共查询到5条相似文献,搜索用时 0 毫秒
1.
Martin-Hugues St-Laurent Christian Dussault Jean Ferron Rjean Gagnon 《Biological conservation》2009,142(10):2240-2249
Habitat loss and fragmentation are recognized as major threats to biodiversity. Their respective effects, however, are sometimes not well distinguished, even though habitat loss is recognized as the most important source of variation affecting species abundance and richness at the landscape scale. As ‘habitat’ is a species-specific concept (based on species perception of its environment), habitat loss and fragmentation studies should be conducted on a species-specific basis. We here assessed the influence of habitat loss and fragmentation in the context of a boreal forest considering forest clearcutting as an anthropogenic disturbance inducing mature forest loss and fragmentation that has a potential impact on wildlife. Using 16 simulated patterns of mature forest loss and fragmentation and three natural landscapes as replicates, we assessed the respective influence of forest loss and fragmentation on the abundance of 10 bird species common in the boreal forest of eastern Canada. Species–habitat relationships were modeled through habitat use models that were utilized to predict abundance of the 10 species within each combination of loss and fragmentation patterns (3 landscapes × 16 patterns). We used three-way ANOVAs to assess the effects of mature forest loss, fragmentation and replicates (random effect) on species abundance. Our results indicated that: (1) variation in species abundance mostly depended on mature forest loss, followed by static landscape attributes other than cutovers (e.g. streams, lakes, roads) and finally by fragmentation and (2) responses to mature forest loss and fragmentation differed among species, not necessary in relation to the successional status but in relation to their perception of their environment. Decreasing detrimental effects of mature forest loss through conservation of large continuous patches of forest may be suitable to maintain abundances of mature forest bird species. Our results highlight that studies aiming to quantify effects of habitat loss and fragmentation on wildlife should be conducted on a species-specific basis and use several landscape replicates to avoid potentially biased results. 相似文献
2.
The effects of habitat fragmentation on forest bird assemblages were analysed in 214 holm oak (Quercus ilex) remnants spread across the northern and southern plateaux of central Spain. Bird richness was highly dependent on fragment area for all species regardless of isolation, and barely affected by habitat traits. Geographical location was associated with high differences in richness of bird assemblages, which included 17 species exclusive to northern remnants and one exclusive to southern remnants. This supports the hypothesis that habitat suitability deteriorates sharply from north to south for forest birds in Spain. The species-area relationships of bird assemblages sampled in fragmented forests along a broad continental gradient (from Norway to southern Spain) showed that true forest birds only nest in woodlands >100 ha in southern Spain, whereas the full complement of forest species occurs in much smaller fragments in central-western Europe. Loss of species that are particularly sensitive to habitat fragmentation accounts for these differences between dry Spanish and mesic European woodlands. These results are explained by the low habitat suitability of Spanish woodlands, associated with the restrictive conditions for plant regeneration in the Mediterranean climate and long-standing human usage. There is, therefore, a particular need to develop management strategies that conserve birds, and probably other forest organisms, in Mediterranean regions by preventing habitat deterioration and decreases in fragment size, and by conserving all woods >100 ha. 相似文献
3.
Renata Pardini Deborah Faria Gustavo M. Accacio Eduardo Mariano-Neto Mateus L.B. Paciencia Marianna Dixo 《Biological conservation》2009,142(6):1178-1190
Recent developments have highlighted the importance of forest amount at large spatial scales and of matrix quality for ecological processes in remnants. These developments, in turn, suggest the potential for reducing biodiversity loss through the maintenance of a high percentage of forest combined with sensitive management of anthropogenic areas. We conducted a multi-taxa survey to evaluate the potential for biodiversity maintenance in an Atlantic forest landscape that presented a favorable context from a theoretical perspective (high proportion of mature forest partly surrounded by structurally complex matrices). We sampled ferns, butterflies, frogs, lizards, bats, small mammals and birds in interiors and edges of large and small mature forest remnants and two matrices (second-growth forests and shade cacao plantations), as well as trees in interiors of small and large remnants. By considering richness, abundance and composition of forest specialists and generalists, we investigated the biodiversity value of matrix habitats (comparing them with interiors of large remnants for all groups except tree), and evaluated area (for all groups) and edge effects (for all groups except trees) in mature forest remnants. Our results suggest that in landscapes comprising high amounts of mature forest and low contrasting matrices: (1) shade cacao plantations and second-growth forests harbor an appreciable number of forest specialists; (2) most forest specialist assemblages are not affected by area or edge effects, while most generalist assemblages proliferate at edges of small remnants. Nevertheless, differences in tree assemblages, especially among smaller trees, suggest that observed patterns are unlikely to be stable over time. 相似文献
4.
We combine mist-net data from 24 disturbance treatments taken from seven studies on the responses of understorey Amazonian birds to selective logging, single and recurrent wildfires, and habitat fragmentation. The different disturbance treatments had distinct effects on avian guild structure, and fire disturbance and the isolation of forest patches resulted in bird communities that were most divergent from those in continuous, undisturbed forest in terms of their species composition. Although low-intensity logging treatments had the least noticeable effects, the composition of understorey birds was still markedly different from the composition in undisturbed forest. This analysis demonstrates the importance of preventing habitat fragmentation and the spread of fires in humid tropical forests, and highlights the need for more research to determine the long-term suitability of large areas of degraded forest for forest birds. 相似文献
5.
The ability to make a priori assessments of a species' response to fragmentation, based on its distribution in the landscape, would serve as a valuable conservation and management tool. During 1997-1999, we monitored 717 scent stations to examine seasonal use of forest patches, corridors, and crop fields by coyotes (Canis latrans), domestic cats (Felis catus), foxes (Vulpes vulpes and Urocyon cinereoargenteus), raccoons (Procyon lotor), striped skunks (Mephitis mephitis), opossums (Didelphis virginiana), and long-tailed weasels (Mustela frenata). For each species we developed landscape-based ecologically scaled landscape indices (ELSI), and we modeled species spatial distribution across three spatial scales (landscape-level, element-level, and local habitat-level). Our results suggest that these predators view landscape fragmentation at different spatial scales and demonstrate strong interspecific differences in their response to elements of the landscape. All species except coyotes and domestic cats avoided agricultural fields. In general, predator species that were more mobile (i.e. high ESLI for landscape connectivity; coyotes) were characterized by landscape- and element-based logistic models. In contrast, models including local habitat features generally were most appropriate for less mobile or more stenophagous predators (e.g. long-tailed weasels). Our analysis extends the application of the ESLI concept to species assemblages that do not appear to function as metapopulations, and it highlights the importance of examining spatial scale and species-specific responses to habitat fragmentation. We discuss the relevance of these findings for defining ecological landscapes, understanding predator-prey interactions at multiple spatial scales, and conserving predator and prey populations in fragmented landscapes. 相似文献