannot afford the growth and either has no positive impact on the immunology for L. vannamei at 3 psu.  相似文献   

15.
The effects of salinity on the growth and energy budget of juvenile cobia, Rachycentron canadum, were evaluated. Triplicate tanks with ten fish per tank (initial weight 17.58 ± 0.26 g/fish, mean ± SD) reared at salinities of 5, 10, 15, 20, 25, 30, and 35 ppt were fed with fresh squid to satiety for 15 d. Results indicated that there were no significant differences in daily ration level in wet weight (RLw), dry weight (RLd), and energy (RLe) of the fish. There were also no significant variations in daily fecal production (fe) and apparent digestibility coefficient of energy (ADCe) among salinity treatments. Specific growth rates (SGRs) in wet weight (SGRw), dry weight (SGRd), and energy (SGRe) showed domed curves relative to salinity. Quadratic regression analyses of SGRw, SGRd, and SGRe against salinity indicated that the optimal salinity for maximal growth of juvenile cobia was 29.9, 29.9, and 28.5 ppt, respectively. Similar to the trend of SGR, food conversion efficiency for juvenile cobia in wet weight (FCEw), dry weight (FCEd), and energy (FCEe) increased with the increases in salinity, maximized at 30 ppt, and then decreased when salinity reached 35 ppt.  相似文献   

16.
Hypersalinity culture of marine shrimp can lead to poor growth and feed efficiency. This study evaluated the effect of dietary supplementation of three oil sources (krill, fish and soybean) on the growth of Litopenaeus vannamei reared under high salinity. Shrimp of 2.79 ± 0.60 g were reared for 64 days under isosmotic (ISO, 23 ± 1.2 g/L) and hyperosmotic (HOS, 44 ± 2.0 g/L) conditions. Diets varied in their fatty acid composition: Control, 35 g/kg of the diet (as fed basis) soybean oil; Fish, 27 g/kg fish oil and 10 g/kg soybean oil; Krill, 48 g/kg krill oil and 4 g/kg soybean oil; Krill‐, 15 g/kg krill oil and 21 g/kg soybean oil; Krill+, 55 g/kg krill oil and 4 g/kg soybean oil. At harvest, Krill diet promoted the fastest shrimp growth (1.01 ± 0.01 g/week) and body weight (11.97 ± 2.01 g), regardless of water salinity. There were no significant differences in shrimp survival (93.4 ± 5.07%) and yield (554 ± 68.5 g/m2) among different diets. Shrimp fed Fish, Krill and Krill+ had higher concentrations of PUFA compared to those fed Control and Krill‐ diets.  相似文献   

17.

We evaluated whether bearing tetrodotoxin (TTX) affects salinity stress in the juvenile tiger puffer Takifugu rubripes. Juveniles of hatchery-reared non-toxic T. rubripes [body weight (BW): 1.7?±?0.2 g, n?=?120] were divided into six tanks and acclimatized to salinity (8.5 ppt) that is equivalent to blood osmolality. Fish in three tanks were fed non-toxic diet, and those in the other three tanks were fed a TTX-containing diet (356 ng/g diet) three times a day until satiation. In each diet treatment, salinity of one tank was kept at 8.5 ppt, and the other two tanks were adjusted to either 1.7 or 34.0 ppt, and fish were reared for another 33 days. Then, we compared survival, growth, TTX accumulation, plasma osmolality, plasma cortisol, and glucose levels among treatments. We detected TTX only in the fish in the TTX-diet groups. Survival was highest at 8.5 ppt (70%) and lowest at 1.7 ppt in the TTX-diet group (20%). The BW was greater at 8.5 ppt, and plasma osmolality was significantly higher at 34.0 ppt than at any other salinities. Plasma cortisol level was significantly higher but glucose level was lower at 1.7 ppt. Possessing TTX at a low salinity may be lethal to tiger puffer juveniles.

  相似文献   

18.
Abstract.— Tko experiments were conducted to determine the effects of salinity on growth and survival of mulloway Argyrosomus japonicus larvae and juveniles. First, 6-d-old larvae were stocked into different salinities (5, 12.5, 20, 27.5 and 35 ppt) for 14 d. Larvae grew at all salinities, but based on results for growth and survival, the optimum range of salinity for 6-d-old to 20-d-old larvae is 5–12.5 ppt. During this experiment larvae held in all experimental salinities were infested by a dinoflagellate ectoparasite, Amyloodinium sp. Degree of infestation was affected by salinity. There were very low infestation rates at 5 ppt (0.2 parasites/larva). Infestation increased with salinity to 20 ppt (33.1 parasites/larva), then declined with salinity to 35 ppt (1.5 parasites/larva). For the second experiment, juveniles (6.1 ± 0.1 g/fish) were stocked into different salinities (0.6, 5, 10, 20 and 35 ppt) for 28 d. Juveniles were removed from freshwater 3 d after transfer as they did not feed, several fish died and many fish had lost equilibrium. However, when transferred directly to 5 ppt. these stressed fish recovered and behaved normally. Trends in final mean weight and food conversion ratio of juvenile mulloway suggest that fish performed best at 5 ppt. Although salinity (5 to 35 ppt) had no significant ( P > 0.05) effect on growth, survival, or food conversion ratio of juveniles, statistical power of the experiment was low (0.22). Based on these results we recommend that mulloway larvae older than 6 d be cultured at 5 to 12.5 ppt. Optimum growth of juveniles may also be achieved at low salinities.  相似文献   

19.
Two growth trials were conducted to evaluate and confirm the efficacy of a porcine meal (PM) with high protein content (>90%) as an alternative feed ingredient in commercial‐type feed formulation for Pacific white shrimp, Litopenaeus vannamei. Six experimental diets were formulated for the two growth trials. The first five diets contained increasing levels (0, 1, 2, 4, and 6%) of PM as a replacement for soybean meal in a plant‐based diet with low inclusion level (6%) of fish meal (FM). The last experimental diet was produced utilizing 4.2% PM to completely replace FM. In Trial 1, shrimp (1.5 g initial mean weight, 20 shrimp/tank, n = 4) were offered test diets for 6 wk in a semirecirculation system. At the end of Trial 1, shrimp fed with the diet containing 6% PM exhibited significantly enhanced weight gain (WG), feed conversion ratio (FCR), and survival compared to those fed with the diet devoid of FM. As survival was poor across all treatments and different densities could mask growth results the trial was repeated. In Trial 2, shrimp (0.85 g, 15 shrimp/tank, n = 4) were offered diets for 6 wk. Dietary supplementation of PM at 6% significantly improved WG, FCR, and apparent net protein retention in contrast with the treatment devoid of FM, confirming the same trends in Trial 1. No significant difference was detected in protein, lipid, moisture, and mineral profiles of whole‐body shrimp as well as survival across all the treatments. Results of this study indicate that PM is a good high protein source in shrimp feeds, which can be included up to 6% in the low FM‐based diet without compromising the growth of shrimp.  相似文献   

20.
The effects of dietary protein (25%, 30%, 35%, 40% and 45%) on growth, survival, feed conversion ratio (FCR), protein efficiency ratio (PER) and body composition were investigated for four sizes (0.51, 45, 96 and 264 g) of Nile tilapia, Oreochromis niloticus L. In all four experiments, there was a progressive increase in growth with increasing dietary protein. In fry (0.51 g), significantly higher growth, survival and feed conversion were recorded for fish fed 40–45% rather than 25–35% protein diets. Similar trends for growth and FCR were also noted in 45 g fish. For larger (96 and 264 g) tilapia, significant differences in growth and FCR were found only between fish fed 25% and 30–45% protein diets. FCR and PER decreased with increasing weight of fish, and both were found to be negatively correlated with dietary protein level. Whole-body composition of the smallest fish was significantly influenced by dietary protein content. Percentage body protein of the fish fed 40–45% protein was higher than that of fish fed 25–35% protein diets, whereas lipid content decreased with increasing dietary protein level. In 45 g fish, both protein and lipid contents were higher in fish fed 25% and 30% protein diets than in those fed 35–45% protein diets. In larger tilapia, no significant influence of dietary protein level on body protein content was found. Percentage lipid decreased with increasing dietary protein level, and no definite trends in ash content were found. The results of these studies indicate that O. niloticus fry (0.51 g) should be reared on a practical diet containing 40% protein, and larger tilapia (96–264 g) on a diet containing 30% protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号