共查询到9条相似文献,搜索用时 0 毫秒
1.
M.A.R. BhuiyanM.K. Narimah H. Abdul RahimM.Z. Abdullah R. Wickneswari 《Field Crops Research》2011,121(2):232-239
Five transgressive variants (advanced breeding lines from BC2F5 and BC2F6 generation) were derived from a cross between the wild relative, O. rufipogon Griff. and O. sativa L. subsp. indica cv. MR219, a popular high yielding Malaysian rice cultivar. The aim of the study was to evaluate the pericarp colour of the grains along with yield potential and to validate quantitative trait loci (QTLs) for agronomic traits. The variants were screened against blast disease. Background marker analysis was also done for the promising variants. The field trials were carried out at a single location (due to containment purposes) over two seasons using randomized complete block design (RCBD) with three replications. A trait-based marker analysis was used to identify QTLs for validation in BC2F5 generation. Analysis of variance (ANOVA) showed that the seasonal factors influenced different agronomic traits. Variant G33 produced significantly (p < 0.05) higher yield (5.20 t/ha) than the control, MR219 (4.53 t/ha). Eighteen QTLs for different agronomic traits were identified in BC2F2 population in a previous study. Among them 14 QTLs were found in BC2F5 population of the present study. The yield of variant G33 was influenced by several QTLs viz. qGPL-1, qSPL-1-2, qSPL-8 and qYLD-4, which were introgressed from the donor parent revealed by background marker analysis using BC2F7 generation. Percentage (99%) of red pericarp grain of G33 and G34 in BC2F5 and BC2F6 generations indicated the stability of pericarp colour which was transferred from the wild relative. Variant G33 showed resistance against two pathotype of blast disease (Magnaporthe oryzae). Among the evaluated variants, G33 could be considered for inclusion in the cultivar development program for red rice with high yield potential and resistance to blast disease. This study demonstrated that the alleles from wild relative could improve the yield and yield related traits through allelic interaction, even though the phenotypic traits were inferior to the recurrent parent. 相似文献
2.
Cold tolerance at seedling stage of rice (Oryza sativa L.) is a favorable trait for the stable establishment in temperate and high-elevation areas. In the present study, 71 recombinant inbred lines (RIL) derived from the cross of Asominori (Japonica) and IR24 (Indica) were used to identify quantitative trait loci (QTL) affecting cold tolerance at seedling stage. The putative QTL was further confirmed using some chromosome segment substitution lines (CSSLs), in which IR24 was used as the donor parent and Asominori as the recurrent parent. The average seedling mortality was used as cold tolerance after cold treatment with 6 °C for 7 days and recovery culture with 25 °C for 4 days at three-leaf seedling stage. Three QTL affecting cold tolerance at seedling stage were detected on chromosomes 1, 5 and 6 with LOD scores ranging from 2.2 to 4.1 using composite interval mapping (CIM). Among them, qSCT-1 located in the region of XNpb87-2-C955 on chromosome 1 was a major QTL which explained 24.51% of total phenotypic variance and favorable allele came from japonica parent, Asominori. In addition, IR24 alleles at the other two loci (qSCT-5 and qSCT-6) increased cold tolerance. And these three QTL were confirmed by four lines from the IR24 CSSLs. Transferring favorable allele from japonica variety to indica background or pyramiding different QTL identified from indica is an effective way to improve cold tolerance of rice. 相似文献
3.
Reena Sellamuthu Gui Fu Liu Chandra Babu Ranganathan Rachid Serraj 《Field Crops Research》2011,124(1):46-58
Drought is a major constraint for rice production and yield stability in rainfed ecosystems, especially when it occurs during the reproductive stage. Combined genetic and physiological analysis of reproductive-growth traits and their effects on yield and yield components under drought stress is important for dissecting the biological bases of drought resistance and for rice yield improvement in water-limited environments. A subset of a doubled haploid (DH) line population of CT9993-5-10-1-M/IR62266-42-6-2 was evaluated for variation in plant water status, phenology, reproductive-growth traits, yield and yield components under reproductive-stage drought stress and irrigated (non-stress) conditions in the field. Since this DH line population was previously used in extensive quantitative trait loci (QTLs) mapping of various drought resistance component traits, we aimed at identifying QTLs for specific reproductive-growth and yield traits and also to validate the consensus QTLs identified earlier in these DH lines using meta-analysis. DH lines showed significant variation for plant water status, reproductive-growth traits, yield and yield components under drought stress. Total dry matter, number of panicles per plant, harvest index, panicle harvest index, panicle fertility, pollen fertility, spikelet fertility and hundred grain weight had significant positive correlations with grain yield under drought stress. A total of 46 QTLs were identified for the various traits under stress and non-stress conditions with phenotypic effect ranging from 9.5 to 35.6% in this study. QTLs for panicle exsertion, peduncle length and pollen fertility, identified for the first time in this study, could be useful in marker-assisted breeding (MAB) for drought resistance in rice. A total of 97 QTLs linked to plant growth, phenology, reproductive-growth traits, yield and its components under non-stress and drought stress, identified in this study as well as from earlier published information, were subjected to meta-analysis. Meta-analysis identified 23 MQTLs linked to plant phenology and production traits under stress conditions. Among them, four MQTLs viz., 1.3 for plant height, 3.1 for days to flowering, 8.1 for days to flowering or delay in flowering and 9.1 for days to flowering are true QTLs. Consensus QTLs for reproductive-growth traits and grain yield under drought stress have been identified on chromosomes 1 and 9 using meta-QTL analysis in these DH lines. These MQTLs associated with reproductive-growth, grain yield and its component traits under drought stress could be useful targets for drought resistance improvement in rice through MAB and/or map-based positional analysis of candidate genes. 相似文献
4.
Leina Zheng Wenwei Zhang Shijia Liu Liangming Chen Xi Liu Xingang Chen Jing Ma Weiwei Chen Zhigang Zhao Ling Jiang Jianmin Wan 《Journal of Cereal Science》2012
A backcross inbred line population derived from a cross between Koshihikari and Kasalath was used to dissect the genetic relationship among chalkiness, protein content, and paste viscosity properties in rice in three environments. A total of 11 traits (or parameters) were analyzed, including percentage of grains with chalkiness (PGWC), protein content (PC) and protein index (PI), and eight parameters from the viscosity profile. PGWC, PC and PI were significantly correlated with the paste viscosity parameters. We identified 39 QTLs in three environments; ten QTL clusters emerged. Eight QTLs were consistently detected across the three environments and further confirmed using a set of chromosome segment substitution lines (CSSLs) where Kasalath was used as the donor parent and Koshihikari as the recurrent parent. One and two major clusters on chromosome 6 corresponded to the Wx and Alk loci, respectively. The former was responsible for PGWC and most of the viscosity parameters, and the latter for PI and some viscosity parameters. Particularly, QTL qPI-6.1 was linked with both the Wx and Alk loci. The co-locations of QTLs for PGWC and viscosity parameters and the linkage of qPI-6.1 and qBDV-6 at the Wx locus could be largely responsible for the phenotypic correlations between these traits. 相似文献
5.
Genetic relationship between grain yield and the contents of protein and fat in a recombinant inbred population of rice 总被引:1,自引:0,他引:1
Yong-Hong Yu Gang Li Ye-Yang Fan Ke-Qin Zhang Jie Min Zhi-Wei Zhu Jie-Yun Zhuang 《Journal of Cereal Science》2009,50(1):121-125
To study the genetic relationship between grain yield and the nutrient contents in rice, 209 recombinant inbred lines derived from a cross between indica rice Xieqingzao B and Milyang 46 were used to determine quantitative trait loci (QTLs) affecting the yields and contents of the two major nutritional components in brown rice. Seven traits were analyzed, including brown rice recovery (BRR), protein content (PC), fat content (FC), grain yield (GYD), brown rice yield (BRYD), protein yield (PYD) and fat yield (FYD). The nutrient contents were significantly negatively correlated with BRR, GYD and BRYD, and the variations on nutrient yield were mainly ascribed to GYD. A total of 22 QTLs distributed on 10 regions of eight chromosomes were detected. Two QTL clusters were found on the short arm of chromosome 6 and the long arm of chromosome 10, respectively. The former was responsible for all the seven traits, and the latter for all the traits except BRR and FC. In both regions, the maternal alleles decreased nutrient contents, but they increased the yields of grain, brown rice, protein and fat. Implication of these results for the breeding of rice varieties with enhancing nutritional capacity is discussed. 相似文献
6.
Daisuke Fujita Rizza E. Santos Leodegario A. Ebron Mary J. Telebanco-Yanoria Hiroshi Kato Sohei Kobayashi Yusaku Uga Etsuko Araki Toshiyuki Takai Hiroshi Tsunematsu Tokio Imbe Gurdev S. Khush Darshan S. Brar Yoshimichi Fukuta Nobuya Kobayashi 《Field Crops Research》2009,114(2):244-254
A total of 334 introgression lines (INLs: BC3-derived lines) derived from crosses between a recurrent parent of Indica rice cultivar IR64 and 10 donor parents, including new plant type (NPT) lines IR65600-87-2-2-3, IR65598-112-2, IR65564-2-2-3, IR69093-41-2-3-2, IR69125-25-3-1-1, Hoshiaoba, IR66215-44-2-3, IR68522-10-2-2, IR71195-AC1, and IR66750-6-2-1, have been developed. These INLs with IR64 genetic background were characterized for eight agronomic traits: days to heading, culm length, leaf width, leaf length, panicle length, panicle number, 100-grain weight, and total spikelet number per panicle at the International Rice Research Institute from 2005 to 2007. To identify introgressed segments from the donor parents, genotypes of the 334 INLs were detected using more than 200 polymorphic simple sequence repeat markers. These segments detected on chromosomes 1, 2, 4, 5, and 6 were commonly introgressed across the INLs from more than four donor varieties. Based on the data of phenotype and genotype for the 334 INLs, associations between agronomic traits and introgressed chromosomal segments in the 334 INLs were investigated. A total of 54 regions for the eight traits were detected: seven regions for days to heading, eight regions for culm length, eight regions for leaf width, four regions for leaf length, six regions for panicle length, three regions for panicle number per plant, seven regions for 100-grain weight, and 11 regions for total spikelet number per panicle. Among them, the region on the long arm of chromosome 4 was associated with characteristics of the NPT such as long leaf, broad leaf, and high spikelet number. The developed 334 INLs with the IR64 genetic background will be useful materials for genetic analysis of agronomic traits. 相似文献
7.
J.E. Cairns O.S. Namuco R.Torres F.A. Simborio B. Courtois G.A. Aquino D.E. Johnson 《Field Crops Research》2009,113(3):207-217
Early vigour is an important characteristic for direct-seeded rice systems. The genetic control of early vigour was studied using a population of 129 backcross lines derived from a cross between Vandana, an improved indica, and Moroberekan, a traditional japonica. Screening was conducted under controlled conditions in greenhouse and field conditions, and indicators of early vigour, including shoot length, shoot biomass, leaf area, number of roots, root biomass, partitioning coefficients, and growth rates, were measured. Phenotypic correlations suggested that traits that were related and combined could be used to define early vigour. Broad-sense heritability ranged from moderate to high. Many regions were identified containing more than one QTL, suggesting that these traits were controlled by pleiotropic and/or closely linked QTLs. Many QTLs were specific to one environment but G × E interaction analysis showed that the main effects of the environment were large. Differences in temperature between experiments resulted in large differences in seedling age when expressed in thermal time. Different genes (QTLs) may be expected to control growth at different time intervals and thus may partly explain the limited agreement between experiments. However, several regions showed co-location of QTLs from more than one experiment. Comparisons with published studies revealed that these regions were previously identified in different genetic backgrounds and could potentially be used as introgression targets in a marker-assisted breeding program to improve germplasm for direct-seeded environments. 相似文献
8.
Keisuke Katsura Shuhei Maeda Iskandar Lubis Takeshi Horie Weixing Cao Tatsuhiko Shiraiwa 《Field Crops Research》2008
A number of field trials on rice productivity have demonstrated very high yield, but reported limited information on environmental factors. The objective of this study was to reveal the environmental factors associated with high rice productivity in the subtropical environment of Yunnan, China. We conducted cross-locational field experiments using widely different rice varieties in Yunnan and in temperate environments of Kyoto, Japan in 2002 and 2003. The average daily radiation throughout the growing season was greater at Yunnan (17.1 MJ m−2 day−1 average over 2 years) relative to Kyoto (13.2 MJ m−2 day−1). The average daily temperature throughout the growing season was 24.7 °C at Yunnan, and 23.8 °C at Kyoto. The highest yield (16.5 tonnes ha−1) was achieved by the F1 variety Liangyoupeijiu at Yunnan in 2003, and average yield of all varieties was 33% and 39% higher at Yunnan relative to Kyoto in 2002 and 2003, respectively. There was a close correlation between grain yield and aboveground biomass at maturity, while there was little variation in the harvest index among environments. Large biomass accumulation was mainly caused by intense incident radiation at Yunnan, as there was little difference in crop radiation use efficiency (RUE) between locations. Large leaf area index (LAI) was also suggested to be an important factor. Average nitrogen (N) accumulation over 2 years was 49% higher at Yunnan than at Kyoto, and also contributed to the large biomass accumulation at Yunnan. The treatments of varied N application for Takanari revealed that the ratio of N accumulated at maturity to the amount of fertilized N was significantly higher at Yunnan than at Kyoto, even though there was no great difference in soil fertility. The Takanari plot with high N application showed a N saturation in plant growth at Kyoto, which might be related to low radiation and relatively high temperatures during the mid-growth stage. These results indicate that the high potential yield of irrigated rice in Yunnan is achieved mainly by intense incident solar radiation, which caused the large biomass and the N accumulation. The low nighttime temperature during the mid-growth stage was also suggested to be an important factor for large biomass accumulation and high grain yield at Yunnan. 相似文献
9.
Morphological and physiological traits of roots and their relationships with shoot growth in “super” rice 总被引:3,自引:0,他引:3
Success in “super” rice breeding has been considered a great progress in rice production in China. This study aimed to test the hypothesis that an improved root system may contribute to better shoot growth and consequently to higher grain yield in “super” rice. Two “super” rice varieties Liangyoupeijiu (an indica hybrid) and Huaidao 9 (a japonica inbred) and two elite check varieties Yangdao 6 (an indica inbred) and Yangfujiang 8 (a japonica inbred) were field-grown at Yangzhou, China in 2006 and 2007. Root and shoot dry weight (DW) was significantly greater in “super” rice varieties than in check ones throughout the growth season in both years, so was the root length density. Root oxidation activity (ROA) and root zeatin (Z) zeatin riboside (ZR) content, in per plant basis, were significantly greater in “super” rice than check varieties before and at heading time. However, both ROA and root Z + ZR content, either in per plant basis or per unit root DW basis, were significantly lower in ‘super’ rice than in check varieties at the mid- and late grain filling stages. Grain yield of the two ‘super’ rice varieties, on average, was 10.2 t ha−1 in 2006 and 11.4 t ha−1 in 2007, and was 13% and 21% higher than that of check varieties, respectively. The high grain yield was mainly due to a larger sink size (total number of spikelets) as a result of a larger panicle. The percentage of filled grains of the two “super” rice varieties, on average, was 72.9% in 2006 and 79.0% in 2007, and was 19.4% and 12.9%, respectively, lower than that of the check varieties. The mean ROA and root Z + ZR content during the grain filling period significantly correlated with the percentage of filled grains. Collectively, the data suggest that an improved root and shoot growth, as showing a larger root and shoot biomass and greater root length density during the whole growing season and higher ROA and root Z + ZR content per plant at early and mid-growth stages, contributes to the large sink size and high grain yield in the “super” rice varieties. The data also suggest the yield of “super” rice varieties can be further increased by an increase in filled grains through enhancing root activity during grain filling. 相似文献