首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant-available phosphorus (P) and P adsorption capacities are important for crop growth in acidic soils. Olsen P test, which is based on extraction with bicarbonate for predicting the amount of soil P available to plants, was used in this work. Soil P-adsorption capacities were determined by Langmuir line equation. The purpose of this work was to examine the suitability of Olsen P for predicting phytoavailable P and P sorption parameters in acid soil. To this end, we (i) assessed the phytoavailable P by successively pot-cropping rice and (ii) P adsorption characteristics of soil and their relation with Olsen P. Plant-available P, estimated by Olsen P in tested soil, was correlated to labile P. Qm (phosphorus sorption maximum) was negatively correlated with K (P sorption strength). P buffering capacity of soils was P3 (the highest P rate) >P2 (the second highest P rate) >P1 (the lowest P rate) >P0 (no P adding) after 75 day’s rice growth, which indicated P replenishment capacity was different among P treatments. This also suggested that P of plant uptake may decrease soil buffering capacity, especially for soils that contained relatively lower amounts of P. Qm and K were not significantly correlated to Olsen P. Degree of P saturation and Olsen P shared the similar trend with the change of P application rates and sampling dates. We concluded P status in soil can be characterized by degree of P saturation and Olsen P in tested soil. They were able to explain P status from both agronomic and environmental aspects.

Abbreviations: Qm, P sorption maximum; K, P sorption strength; P3, highest P rate in soil; P2, second highest P rate in soil; P1, lowest P rate in soil; P0, P adding in soil.  相似文献   


2.
Abstract

Three techniques were evaluated as soil P tests for western Canadian soils: anion‐exchange membrane (AEM), water, and bicarbonate extraction. The AEM, water, and bicarbonate‐extractable total P represented novel approaches to compare to the widely used bicarbonate‐extractable inorganic P (traditional Olsen) soil test. In a range of Saskatchewan soils, similar trends in predicted relative P availability were observed for AEM, water extraction, bicarbonate‐extractable total P, and bicarbonate‐extractable organic P. Correlations between soil test values revealed AEM and water‐extractable P to be most closely correlated, consistent with the similar manner of P removal in the two tests.

Phosphorus availability, as predicted by the tests, was compared to actual P uptake by canola and wheat grown on 14 soils in a growth chamber experiment. P uptake by canola was highly correlated with AEM (r2 = 0.86–0.90), water (0.87 ‐0.94), and bicarbonate‐extractable total (0.91) and inorganic (0.92) P. Uptake of P by wheat was not quite as highly correlated with test‐predicted values: AEM (r2 = ‐0.73–0.78), water (0.72–0.77), bicarbonate total (0.82), bicarbonate‐inorganic P (0.75).

The similarity in coefficients of determination among test methods indicated nearly identical abilities of the tests to predict soil P availability in the range of soils examined. The AEM and water extractions, unlike bicarbonate, are largely independent of soil type and may prove superior when a wider range of soils is being tested. Bicarbonate‐extractable total P and water‐extractable P suffer limitations in analytical simplicity and cost. In testing for P alone, AEM was considered superior to the other methods due to low cost, simplicity, independence of soil type, and high correlation with plant uptake.  相似文献   

3.
Management intensity modifies soil properties, e.g., organic carbon (Corg) concentrations and soil pH with potential feedbacks on plant diversity. These changes might influence microbial P concentrations (Pmic) in soil representing an important component of the P cycle. Our objectives were to elucidate whether abiotic and biotic variables controlling Pmic concentrations in soil are the same for forests and grasslands, and to assess the effect of region and management on Pmic concentrations in forest and grassland soils as mediated by the controlling variables. In three regions of Germany, Schwäbische Alb, Hanich‐Dün, and Schorfheide‐Chorin, we studied forest and grassland plots (each n = 150) differing in plant diversity and land‐use intensity. In contrast to controls of microbial biomass carbon (Cmic), Pmic was strongly influenced by soil pH, which in turn affected phosphorus (P) availability and thus microbial P uptake in forest and grassland soils. Furthermore, Pmic concentrations in forest and grassland soils increased with increasing plant diversity. Using structural equation models, we could show that soil Corg is the profound driver of plant diversity effects on Pmic in grasslands. For both forest and grassland, we found regional differences in Pmic attributable to differing environmental conditions (pH, soil moisture). Forest management and tree species showed no effect on Pmic due to a lack of effects on controlling variables (e.g., Corg). We also did not find management effects in grassland soils which might be caused by either compensation of differently directed effects across sites or by legacy effects of former fertilization constraining the relevance of actual practices. We conclude that variables controlling Pmic or Cmic in soil differ in part and that regional differences in controlling variables are more important for Pmic in soil than those induced by management.  相似文献   

4.
In this study, four soil extraction methods (Olsen, Soltanpour, Mehlich 3, and water saturation) were used to identify optimal concentrations of phosphorus (P) required for plant growth. Olsen soil extraction for P was the most appropriate method for soil types of this study as the greatest correlation coefficient for soil-test P and with plant factors was achieved. The optimal amount of soil features (pH, organic carbon, lime, gypsum, and clay) determined by using response surface methodology (a new optimization method) were 7.49, 0.66, 41.82, 4.21, and 31.34, respectively. More soil P was extracted when the soil had optimal amounts of these features, showing each feature had a significant effect on extracted soil P. Furthermore, the graphical method of Cate–Nelson determined the optimal amounts of P using Olsen, Soltanpour, Mehlich 3, and saturation extract methods for wheat as 15, 6.5, 35, and 1.5 mg kg?1 soil in nongypsic soils and 17, 3.5, 45, and 2.5 mg kg?1 soil in gypsic soils.  相似文献   

5.
The interactions between soil P availability and mycorrhizal fungi could potentially impact the activity of soil microorganisms and enzymes involved in nutrient turnover and cycling, and subsequent plant growth. However, much remains to be known of the possible interactions among phosphorus availability and mycorrhizal fungi in the rhizosphere of berseem clover (Trifolium alexandrinum L.) grown in calcareous soils deficient in available P. The primary purpose of this study was to look at the interaction between P availability and an arbuscular mycorrhizal (AM) fungus (Glomus intraradices) on the growth of berseem clover and on soil microbial activity associated with plant growth. Berseem clover was grown in P unfertilized soil (−P) and P fertilized soil (+P), inoculated (+M) and non-inoculated (−M) with the mycorrhizal fungus for 70 days under greenhouse conditions. We found an increased biomass production of shoot and root for AM fungus-inoculated berseem relative to uninoculated berseem grown at low P levels. AM fungus inoculation led to an improvement of P and N uptake. Soil respiration (SR) responded positively to P addition, but negatively to AM fungus inoculation, suggesting that P limitation may be responsible for stimulating effects on microbial activity by P fertilization. Results showed decreases in microbial respiration and biomass C in mycorrhizal treatments, implying that reduced availability of C may account for the suppressive effects of AM fungus inoculation on microbial activity. However, both AM fungus inoculation and P fertilization affected neither substrate-induced respiration (SIR) nor microbial metabolic quotients (qCO2). So, both P and C availability may concurrently limit the microbial activity in these calcareous P-fixing soils. On the contrary, the activities of alkaline phosphatase (ALP) and acid phosphatase (ACP) enzymes responded negatively to P addition, but positively to AM fungus inoculation, indicating that AM fungus may only contribute to plant P nutrition without a significant contribution from the total microbial activity in the rhizosphere. Therefore, the contrasting effects of P and AM fungus on the soil microbial activity and biomass C and enzymes may have a positive or negative feedback to C dynamics and decomposition, and subsequently to nutrient cycling in these calcareous soils. In conclusion, soil microbial activity depended on the addition of P and/or the presence of AM fungus, which could affect either P or C availability.  相似文献   

6.
Abstract

A pot experiment was carried out in the greenhouse with two loamy sand Dystric Cambisols derived from schist to investigate the effect of liming and phosphorus (P) application on plant growth and P availability and its assessment by four soil test methods: 0.01M calcium chloride (CaCl2), cation anion exchange membrane (CAEM), Egnér‐Riehm, and Olsen procedures. Soils were first incubated for two weeks with lime at four levels, depending on their content of exchangeable aluminum (Al). Phosphorus was added at two rates (75 and 150 mg P kg‐1) and the incubation proceeded for an additional two‐week period. Sudangrass (Sorghum sudanenses cv. Tama) was then planted and harvested four weeks later. During incubation and plant growth, soils were maintained at 70% of field moisture capacity. Although pH value and soil extractable P in original soils were similar, the results showed a significant difference on the effect of liming and P application. Acidity was the major limitation for DM yield in the soil with the highest amount of exchangeable Al, while P availability was the main constraint in the other soil. Liming above pH (0.01M CaCl2) 5.3–5.5 did not increase DM yield in either soil and showed a negative effect on one soil (9.7 to 6.9 and 10.2 to 7.8 g pot‐1). Phosphorus content and uptake by sudangrass increased with liming, revealing a positive effect of lime on the availability of P to plants. Added P showed a lower efficiency in the soil with highest amounts of Al compounds. Soil tests performed after the execution of the pot experiment showed variable tendencies to predict P availability, according to the nature of the procedures and soils. Soluble‐P in 0.01M CaCl2 increased with the rise of soil pH. Extractable CAEM‐P and Egnér‐Riehm‐P also increased with liming, but reflected the soil depletion caused by plant uptake. Extractable Olsen‐P presented the most inconclusive results, suggesting the limitation of this method for acid soils which have been limed.  相似文献   

7.
To overcome soil nutrient limitation, many plants have developed complex nutrient acquisition strategies including altering root morphology, root hair formation or colonization by arbuscular mycorrhizal fungi (AMF). The interactions of these strategies and their plasticity are, however, affected by soil nutrient status throughout plant growth. Such plasticity is decisive for plant phosphorus (P) acquisition in P‐limited soils. We investigated the P acquisition strategies and their plasticity of two maize genotypes characterized by the presence or absence of root hairs. We hypothesized that in the absence of root hairs plant growth is facilitated by traits with complementary functions, e.g., by higher root mycorrhizal colonization. This dependence on complementary traits will decrease in P fertilized soils. At early growth stages, root hairs are of little benefit for nutrient uptake. Regardless of the presence or absence of root hairs, plants produced average root biomass of 0.14 g per plant and exhibited 23% root mycorrhizal colonization. At later growth stages of maize, contrasting mechanisms with functional complementarity explained similar plant biomass production under P limitation: the presence of root hairs versus higher root mycorrhizal colonization (67%) favored by increased fine root diameter in absence of root hairs. P fertilization decreased the dependence of plant on specific root traits for nutrient acquisition. Through root trait plasticity, plants can minimize trade‐offs for developing and maintaining functional traits, while increasing the benefit in terms of nutrient acquisition and plant growth. The present study highlights the plasticity of functional root traits for efficient nutrient acquisition strategies in agricultural systems with low nutrient availability.  相似文献   

8.
Evaluation of five soil phosphorus (P) extractants was done on southwestern Nigerian soils from sedimentary and basement complex parent materials to determine the relationship between the extractants and the most appropriate extractant for the soils. The soils differed in properties. Generally, soils from the basement material had less available P compared with sedimentary material. Olsen extracted the greatest P. Bray 1 measured 67% of Olsen P, Hunter measured 52%, Mehlich measured 42%, and Ambic measured 24%. Positive and significant regression (P < 0.001) existed among Bray 1, Olsen, Mehlich, Hunter, and Ambic extractants. The strongest relationship was found among Olsen, Mehlich, and Ambic P. The relationship between maize P uptake and extracted P was quadratic, whereas the relationship with Mehlich was logarithmic. Bray, Mehlich, and Olsen P were the significant contributors to the maize P uptake and dry-matter yield. Extractants in order of P extraction were Olsen > Bray 1 > Hunter > Mehlich > Ambic.  相似文献   

9.
Abstract

Iron oxide–coated strips (Pi) can serve as a sink to continuously remove phosphorus (P) from solution. In this way, P extraction is analogous to the P absorption by plant roots. The objective of this study was to compare the iron oxide–coated paper strips with other chemical extraction methods to estimate the plant P availability for corn (Zea mays) growing in the greenhouse in some soils of Hamadan province of Iran. Sixteen soil samples with different physicochemical properties were analyzed for available P using Olsen, Colwell, Mehlich‐1, 0.01 M CaCl2, AB‐DTPA, and 0.1 M HCl methods and pi. Furthermore, the effects of two P levels (0 and 200 mg P kg?1) on the plant indices (P uptake, relative yield, and plant responses) were studied in a greenhouse experiment using 10 soil samples. The results showed that the amount of extractable P decreased in the order of 0.01 M CaCl2<AB‐DTPA<pi<Olsen<Colwell<Mehlich‐1<0.1 M HCl. The amount of P extracted by the pi method was significantly correlated with other extractants. The amounts of P extracted by all chemical methods were significantly correlated. The results of a pot experiment showed that the amount of P extracted by the pi method was significantly correlated with the plant P uptake. However, the other methods were not significantly correlated with P uptake. The results of this experiment showed that pi method was able to predict the plant availability of soil P.  相似文献   

10.
The role of soil organic phosphorus (P) in plant nutrition was assessed using data from a glasshouse pot experiment carried out on seven soil types using two contrasting plant species (Lolium perenne, Pinus radiata) and 12 different extractants (five salts (0.025 M ethylenediaminetetraacetic acid (EDTA), 0.025 M EDTA pH 7, Olsen, Mehlich-III, and 6% NaOCl pH 7.5) and seven exchange resins (Hampton chelating resin, Bio-Rad Chelex-100, Dow MAC-3, Amberlite IRC76, Diaion WT01S, Lewatit MP500A, Diaion WA30)). The contribution from mineralization of soil organic P was inferred by consistent increases in correlation coefficients between extractable P and plant P uptake when organic P was considered in addition to inorganic P. The best correlated extractants for combined inorganic and organic P were NaOCl (r = 0.84), Hampton chelating resin (r = 0.78), and MP500A resin (r = 0.73), which compared favorably with Olsen P (r = 0.66) and EDTA (r = 0.72). 31P nuclear magnetic resonance analysis of selected extracts from two soils confirmed that the Hampton-chelating-resin-extractable P was mainly monoester and diester forms of organic P, while there was no monoester or diester organic P in the IRC76 resin extract—poorly correlated with plant uptake. The findings of this study suggest that readily extractable forms of organic P in soil contribute to short-term plant P uptake, and this P should be considered for inclusion in routine tests for soil P availability.  相似文献   

11.
Arbuscular mycorrhizal fungi are ubiquitous inhabitants of soils, and they are involved in cycling elements such as phosphorus and carbon between soils and plants. However, the environmental factors determining their activity and community structure in different soils are still not fully understood. Here, a bioassay is presented to assess the infectivity of indigenous mycorrhizal communities in twenty soils sampled in the Swiss agricultural belt north of the Alps. This bioassay indicated clear negative relationships between the mycorrhizal colonization of bioassay plant roots and the phosphorus and nitrogen concentrations in plant biomass. Further, comparison of the bioassay results with a range of physico-chemical, biological, and geographic parameters of the soils confirmed a negative relationship between the soil phosphorus status and the mycorrhizal colonization of the plants. Other parameters, such as land use, base saturation, pH, and soil texture, had little explanatory value for patterns in the growth, nutrition, and mycorrhizal colonization of the bioassay plants. The results of this study were compared with those of a previous one that used the same methods, and that examined the influence of soil pollution on mycorrhizal infectivity. It appears that the results of a mycorrhizal infectivity assay could serve as a comprehensive and rather universal indicator of soil quality.  相似文献   

12.
One of the most influential factors determining the growth and composition of soil bacterial communities is pH. However, soil pH is often correlated with many other factors, including nutrient availability and plant community, and causality among factors is not easily determined. If soil pH is directly influencing the bacterial community, this must lead to a bacterial community growth optimised for the in situ pH. Using one set of Iberian soils (46 soils covering pH 4.2-7.3) and one set of UK grassland soils (16 soils covering pH 3.3-7.5) we measured the pH-optima for the growth of bacterial communities. Bacterial growth was estimated by the leucine incorporation method. The pH-optima for bacterial growth were positively correlated with soil pH, demonstrating its direct influence on the soil bacterial community. We found that the pH from a water extraction better matched the bacterial growth optimum compared with salt extractions of soil. Furthermore, we also showed a more subtle pattern between bacterial pH growth optima and soil pH. While closely matched at neutral pHs, pH-optima became higher than the in situ pH in more acid soils, resulting in a difference of about one pH-unit at the low-pH end. We propose that an explanation for the pattern is an interaction between increasing overall bacterial growth with higher pHs and the unimodal pH-response for growth of bacterial communities.  相似文献   

13.
The increasing cost of fertilizer has prompted farmers to ask whether soils could be maintained at lower levels of plant‐available phosphorus (Olsen P) than currently recommended, without limiting yield. To help answer this question, critical levels of Olsen P have been determined for spring barley, winter wheat, potatoes and sugar beet grown on a sandy clay loam and a poorly structured heavy textured silty clay loam. On each soil, there were plots with a range of well‐established levels of Olsen P and, in one experiment, two levels of soil organic matter (SOM). For each crop and each year, the response curve relating yield to Olsen P was fitted statistically to determine the asymptotic yield and the Olsen P associated with 98% of that yield, that is, the critical Olsen P. Maximum yield of all four crops varied greatly from year to year, in part due to applied nitrogen (N) where it was tested, and in part to seasonal variation in weather, mainly rainfall. The wide range in critical Olsen P, from 8 to 36 mg/kg, between years was most probably as a result of differences in soil conditions that affected root growth and thus acquisition of available soil phosphorus (P). Generally, a larger asymptotic yield was not necessarily associated with a larger critical Olsen P. Spring barley and winter wheat given little N required more Olsen P, 20–34 mg/kg, to achieve the asymptotic yield, compared to 10–17 mg/kg where ample N was given; presumably, more roots were needed to search the soil for the smaller amounts of available N and root growth is affected by the amount of plant‐available soil P. In a field experiment on one soil type, soil with little SOM required 2–3.5 times more Olsen P to produce the same yield as that on soil with more organic matter. Soil organic matter most probably improved soil structure and hence the ability of roots to grow and search for nutrients in field conditions because when these soils were cropped with ryegrass in controlled conditions in the glasshouse, the yields of grass were independent of SOM and there was the same critical Olsen P for both soils. Overall, the data confirm that, for these soil types, the current recommendations for Olsen P for arable crops in England, Wales and Northern Ireland are appropriate.  相似文献   

14.
Abstract

The ammonium acetate (NH4OAc)‐EDTA soil phosphorus (P) extraction method was compared to either the Bray‐1 soil P extraction method for non‐calcareous soils or the Olsen soil P extraction method for calcareous soils to predict com and wheat plant tissue P concentration and grain yield responses. The NH4OAc‐EDTA method predicted yield and tissue P concentration responses to P fertilizer applications more accurately than the Olsen method at three of five sites. Both the Bray‐1 and NH4OAc‐EDTA methods were successful in predicting corn and wheat yield responses to P fertilizer applications in non‐ calcareous soils in many locations. However, a direct comparison of extracted soil P levels showed that the NH4OAc‐EDTA method extracted soil P at levels which were more closely related to the Bray‐1 method than the Olsen method.  相似文献   

15.
Nitrogen (N) availability in grasslands varies with agricultural land use. Traditional management regimes of mowing for hay and manuring in subalpine meadows maintain plant communities with exploitative functional strategies suited to fertile soils with fast turnover of nutrients. We investigated whether the neglect of traditional practices has led to a reduction in N availability in two parallel ecosystems (terraced and unterraced fields). Soil nitrate and ammonium contents were assessed using soil cores and ion exchange resins over a 1-year period, and assays of microbial nitrifying and denitrifying enzyme activities, made early in the growing season. A large difference in pH between the two ecosystems, caused by historical ploughing, facilitated greater N availability in terraced than unterraced fields. Abandonment of manuring and mowing caused a reduction in N availability and N transformation processes, which correlated with a shift in the plant community towards more-conservative functional strategies and greater dominance by grasses. We propose that positive feedback between the grassland management regime and dominant plant functional strategy maintained high N availability in these managed subalpine grasslands. When traditional practices of mowing and manuring are neglected, direct management effects combined with the spread of grass species with conservative strategies force down N availability in the soil, reduce microbial activity, change the pH, and lead to a long-term loss of characteristic herbaceous subalpine-meadow species.  相似文献   

16.
Nutrient deficiency, especially zinc (Zn) and phosphorus (P), is a common nutritional problem for the production of some crops in Turkey. This problem results in the application of increasing amounts of several fertilizers. Mycorrhizal inoculation or the indigenous potential of mycorrhizae in the soil is a critical factor in crop production under low supply of Zn and P. The effects of selected mycorrhizal inoculation on growth and Zn and P uptake of maize and green pepper were investigated in Zn- and P-deficient calcareous soils from Central Anatolia. Soils were sterilized by autoclaving and plants were grown for 7 weeks in pots under greenhouse conditions with inoculation of two selected arbuscular mycorrhizal (AM) species (Glommus moseea and G. etunicatum) at three rates of P (0, 25, 125 mg P kg?1 soil) and two rates of Zn (0 and 5 mg Zn kg?1soil). Without mycorrhizal inoculation, shoot and root dry matter production were severely affected by P and Zn deficiencies, and supply of adequate amounts of P and Zn significantly enhanced plant growth. When the soil was inoculated with mycorrhizal inoculation, the increasing effects of P and Zn fertilization on plant growth remained less pronounced. In accordance with growth data, mycorrhizae inoculation enhanced P and Zn concentration of plants, especially under low supply of P and Zn. The results obtained indicate that maize and green pepper are highly mycorrizal–dependent (MD) plant species under both low P and Zn supply and mycorrhizae play an essential role in P and Zn nutrition of plants in P and Zn-deficient soils. Although addition of P and Zn increased plant growth and plants are mycorrhizal dependent on P and Zn nutrition however dependence is much more dependent on P nutrition.  相似文献   

17.
Early season problems with growth of corn (Zea mays L.) under cool, wet conditions prompted a study of the effects of soil and environmental conditions on mineralization and plant uptake of phosphorus (P). Our objective was to determine the effect of soil test P, temperature, and soil fumigation on soil P availability and uptake during early corn growth. Corn was grown in growth chambers at temperatures of 14°C or 25°C. Soils were a high‐P Hastings silty clay loam (fine, montmorillonitic, mesic Udic Argiustoll) and a low‐P Sharpsburg clay loam (fine, montmorillonitic, mesic Typic Argiudoll). Plants grew for up to 42 d either in soil which had been fumigated with methyl bromide to reduce microbial populations or left unfumigated. We harvested whole pots for soil and plant analysis at 1, 14, 28, and 42 d after planting. Biomass carbon (C) and biomass P were lower in fumigated soils and biomass C increased with time. Fumigation increased Bray Pl‐extractable P at all times. Phosphatase activity and mycorrhizal colonization were both reduced by fumigation. Cumulative plant P uptake was highest in Hastings at 25°C. Higher temperature and higher initial P status increased plant P uptake during early growth. Plants grown in fumigated soil did not take up more P, despite greater extractable P.  相似文献   

18.
Abstract

Iron (Fe)‐impregnated filter paper strips (Pi) have been proposed as a method for measuring available soil phosphorus (P). A well‐defined Pi method has not yet been developed and Pi strips are often prepared with different filter papers and procedures. A study aimed at arriving at a consistent Pi method is thus needed. Four types of Pi strips, prepared with the two most widely used papers, Whatman No. 50 and 541, following a procedure that incorporates improvements both proposed in the literature and made in our laboratory, were evaluated for P extraction capacity and error. Two of the best strips, which are significantly different in P extraction capacity, along with the Mehlich 1 (0.05M HCl and 0.0125M H2SO4) and the Olsen method (0.5M NaHCO3, pH 8.5) were further evaluated in a greenhouse experiment involving eight soils planted with corn (Zea mays L.). Results indicated that strips prepared with both Whatman No. 50 and 541 were appropriate for P extractions as long as strips were washed with deionized water after treatment with ammonium hydroxide (NH4OH). At room temperatures the strips probably contain both hydrous Fe hydroxides and oxides in both crystalline and amorphous forms. Pi P was well correlated with Olsen P and P uptake in all soils, indicating that Pi is generally applicable in diverse soils. No obvious advantage was found for the Pi with respect to the Olsen method. Both the Pi and the Olsen method were better extractants with respect to the Mehlich 1, which was ineffective for extracting P in calcareous soils. Extractable P by Mehlich 1, Olsen, and Pi all correlated highly with accumulated plant available P estimated by eight sequential crops in the greenhouse. However, none of the methods could account for all the variation in plant P removal.  相似文献   

19.
Abstract

We developed and assessed a method for simultaneous extraction of plant available nitrogen, phosphorus, sulfur and potassium using anion and cation exchange membranes (ACEM). The technique was found to be highly suitable for routine soil testing due to its simplicity, rapidness and accuracy. The study compared the amount of nutrients extracted by ACEM with conventional chemical‐based extractants for P and K (0.5M NaHCO3) and N and S (0.001M CaCl2) for 135 soil samples representing a wide range of soil types in Western Canada. The nutrient availability predicted by ACEM was significantly correlated with the conventional methods. The correlation was not affected by the two different shaking times tested (one hour and 15 minutes), suggesting that extraction times as short as 15 minutes could be used in ACEM extraction. To evaluate the relative ability of ACEM and the conventional tests to predict actual nutrient availability to plants, canola plants were grown on soils in the growth chamber and actual plant uptake was compared to test‐predicted nutrient availability. Phosphorus and potassium uptake by canola plants was more closely correlated with ACEM extractable P and K (r2= 0.84*** and 0.54***) than with 0.5M NaHCO3 P and K (r2= 0.70*** and 0.37***). Also, nitrogen and sulfur uptake by canola plants was significantly correlated with ACEM extractable‐NO3 and ‐SO4 (r2 = 0.60*** and 0.70***) and with CaCl2 extractable‐NC3 and ‐SO4 (r2 = 0.57*** and 0.61***). Availability of all four macronutrients can be assessed in a single ACEM extraction. The higher correlation with plant uptake suggests that ACEM is a better index of macronutrient availability than conventional methods. The ACEM soil test could be readily adopted in routine soil analysis because of low cost and simplicity as well as its consistency over a wide range of soil types.  相似文献   

20.
Abstract

Investigating the relation between concentration or release of phosphorus (P) into soil solution (CaCl2‐P, determined by 0.01 M CaCl2 extraction of soils) and soil test phosphorus (Olsen P, or 0.5 N NaHCO3‐extractable soil phosphorus) for 10 widely ranging and variously managed soils from central Italy, a change point was evident where the slopes of two linear relationships meet. In other words, it was possible to distinguish two sections of the plots of CaCl2‐P against Olsen P, for which increases of CaCl2‐P per unit of soil test P increase were significantly (p<0.05) greater above than below these change points. Values of change point ranged from 14.8 to 253.1 mg kg?1 Olsen P and were very closely correlated (p<0.001) to phosphorus sorption capacity of soils. Similar change points were also previously observed when Olsen P (and also Mehlich 3 P) of surface soils was related to the P concentration of surface runoff and subsurface drainage. Because insufficient data are available relating P in surface soils and amount of P loss by overland, subsurface, or drainage flow, using the CaCl2 extraction of soil can be convenient to determine a change point in soil test P, which may be used in support of agricultural and environmental P management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号