首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poor seed yield of soybean in Mediterranean-type environments may result from insufficient iron (Fe) uptake and poor biological nitrogen (N) fixation due to high bicarbonate and pH in soils. This study was conducted to evaluate the effects of N and Fe fertilization on growth and yield of double cropped soybean (cv. SA 88, MG III) in a Mediterranean-type environment in Turkey during 2003 and 2004. The soil of the experimental plots was a Vertisol with 176 g CaCO3 kg−1 and pH 7.7 and 17 g organic matter kg−1 soil. Soybean seeds were inoculated prior to planting with commercial peat inoculants. N fertilizer rates were 0, 40, 80, and 120 kg N ha−1 of which half was applied before planting and the other half at full blooming stage (R2). Fe fertilizer rates were 0, 200 and 400 g Fe EDTA (5.5% Fe and 2% EDTA) ha−1. It was sprayed as two equal portions at two trifoliate (V2) and at five trifoliate stages (V5). Plants were sampled at flower initiation (R1), at full pod (R4) and at full seed (R6) stages. Application of starter N increased biomass and leaf area index at R1 stage whereas Fe fertilization did not affect early growth parameters. N application continued to have a positive effect on growth parameters at later stages and on seed yield. Fe fertilization increased growth parameters at R4 and R6 stages, and final seed yield in both years. This study demonstrated an interactive effect of N and Fe fertilization on growth and yield of soybean in the soil having high bicarbonate and pH. There was a positive interaction between N and Fe at the N rates up to 80 kg N ha−1. However, further increase in N rate produced a negative interaction. Fertilization of soybean with 80 kg N ha−1 and 400 g Fe ha−1 resulted in the highest seed yield in both years. We concluded that application of starter and top dressed N in combination with two split FeEDTA fertilization can be beneficial to improve early growth and final yield of inoculated soybean in Mediterranean-type soils.  相似文献   

2.
Biological nitrogen fixation (BNF) as a result of the legumes–rhizobia symbioses is the main source of nitrogen in organic farming systems. Lucerne (Medicago sativa L.), used as green manure or as forage legume, is important on arable farms under dry site conditions. In a field experiment on organically managed agricultural fields, we examined the impacts of the utilisation system (harvested = forage production versus mulched = green manure) and the crop composition (pure lucerne crops versus lucerne–grass mixtures) on yield, biological nitrogen fixation (BNF), soil inorganic N content, N balance and water consumption of autumn-cultivated lucerne crops. The study was conducted at the University of Natural Resources and Applied Life Sciences, Vienna, in eastern Austria—a region characterized by pannonian site conditions (9.8 °C mean annual temperature, 545 mm average total precipitation) and stockless farming systems. Our results indicate that the utilisation system and the crop composition had no marked influence on above- and below-ground dry matter (DM) and N yield, soil inorganic N contents, BNF, or water use efficiency of lucerne. The level of symbiotically fixed N2 in harvested lucerne was 89–125 kg N ha−1 (27–33% Ndfa = nitrogen derived from atmosphere) in the first year and 161–175 kg N ha−1 (47–49% Ndfa) in the second year of the study. The high soil inorganic N supply in the first year increased the N uptake from soil by lucerne and led to a reduced BNF. Under the dry and unfavourable conditions in both study years, the nitrogen release from the legume mulch was retarded and BNF in mulched lucerne was not reduced. Assuming low gaseous N losses by mulching (15–30 kg N ha−1), the green manure system reached a positive N balance (+137 to +186 kg N ha−1) for the subsequent crops because abundant residues remained on the field.  相似文献   

3.
Retention and/or reincorporation of plant residues increases soil organic nitrogen (N) levels over the long-term is associated with increased crop yields. There is still uncertainty, however, about the interaction between crop residue (straw) retention and N fertilizer rates and sources. The objective of the study was to assess the influence of straw management (straw removed [SRem] and straw retained [SRet]), N fertilizer rate (0, 25, 50 and 75 kg N ha−1) and N source (urea and polymer-coated urea [called ESN]) under conventional tillage on seed yield, straw yield, total N uptake in seed + straw and N balance sheet. Field experiments with barley monoculture (1983-1996), and wheat/barley-canola-triticale-pea rotation (1997-2009) were conducted on two contrasting soil types (Gray Luvisol [Typic Haplocryalf] loam soil at Breton; Black Chernozem [Albic Argicryoll] silty clay loam at Ellerslie) in north-central Alberta, Canada. On the average, SRet produced greater seed yield (by 205-220 kg ha−1), straw yield (by 154-160 kg ha−1) and total N uptake in seed + straw (by 5.2 kg N ha−1) than SRem in almost all cases in both periods at Ellerslie, and only in the 1997-2009 period at Breton (by 102 kg seed ha−1, 196 kg straw ha−1 and by 3.7 kg N ha−1) for both N sources. There was generally a considerable increase in seed yield, straw yield and total N uptake in seed + straw from applied N up to 75 kg N ha−1 rate for both N sources at both sites and more so at Breton, but the response to applied N decreased with increasing N rate. The ESN was superior to urea in increasing seed yield (by 109 kg ha−1), straw yield (by 80 kg ha−1) and total N uptake in seed + straw (by 2.4 kg N ha−1) in the 1983-1996 period at Breton (mainly at the 25 and 50 kg N ha−1 rates). But, urea produced greater straw yield (by 95 kg ha−1) and total N uptake in seed + straw (by 3.3 kg N ha−1) than ESN in the 1983-1996 period at Ellerslie. The N balance sheets over the 1983-2009 study duration indicated large amounts of applied N unaccounted for (ranged from 740 to 1518 kg N ha−1 at Breton and from 696 to 1334 kg N ha−1 at Ellerslie), suggesting a great potential for N loss from the soil-plant system through denitrification and/or nitrate leaching, and from the soil mineral N pool by N immobilization. In conclusion, the findings suggest that long-term retention of crop residue may gradually improve soil productivity. The effectiveness of N source varied with soil type.  相似文献   

4.
Efficiency of fertilizer N is becoming increasingly important in modern agricultural production owing to increasing food requirement and growing concern about environments. However, there is almost no study regarding its long-term efficiency in wheat and maize cropping systems. Long-term (15 years) experiments involving wheat (Triticum aestivum L.) and maize (Zea mays L.) rotations at five field sites with various soil and climate characteristics in China were used to determine the nitrogen (N) efficiency, including the physiological efficiency, recovery efficiency and N mass balance of soil–plant systems in response to different fertilization treatments. The present study consisted of nine treatments: unfertilized, N, phosphorus, potassium, straw and manure or their combinations. The contribution of N fertilizers to wheat yield was higher than to maize and suggested that wheat could be given priority over maize when determining N application rates. Uptake of 1 kg N produced 35.6 kg of wheat grain and 39.5 kg of maize grain. The deficit of N in soils without applied N ranged from 40 to 103 kg N ha−1 year−1, while N surpluses in soils with applied N fertilizers ranged from 35 to 350 kg N ha−1 year−1. The apparent accumulated N recovery efficiency (NREac) varied widely from 4% to 90%: unbalanced fertilization and other soil limiting factors (such as aluminium toxicity) were associated with low NREac. In the treatments of combination of N, phosphorus and potassium with normal application rates, the average of NREac in four out of five sites reached 80%, which suggested that best management of N fertilizers could recover most of N fertilizers applied to soils. The results will be helpful to understand the long-term fate of N fertilizers and to optimize the N fertilization for agricultural practices and environment protection.  相似文献   

5.
Heterogeneous crop stands require locally adapted nitrogen fertilizer application based on rapid and precise measurements of the local crop nitrogen status. In the present study, we validated a promising technique for the latter, namely a tractor-mounted field spectrometer with an oblique quadrilateral-view measuring optic, measuring solar radiation and canopy reflectance in four directions simultaneously. Dry matter yield (kg ha−1), total N content (g N g−1 dry matter) and total aerial N (aboveground N-uptake) (kg N ha−1) in maize were determined in 10 m2 calibration areas in 60 plots differing in their N treatment and seeding density three times in each of three years under field conditions. Results show that the sensor used can reliably determine total aerial N ranging from as little as 5 kg N to 150 kg N ha−1 with R2-values ≥0.81 in 2002 and 2004, and with R2-values ranging from ≥0.57 to 0.84 in 2003. Dry matter yields from as low as 0.3–4.2 t ha−1 could be determined with R2-values ranging from 0.67 to 0.91 in 2002 to 2004. The capacity to ascertain DM yield spectrally was drastically reduced in the higher yield range (>6 t ha−1) probably due to decreased sensitivity of the spectral signal. N-contents were generally not well determined. Taken together there is a good potential to determine reliably differences in total aerial N or DM yield from the five leaf stages unfolded to the five node stage where typically nitrogen applications are carried out.  相似文献   

6.
Safflower (Carthamus tinctorius L.) is a deep-rooted crop which can tolerate water stress and can be grown in rotation with other crop species. Nitrogen is one of the most important nutrients for the growth and development of safflower; however, the effect of N level on dry matter, accumulation, partitioning, and retranslocation has not been extensively studied. A 2-year field study was therefore conducted with the objective to determine the effect of N fertilization on crop phenology, dry matter, N accumulation, partitioning and retranslocation of safflower grown under rain-fed conditions. Three rates of N were used (0, 100, and 200 kg N ha−1) and two hybrids (CW9048 and CW9050) of safflower were selected. The experiment was conducted during the 2003–2004 (2004) and 2004–2005 (2005) growing seasons on a calcareous sandy loam (Entisols, Orthents, Typic Xerorthent) at the experimental farm of the Aristotle University of Thessaloniki, in Northern Greece. During 2004 spring was quite mild with significant rainfall whereas during 2005 spring was hotter with lower rainfall. Our study found that N fertilization increased biomass at anthesis by an average of 24% and at maturity by an average of 25% compared with the control. Total above ground biomass increased after anthesis in both years, in both hybrids and for all fertilizer treatments. N fertilization increased the dry matter partitioning in leaves + stems and heads at anthesis and also in leaves + stems, seeds, and head vegetative components at maturity. Dry matter translocation was not affected by N fertilization but lower values were found during the second year. N content was affected by the fertilization treatments and increased in those plants treated with fertilizer compared with the controls. In addition, N fertilization increased N retranslocation from the vegetative parts of the plant to the seed, but it did not affect N gain. During the second year, which was drier, there were significant N losses but also greater N translocation efficiency and higher contribution of pre-anthesis N to seed. Seed yield was correlated with the dry matter and N translocation indices, and was higher for the fertilized plants, compared with the control. The present study indicates that N fertilization promoted the growth of safflower and increased the dry matter yield, N accumulation, translocation and seed yield under rain-fed conditions.  相似文献   

7.
Widening the range of organic nutrient resources, especially N sources, is a major challenge for improving crop productivity of smallholder farms in southern Africa. A study was conducted over three seasons to evaluate different species of indigenous legumes for their biomass productivity, N2-fixation and residual effects on subsequent maize crops on nutrient-depleted fields belonging to smallholder farmers under contrasting rainfall zones in Zimbabwe. Under high rainfall (>800 mm yr−1), 1-year indigenous legume fallows (indifallows), comprising mostly species of the genera Crotalaria, Indigofera and Tephrosia, yielded 8.6 t ha−1 of biomass within 6 months, out-performing sunnhemp (Crotalaria juncea L.) green manure and grass (natural) fallows by 41% and 74%, respectively. A similar trend was observed under medium (650–750 mm yr−1) rainfall in Chinyika, where the indifallow attained a biomass yield of 6.6 t ha−1 compared with 2.2 t ha−1 for natural fallows. Cumulatively, over two growing seasons, the indifallow treatment under high rainfall at Domboshawa produced biomass as high as 28 t ha−1 compared with ∼7 t ha−1 under natural fallow. The mean total N2 fixed under indifallows ranged from 125 kg ha−1 under soils exhibiting severe nutrient depletion in Chikwaka, to 205 kg ha−1 at Domboshawa. Indifallow biomass accumulated up to 210 kg N ha−1, eleven-fold higher than the N contained in corresponding natural fallow biomass at time of incorporation. Application of P to indifallows significantly increased both biomass productivity and N2-fixation, translating into positive yield responses by subsequent maize. Differences in maize biomass productivity between indifallow and natural fallow treatments were already apparent at 2 weeks after maize emergence, with the former yielding significantly (P < 0.05) more maize biomass than the latter. The first maize crop following termination of 1-year indifallows yielded grain averaging 2.3 t ha−1, significantly out-yielding 1-year natural fallows by >1 t ha−1. In the second season, maize yields were consistently better under indifallows compared with natural fallows in terms of both grain and total biomass. The first maize crop following 2-year indifallows yielded ∼3 t ha−1 of grain, significantly higher than the second maize crop after 1-year indifallows and natural fallows. The study demonstrated that indigenous legumes can generate N-rich biomass in sufficient quantities to make a significant influence on maize productivity for more than a single season. Maize yield gains under indifallow systems on low fertility sandy soils exceeded the yields attained with either mineral fertilizer alone or traditional green manure crop of sunnhemp.  相似文献   

8.
The N contribution of alfalfa (Medicago sativa L.) to the succeeding corn (Zea mays L.) crop (FYC) is widely recognized. However, there is less information regarding the optimum N fertilization rates (ONR) for a second-year corn (SYC) following alfalfa. Thus, the objective of this study was to evaluate the response of SYC after alfalfa to N fertilization under irrigated semiarid conditions. Three field experiments of SYC following alfalfa were conducted between 2007 and 2009 in Northeast Spain. Treatments included the combination of six N rates applied to FYC (0, 50, 100, 150, 200, and 300 kg N ha−1) with four N rates applied to SYC (0, 100, 200, and 300 kg N ha−1). In one of the three fields, high SYC yields (16.8 Mg ha−1) were obtained in plots that remained unfertilized during two consecutive years after alfalfa. On the other two fields, 81-100% of the maximum corn yields were obtained with application of 200 kg N ha−1 to SYC. Results suggest that the typical N fertilizer rates applied to SYC after alfalfa in irrigated semiarid areas (300 kg N ha−1) could be reduced by at least 100 kg N ha−1, with small or no economic penalties and important reductions in N losses.  相似文献   

9.
Long-term (over 15 years) winter wheat (Triticum aestivum L.)–maize (Zea mays L.) crop rotation experiments were conducted to investigate phosphorus (P) fertilizer utilization efficiency, including the physiological efficiency, recovery efficiency and the mass (the input–output) balance, at five sites across different soil types and climate zones in China. The five treatments used were control, N, NP, NK and NPK, representing various combinations of N, P and K fertilizer applications. Phosphorus fertilization increased average crop yield over 15 years and the increases were greater with wheat (206%) than maize (85%) across all five sites. The wheat yield also significantly increased over time for the NPK treatments at two sites (Xinjiang and Shanxi), but decreased at one site (Hunan). The P content in wheat was less than 3.00 g kg−1 (and 2.10 g kg−1 for maize) for the N and NK treatments with higher values for the Control, NP and NPK treatments. To produce 1 t of grain, crops require 4.2 kg P for wheat and 3.1 kg P for maize. The P physiological use efficiency was 214 kg grain kg−1 P for wheat and 240 kg grain kg−1 P for maize with over 62% of the P from P fertilizer. Applying P fertilizer at 60–80 kg P ha−1 year−1 could maintain 3–4 t ha−1 yields for wheat and 5–6 t ha−1 yields for maize for the five study sites across China. The P recovery efficiency and fertilizer use efficiency averaged 47% and 29%, respectively. For every 100 kg P ha−1 year−1 P surplus (amount of fertilizer applied in excess of crop removal), Olsen-P in soil was increased by 3.4 mg P kg−1. Our study suggests that in order to achieve higher crop yields, the long-term P input–output balance, soil P supplying capacity and yield targets should be considered when making P fertilizer recommendations and developing strategies for intensively managed wheat–maize cropping systems.  相似文献   

10.
Nitrogen rates and plant genotypes effects yield and quality of medicinal plants therefore, this experiment was conducted in order to determine the effects of nitrogen rates on fennel accessions quality and quantity. The experimental design was a split plot with nitrogen rate (0, 40, 80, 120 and 160 Kg N ha−1) as main and accession (Isfahan, Tehran, Yazd and EU11486) as sub plots and replicated four times. The experiment was conducted at the Isfahan University of Technology Experimental Station, Isfahan, Iran during 2008-2009. Plant height, number of umbel per plant, 1000seed weight, number of seeds per umbel, seed yield, seed essential oil yield, seed and foliage essential oil contents and seed ash, protein and fiber contents were measured. Nitrogen fertilization increased all measured traits, but reduced ash content. On average, the highest seed and foliage essential contents and seed essential yield were produced at 160 kg per N ha−1 and EU11486 was a superior cultivar for these traits. However, there was an interaction between N rate and accession on all traits. Isfahan (11.65 kg ha−1), EU11486 (38.26 kg ha−1), Tehran (15.32 kg ha−1) and Yazd (22.06 kg ha−1) produced the highest seed essential oil yield under application of 160, 80, 160 and 120 kg N ha−1, respectively. Foliage of the accessions contained 0.45-0.91% essential oil and seeds of accessions contained 17.6-18.2% protein and 8.9-9.4% ash suggesting that foliage of fennel also is a good source of essential oil and seeds of fennel are good sources of protein and minerals. The results showed that N fertilization and accession can affect yield and quality of fennel and accessions responded differently to N fertilization rates, thus selection among the accessions and N rates for better fennel production is possible.  相似文献   

11.
The nitrogen (N) requirement of dedicated crops for bioenergy production is a particularly significant issue, since N fertilisers are energy-intensive to make and have environmental impacts on the local level (NO3 leaching) and global level (N2O gas emissions). Nitrogen nutrition of Miscanthus × giganteus aboveground organs is assumed to be dependent on N stocks in belowground organs, but the precise quantities involved are unknown. A kinetic study was carried out on the effect of harvest date (early harvest in October or late harvest in February) and nitrogen fertilisation (0 or 120 kg N ha−1) on aboveground and belowground biomass production and N accumulation in established crops. Apparent N fluxes within the crop and their variability were also studied.Aboveground biomass varied between 24 and 28 t DM ha−1 in early harvest treatments, and between 19 and 21 t DM ha−1 in late harvest treatments. Nitrogen fertilisation had no effect on crop yield in late harvest treatments, but enhanced crop yield in early harvest treatments due to lower belowground biomass nitrogen content. Spring remobilisation, i.e. nitrogen flux from belowground to aboveground biomass, varied between 36 and 175 kg N ha−1, due to the variability of initial belowground nitrogen stocks in the different treatments. Autumn remobilisation, i.e. nitrogen flux from aboveground to belowground organs, varied between 107 and 145 kg N ha−1 in late harvest treatments, and between 39 and 93 kg N ha−1 in early harvest treatments. Autumn remobilisation for a given harvest date was linked to aboveground nitrogen accumulation in the different treatments. Nitrogen accumulation in aboveground biomass was shown to be dependent firstly on initial belowground biomass nitrogen stocks and secondly on nitrogen uptake by the whole crop.The study demonstrated the key role of belowground nitrogen stocks on aboveground biomass nitrogen requirements. Early harvest depletes belowground nitrogen stocks and thus increases the need for nitrogen fertiliser.  相似文献   

12.
Nitrogen (N) fertilization of sugarcane crops is a common practice used to reach sustainable levels of productivity, both for plant cane and especially for the ratoon. However, when evaluating the amount of N in the plant derived from fertilizer (NDDF) at harvest, this contribution is approximately 20% of total plant biomass N, which raises questions regarding the efficiency of N fertilization. The goal of this study was to evaluate the N derived from fertilizer (NDFF) during the sugarcane crop development, for both plant cane and first ratoon crop cycles. Two field experiments were performed in São Paulo State, Brazil, in Arenic Kandiustults and in Typic Eutrustox. The sugarcane was mechanically harvested without burning. N fertilizer for both the plant cane (doses of 40, 80 and 120 kg ha−1 of N as urea) and the first ratoon (doses of 50 and 100 kg ha−1 of N as ammonium sulfate) was labeled 15N. The results showed that NDFF contributed up to 40% of the total N in the plant cane at initial stages of development. The magnitude of this contribution decreased during stages of maturity to approximately 10% of total N at harvest. In the first ratoon, application of N fertilizer was more effective for crop nutrition, constituting up to 70% of total N in initial stages of development and decreasing through the cycle, reaching approximately 30% at harvest. Therefore, studies that evaluate NDDF only at harvest can lead to underestimating the role of N fertilizer for sugarcane nutrition. The higher NDFF in ratoon explains why this crop cycle presents a more consistent response to N fertilization than plant cane, as observed in several studies developed under Brazilian conditions in the last decades.  相似文献   

13.
The CERES-sorghum module of the Decision Support System for Agro-Technological Transfer (DSSAT) model was calibrated for sorghum (Sorghum bicolor (L.) Moench) using data from sorghum grown with adequate water and nitrogen and evaluated with data from several N rates trials in Navrongo, Ghana with an overall modified internal efficiency of 0.63. The use of mineral N fertilizer was found to be profitable with economically optimal rates of 40 and 80 kg N ha−1 for more intensively managed homestead fields and less intensively managed bush fields respectively. Agronomic N use efficiency varied from 21 to 37 kg grain kg−1 N for the homestead fields and from 15 to 49 kg grain kg−1 N in the bush fields. Simulated grain yield for homestead fields at 40 kg N ha−1 application was equal to yield for bush fields at 80 kg N ha−1. Water use efficiency generally increased with increased mineral N rate and was greater for the homestead fields compared with the bush fields. Grain yield per unit of cumulative evapo-transpiration (simulated) was consistently higher compared with yield per unit of cumulative precipitation for the season, probably because of runoff and deep percolation. In the simulation experiment, grain yield variability was less with mineral N application and under higher soil fertility (organic matter) condition. Application of mineral N reduced variability in yield from a CV of 37 to 11% in the bush farm and from 17 to 7% in the homestead fields. The use of mineral fertilizer and encouraging practices that retain organic matter to the soil provide a more sustainable system for ensuring crop production and hence food security.  相似文献   

14.
Estimating maize nutrient uptake requirements   总被引:6,自引:0,他引:6  
Generic, robust models are needed for estimating crop nutrient uptake requirements. We quantified and modeled grain yield–nutrient uptake relations in maize grown without significant biotic and abiotic stresses. Grain yield and plant nutrient accumulation in above-ground plant dry matter (DM) of commercial maize hybrids were measured at physiological maturity in on-station and on-farm experiments in Nebraska (USA), Indonesia, and Vietnam during 1997–2006. These data were used to model the nutrient requirements for yields up to 20 Mg ha−1 using the QUEFTS (QUantitative Evaluation of the Fertility of Tropical Soils) approach. The model required estimation of two boundary lines describing the minimum and maximum internal nutrient efficiencies of N, P and K (IE, kg grain per kg nutrient in plant DM), which were estimated at 40 and 83 kg grain kg−1 N, 225 and 726 kg grain kg−1 P and 29 and 125 kg grain kg−1 K, respectively. The model predicted a linear increase in grain yield if nutrients are taken up in balanced amounts of 16.4 kg N, 2.3 kg P and 15.9 kg K per 1000 kg of grain until yield reached about 60–70% of the yield potential. The corresponding IEs were 61 kg grain kg−1 N, 427 kg grain kg−1 P and 63 kg grain kg−1 K. The model predicted a decrease in IEs when yield targets approached the yield potential limit. A spherical model was derived from QUEFTS model outputs and found to be particularly suitable for practical applications such as estimating fertilizer needs. The proposed spherical model offers generality across environments and management practices, allowing users to estimate the optimal N, P and K uptake requirements based on two inputs: estimated yield potential and yield target. Further improvements in modeling the relationship between N uptake and grain yield can be made by taking into account differences in harvest index. Accuracy in the simulation of N uptake using the spherical model was improved from an RMSE of 35 kg N ha−1 to 25 kg N ha−1 when harvest index was accounted for, suggesting that the relationship between N uptake and actual yield is affected by both yield potential and efficiency in biomass partitioning.  相似文献   

15.
Nitrogen (N) fertilizer represents a significant cost for the grower and may also have environmental impacts through nitrate leaching and N2O (a greenhouse gas) emissions associated with denitrification. The objectives of this study were to analyze the genetic variability in N-use efficiency (grain dry matter (DM) yield per unit N available from soil and fertilizer; NUE) in winter wheat and identify traits for improved NUE for application in breeding. Fourteen UK and French cultivars and two French advanced breeding lines were tested in a 2 year/four site network comprising different locations in France and in the UK. Detailed growth analysis was conducted at anthesis and harvest in experiments including DM and N partitioning. Senescence of either the flag leaf or the whole leaf canopy was assessed from a visual score every 3-4 days from anthesis to complete canopy senescence. The senescence score was fitted against thermal time using a five parameters monomolecular-logistic equation allowing the estimation of the timing of the onset and the rate of post-anthesis senescence. In each experiment, grain yield was reduced under low N (LN), with an average reduction of 2.2 t ha−1 (29%). Significant N × genotype level interaction was observed for NUE. Crop N uptake at harvest on average was reduced from 227 kg N ha−1 under high N (HN) to 109 kg N ha−1 under LN conditions while N-utilization efficiency (grain DM yield per unit crop N uptake at harvest; NUtE) increased from 34.0 to 52.1 kg DM kg−1 N. Overall genetic variability in NUE under LN related mainly to differences in NUtE rather than N-uptake efficiency (crop N uptake at harvest per unit N available from soil and fertilizer; NUpE). However, at one site there was also a positive correlation between NUpE and NUE at LN in both years. Moreover, across the 2 year/four site network, the N × genotype effect for NUpE partly explained the N × genotype effect for grain yield and NUE. Averaging across the 16 genotypes, the timing of onset of senescence explained 86% of the variation in NUtE amongst site-season-N treatment combinations. The linear regression of onset of senescence on NutE amongst genoytpes was not significant under HN, but at three of the four sites was significant under LN explaining 32-70% of the phenotypic variation amongst genotypes in NutE. Onset of senescence amongst genotypes was negatively correlated with the efficiency with which above-ground N at anthesis was remobilized to the grain under LN. It is concluded that delaying the onset of post-anthesis senescence may be an important trait for increasing grain yield of wheat grown under low N supply.  相似文献   

16.
Rainfed crop production in northern China is constrained by low and variable rainfall. This study explored the effects of tillage/crop residue and nutrient management practices on maize (Zea mays L.) yield, water use efficiency (WUE), and N agronomic use efficiency (NAE) at Shouyang Dryland Farming Experimental Station in northern China during 2003–2008. The experiment was set-up using a split-plot design with 3 tillage/crop residue methods as main treatments: conventional, reduced (till with crop residue incorporated in fall but no-till in spring), and no-till (with crop residue mulching in fall). Sub-treatments were 3 NP fertilizer rates: 105–46, 179–78 and 210–92 kg N and P ha−1. Maize grain yields were greatly influenced by the growing season rainfall and soil water contents at sowing. Mean grain yields over the 6-year period in response to tillage/crop residue treatments were 5604, 5347 and 5185 kg ha−1, under reduced, no-till and conventional tillage, respectively. Grain yields under no-till, were generally higher (+19%) in dry years but lower (−7%) in wet years. Mean WUE was 13.7, 13.6 and 12.6 kg ha−1 mm−1 under reduced, no-till, and conventional tillage, respectively. The no-till treatment had 8–12% more water in the soil profiles than the conventional and reduced tillage treatments at sowing and harvest time. Grain yields, WUE and NAE were highest with the lowest NP fertilizer application rates (at 105 kg N and 46 kg P ha−1) under reduced tillage, while yields and WUE tended to be higher with additional NP fertilizer rates under conventional tillage, however, there was no significant yield increase above the optimum fertilizer rate. In conclusion, maize grain yields, WUE and NAE were highest under reduced tillage at modest NP fertilizer application rates of 105 kg N and 46 kg P ha−1. No-till increased soil water storage by 8–12% and improved WUE compared to conventional tillage, thus showing potentials for drought mitigation and economic use of fertilizers in drought-prone rainfed conditions in northern China.  相似文献   

17.
In the framework of the E.U. project Fair CT 96-1913 “Environmental studies on sweet and fibre sorghum, sustainable crops for biomass and energy”, a research has been carried out with the aim to study the water and nitrogen balance and determine the critical N dilution curve of sweet sorghum cv. Keller. A field experiment was performed, where three irrigation treatments (I0 = dry control, I50 = 50% ETm restoration, I100 = 100% ETm restoration) and four nitrogen fertilization levels (N0 = no nitrogen control, N60 = 60 kg ha−1, N120 = 120 kg ha−1; N180 = 180 kg ha−1) were studied. The final yield was significantly affected by the amount of water distributed but not by the nitrogen level. The treatments watered up to crop establishment (I0) produced, in the average, 7.5 t ha−1 of dry matter, against 21.1 and 27.1 t ha−1 of I50 and I100, respectively. The crop determined a great reduction in nitrate concentration of soil water, irrespective of nitrogen supplied. The variation between N output and input (Δ) was negative in N0, N60 and N120 and positive in N180. The critical value of nitrogen uptake change in relation to the water availability. The amount of nitrogen supplied did not determine significant differences upon WUE. The crop seems to have a great potentiality in Mediterranean environment in terms of yield production.  相似文献   

18.
Soil acidity is a limiting factor affecting the growth and yield of many crops all over the world. It is recognized that liming is the most common management practice of profitable crop production on acid soils. On the other hand, it is well-known that the form of nitrogen may affect tobacco yield and quality. In this work, the impact of the interaction between three hydrated lime (HL, Ca(OH)2) rates (0, 1.5 and 3 t HL ha−1) and three nitrogen fertilizer forms (NO3-N 100%, NH4-N 100% and NO3-N 50% plus NH4-N 50%) on growth, yield and quality characteristics of Virginia (flue-cured) tobacco was investigated in a 4-year (1995–1998) field experiment established in an acid soil (pHwater 1:1 5.3) located in Northern Greece. Lime was applied only once in December 1994, while nitrogen fertilizer was applied annually before transplanting. The results showed that the effect of liming on tobacco growth was not dependent on time, weather conditions and form of nitrogen fertilizer. Liming increased soil pH, enhanced the early growth of tobacco (within 30 days after transplanting (DAT)) and finally increased the total gross and trade yield of tobacco proportionally to the amount of HL added. However, the quality index (organoleptic characteristics) of the cured product was improved only at the HL application rate of 3 t HL ha−1. Furthermore, liming significantly increased Ca and P concentrations but decreased K concentration in cured tobacco leaves. Tobacco yield increase was attributed to the increase of P uptake. Liming also increased the ash content of cured leaves, whereas it did not significantly affect nicotine, total nitrogen and reducing sugars. The use of ammonium N in fertilizer delayed the early growth of tobacco, reduced the nicotine concentration and increased the reducing sugars concentration of the cured product. Total-N, P, K and Mg concentrations of cured leaves were not significantly affected by the form of nitrogen fertilizer used. The results suggested that an initial application of hydrated lime at a rate of 3 t HL ha−1 may ameliorate soil acidity and increase the yield and quality characteristics of Virginia tobacco at least over a 4-year period after application, independent of the form of N fertilizer used.  相似文献   

19.
Resource-poor farmers in India cultivate upland rice as a subsistence crop in poor soil with minimum inputs, often applying little or no fertilizer and controlling weeds by hand. Consequently, upland rice yields are very low. In our study, the response to management intensification of fertilizer application at rates of 40 N ha−1, 13 P ha−1, and 16.7 K ha−1 and two weed control treatments as compared with no fertilizer, and one hand weeding practice commonly followed by farmers in rainfed upland areas was examined with a large set of advanced breeding lines and adapted upland varieties tested over 3 years in multi-location trials. Highly significant genotype × environment interaction was observed in combined analyses across environments, leading to sub-grouping of sites into the high-yielding or favorable and low-yielding or unfavorable upland environment groups. A significant effect of management regime was observed. Averaged over 15 environments, the moderate-input treatment out-yielded the low-input treatment by nearly 65% or 0.8 t ha−1 under favorable environments and by nearly 48% (0.3 t ha−1) in unfavorable environments. A significant genotype effect and genotype × input management interaction for yield at favorable sites was observed. However, the same was not significant at unfavorable sites. Varietal differences were relatively small at unfavorable sites across input levels. The heritability estimates for grain yield were moderately high in both moderate- and low-input conditions in favorable environments. The genetic correlation between yields in moderate- and low-input conditions was high in both favorable and unfavorable environments. The study indicated that improved varieties performed well relative to landraces under low-input management. Improved varieties along with modestly intensified management offer an attractive option to increase the productivity of rainfed upland environments. For both favorable and unfavorable environments, indirect selection under moderate-input conditions was less efficient than direct selection for grain yield in low-input conditions, indicating upland breeding programs to adopt selection for grain yield under both moderate- and low-input conditions.  相似文献   

20.
Nitrogen (N) dynamics in plants during their development in agricultural crops has to be well understood in order to design management practices that lead to maximum productivity with minimum N loss from the system. In a labeled fertilizer field study 15N accumulation in different plant parts of mature coffee was observed over time. The objective was to ascertain the time of greatest crop N demand as a scientific basis for designing fertigation schedules. Coffee plantations of central Brazil are routinely fertigated only with extremely high applications of N. Good coffee bean production should be sustainable by applying lower N quantities at those frequencies designated by additional scientific criteria. The experiment was carried out over a complete coffee cropping cycle (2008/2009) in a field of low soil fertility in the Brazilian savanna “cerrado”. Rates of 0, 200, 400, 600 and 800 kg N ha−1 year−1 as 15N-labeled urea were applied via fertigation, divided equally over the year into 26 portions, distributed every 14 days. Changes of N absorption in various plant compartments indicated that fertilizer use could be improved if a lower rate is applied only up to the beginning of fruit maturation, focusing on the stage before fruit filling. This specific stage was found to be the period of greatest N consumption by leaf and fruit. 15N absorption data showed that it is possible to decrease the routine fertilization rate of 600 to a much lower value, of order of 200 kg N ha−1 without decreasing the production of coffee beans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号