首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The Chinese alligator, Alligator sinensis, is on the verge of becoming extinct in the wild as a result of loss of natural wetlands in the lower Changjiang valley. Chinese alligators are only known from a small region in southeastern Anhui province, a fraction of its former distribution. Within this area, a 433 km2 reserve has been declared that contains 13 designated habitat sites totaling 41 ha. The sites consist of small ponds located within or adjacent to villages, are completely surrounded by rice fields, or are biologically marginal oligotrophic ponds set in low hills. Alligators are only present at 10 of the 13 designated sites, with the largest groups containing a maximum of 10-11 animals and one adult female. In recent years nesting is known from only four areas, but the eggs are routinely collected and hatchlings retained in the Anhui alligator breeding center. The total population of wild Chinese alligators is probably <130 and is declining at an annual rate of 4-6%. If present trends continue, the Chinese alligator will be the first species of crocodilian to become extinct in the wild in historical times. Conservation efforts need to focus on protection of remaining wetlands and wetland restoration, and the inclusion of Chinese alligators in the active management of protected wetlands sites throughout the species' historic distribution.  相似文献   

2.
Many species of coral reef fish undertake ontogenetic migrations between seagrass beds, mangroves, and coral reefs. A recent study from the Caribbean found that the availability of mangrove nursery habitat had a striking impact on the community structure and biomass of reef fish in their adult, coral reef habitat. The biomass of several species more than doubled when the reefs were connected to rich mangrove resources (defined as having at least 70 km of fringing Rhizophora mangle within a region of 200 km2). Here, the results of this large-scale empirical study are translated into a series of algorithms for use in natural resource management planning. Four algorithms are described that identify (i) the relative importance of mangrove nursery sites, (ii) the connectivity of individual reefs to mangrove nurseries, (iii) areas of nursery habitat that have an unusually large importance to specific reefs, and (iv) priority sites for mangrove reforestation projects. The algorithms generate a connectivity matrix among mangroves and coral reefs that facilitates the identification of connected corridors of habitats within a dynamic planning environment (e.g., reserve selection algorithms).  相似文献   

3.
While the importance of nearby terrestrial habitats is gaining recognition in contemporary wetland management strategies, it is rarely recognized that different wetlands are often diverse in their functions of meeting the annual or life-cycle requirements of many species, and that migration between these wetlands is also critical. Using radio-telemetry, we examined terrestrial habitat use and movements of 53 eastern long-necked turtles (Chelodina longicollis) in an area of southeast Australia characterized by spatially diverse and temporally variable wetlands. Male and female C. longicollis exhibited a high degree of dependence on terrestrial habitat, the majority (95%) of individuals using sites within 375 m of the wetland. Turtles also associated with more than one wetland, using permanent lakes during droughts and moving en masse to nearby temporary wetlands after flooding. Turtles used 2.4 ± 0.1 (range = 1-5) wetlands separated by 427 ± 62 (range = 40-1470) m and moved between these wetlands 2.6 ± 0.3 (range = 0-12) times over the course of a year. A literature review revealed that several species of reptiles from diverse taxonomic groups move between wetlands separated by a mean minimum and maximum distance of 499-1518 m. A high proportion of studies attributed movements to seasonal migrations (55%) and periodic drought (37%). In such cases we argue that the different wetlands offer complimentary resources and that managing wetlands as isolated units, even with generous terrestrial buffer zones, would not likely conserve core habitats needed to maintain local abundance or persistence of populations over the long term. Core management units should instead reflect heterogeneous groups of wetlands together with terrestrial buffer zones and travel corridors between wetlands.  相似文献   

4.
Leopards (Panthera pardus) are endangered in South East Asia yet little is known about which resources need to be secured for their long-term conservation or what numbers of this species this region can support. This study uses radio telemetry to investigate seasonal variation in habitat selection and home range size of Leopards in Huai Kha Khaeng Wildlife Sanctuary, Thailand. Over a five year period, 3690 locations were recorded from nine individuals. The mean ± standard error of fixed kernel home range size for six adult females was 26 ± 8.2 km2, for two adult males was 45.7 ± 14.8 and for two sub-adult females was 29 km2 ± 5.5. Adult female wet and dry season home range sizes did not differ significantly. One adult male showed an increase in home range size from dry to wet seasons. Estimated density was 7 adult females/100 km2, which suggests 195 adult female leopards living in Huai Kha Khaeng alone, thus highlighting the larger Western Forest Complex’s potential contribution to leopard conservation. Compositional analysis of second and third order habitat selection suggested mixed deciduous and dry evergreen forest types, flat slope and areas close to stream channels are important landscape features for leopards. These results can help formulate a much needed conservation strategy for leopards in the region.  相似文献   

5.
Glomalin concentrations of extra-radical arbuscular mycorrhizal (AM) hyphae were estimated by deploying hyphal in-growth cores containing glomalin-free sand in field soils in a tropical forest and in pot cultures. In field soils, glomalin was 0.044±0.013 μg m−1 hyphae. In pot cultures glomalin concentrations were lower (range 0.0068-0.036 μg m−1), and varied significantly among species. Using this technique, preliminary estimates of extraradical AM hyphal production on Inceptisols were 1.91 Mg ha−1yr−1 and on Oxisol were 1.47 Mg ha−1 yr−1, but they could range between 0.9-5.7 Mg ha−1 yr−1. These rates of hyphal production are approximately 10% (range 5-33%) of estimated above ground primary production of the forest.  相似文献   

6.
Stable 15N isotope dilution and tracer techniques were used in cultivated (C) and uncultivated (U) ephemeral wetlands in central Saskatchewan, Canada to: (1) quantify gross mineralization and nitrification rates and (2) estimate the relative proportion of N2O emissions from these wetlands that could be attributed to denitrification versus nitrification-related processes. In-field incubation experiments were repeated in early May, mid-June and late July. Mean gross mineralization and nitrification rates (10.3 and 3.1 mg kg−1 d−1, respectively) did not differ between C and U wetlands on any given date. Despite these similarities, the mean NH4+ pool size in the U wetlands (17.2 mg kg−1) was two to three times that of the C wetlands (6.7 mg kg−1) whereas the mean NO3 pool size in U wetlands (2.2 mg kg−1) was less than half that of C wetlands (5.8 mg kg−1). Mean N2O emissions from the C wetlands decreased from 112.8 to 17.0 ng N2O m2 s−1 from May to July, whereas mean U-wetland N2O emissions ranged only from 31.8 to 51.1 ng N2O m2 s−1 over the same period. This trend is correlated to water-filled pore space in C wetlands, demonstrating a soil moisture influence on emissions. Denitrification is generally considered the dominant emitter of N2O under anaerobic conditions, but in the C wetlands, only 49% of the May emissions could be directly attributed to denitrification, decreasing to 29% in July. In contrast, more than 75% of the N2O emissions from the U wetlands arose from denitrification of the soil NO3 pool throughout the season. These land use differences in emission sources and rates should be taken into consideration when planning management strategies for greenhouse gas mitigation.  相似文献   

7.
The Saimaa ringed seal, Phoca hispida saimensis, is one of the most endangered ringed seals in the world. Its total population consisted of 240 adult seals in the Saimaa lake complex in 2000. We estimated the amount of vendace, Coregonus albula, consumed by the seals and compared it with fishermen’s vendace catches and our vendace stock estimates in Lake Pihlajavesi, Finland. Our study area was the habitat of 43 mature seals and 17 immature seals as well as 12 pups in 2001. Five commercial two-boat trawlers fished in the area. Vendace stock size was estimated at 660 tonnes i.e., 12 kg ha−1 in the study area in August-September 2001. The vendace catch by fishermen was approximately 250 tonnes, and the vendace consumption by the Saimaa ringed seal was estimated at 68 tonnes in 2001. We estimated that during the whole year seals ate approximately 8% of the vendace spawning stock biomass in the area while fishermen caught 30% of it. The seals and the fishermen together used less than 10% of the available vendace biomass in each month. Fishing pressure on the vendace stock was highest in August-October. The amount of vendace eaten by the seals exceeded the vendace catch in fisheries only in December-April. In periods of low vendace density, the seals can consume a higher proportion of the stock and reduce the catch per unit of effort in fisheries. However, our assumption that seals fed only on vendace should be considered as an extreme scenario when considering the conflict between fisheries and the seal.  相似文献   

8.
The effects of elevated CO2 supply on N2O and CH4 fluxes and biomass production of Phleum pratense were studied in a greenhouse experiment. Three sets of 12 farmed peat soil mesocosms (10 cm dia, 47 cm long) sown with P. pratense and equally distributed in four thermo-controlled greenhouses were fertilised with a commercial fertiliser in order to add 2, 6 or 10 g N m−2. In two of the greenhouses, CO2 concentration was kept at atmospheric concentration (360 μmol mol−1) and in the other two at doubled concentration (720 μmol mol−1). Soil temperature was kept at 15 °C and air temperature at 20 °C. Natural lighting was supported by artificial light and deionized water was used to regulate soil moisture. Forage was harvested and the plants fertilised three times during the basic experiment, followed by an extra fertilisations and harvests. At the end of the experiment CH4 production and CH4 oxidation potentials were determined; roots were collected and the biomass was determined. From the three first harvests the amount of total N in the aboveground biomass was determined. N2O and CH4 exchange was monitored using a closed chamber technique and a gas chromatograph. The highest N2O fluxes (on average, 255 μg N2O m−2 h−1 during period IV) occurred just after fertilisation at high water contents, and especially at the beginning of the growing season (on average, 490 μg N2O m−2 h−1 during period I) when the competition of vegetation for N was low. CH4 fluxes were negligible throughout the experiment, and for all treatments the production and oxidation potentials of CH4 were inconsequential. Especially at the highest rates of fertilisation, the elevated supply of CO2 increased above- and below-ground biomass production, but both at the highest and lowest rates of fertilisation, decreased the total amount of N in the aboveground dry biomass. N2O fluxes tended to be higher under doubled CO2 concentrations, indicating that increasing atmospheric CO2 concentration may affect N and C dynamics in farmed peat soil.  相似文献   

9.
Estimating historic distributions of species is a critical step in evaluating current levels of habitat loss, evaluating sites for potential restoration and reintroductions, and for conservation planning at a landscape scale. However historic distributions can be difficult to estimate objectively because substantial habitat changes may have occurred prior to comprehensive surveys. As a means to address this question, we evaluated a novel approach by creating spatial niche models for two species of psammophilic lizards. Using a partitioned Mahalanobis D2 analysis and abiotic variables that were independent of anthropogenic change, we created niche models for the federally threatened Coachella Valley fringe-toed lizard (Uma inornata) and for the flat-tailed horned lizard (Phrynosoma mcallii). The niche models estimated that within the Coachella Valley there were originally 32,164 ha of potential habitat for the fringe-toed lizard and 33,502 ha of potential habitat for the horned lizard. After screening these estimates of historic habitat for current conditions that would render that potential habitat unsuitable, we calculated a 91-95% loss of potential habitat for the fringe-toed lizard and an 83-92% loss for the horned lizard. Unlike the fringe-toed lizard, the horned lizard also occurs outside the Coachella Valley. Conducting a similar analysis throughout its range would provide an objective estimate of the total habitat loss experienced by this species. This information could be used to address whether granting it federal or state protection is warranted. For species whose distributions can be modeled with abiotic variables such as soils, elevation, topography, and climate, this approach may have broad applications for resolving questions regarding their current levels of habitat loss and regional conservation planning.  相似文献   

10.
To increase wetland acreage and biodiversity, Delaware agencies constructed >220 depressional wetlands. During construction, agencies included amendments thought to increase biodiversity. Because the efficacy of amendments is unknown, we investigated their effects on macroinvertebrate and vegetative communities. We selected 20 standardized wetlands (five contained coarse woody debris (CWD) and microtopography amendments (land surface ridges and furrows), five had neither, five had CWD only, and five had microtopography only). Additionally, 12 wetlands had received organic matter amendments (i.e., straw). Insect richness (P = 0.010; r2 = 0.16), insect biomass (P = 0.023; r2 = 0.13), intolerant insect biomass (P = 0.033, r2 = 0.03), Ephemeroptera biomass (P = 0.027; r2 = 0.12), and Odonata biomass (P = 0.046; r2 = 0.10) increased with CWD volume. Obligate plant percent cover increased with microtopographic variation (P = 0.029; r2 = 0.120). Although organic matter amendments did not increase percent soil organic matter (t13.7 = −1.16, P = 0.264), total (P = 0.027; r2 = 0.12), native (P = 0.036; r2 = 0.11), and facultative (P = 0.001; r2 = 0.24) plant richness increased with percent soil organic matter. To enhance biodiversity, constructed wetlands should contain CWD, but additional research is needed to understand the benefits of microtopography and organic matter amendments.  相似文献   

11.
The main energy sources of soil microorganisms are litter fall, root litter and exudation. The amount on these carbon inputs vary according to basal area of the forest stand. We hypothesized that soil microbes utilizing these soil carbon sources relate to the basal area of trees. We measured the amount of soil microbial biomass, soil respiration and microbial community structure as determined by phospholipid fatty acid (PLFA) profiles in the humus layer (FH) of an even-aged stand of Scots pine (Pinus sylvestris L.) with four different basal area levels ranging from 19.9 m2 ha−1 in the study plot Kasper 1 to 35.7 m2 ha−1 in Kasper 4. Increasing trend in basal respiration, total PLFAs and fungal-to-bacterial ratio was observed from Kasper 1 to Kasper 3 (basal area 29.2 m2 ha−1). The soil microbial community structure in Kasper 3 differed from that of the other study plots.  相似文献   

12.
Ascospores of Sclerotinia sclerotiorum produced from apothecia are the primary source of inoculum for causing diseases such as white mold of common bean, pod rot of pea, stem blight of canola and head rot of sunflower and safflower in the Canadian prairies. A field study was conducted for 4 years to determine efficacy of control of production of apothecia from carpogenically germinated sclerotia of S. sclerotiorum by soil amendment with Perlka® (calcium cyanamide) and S-H mixture (a formulated compound). Results of the 4-year experiments showed that amendment of soil with Perlka® at low (30 g/m2) or high (60 g/m2) rate was effective in reducing carpogenic germination of sclerotia and production of apothecia under the canopy of host crops (common bean and canola) and a non-host crop (wheat). In the experiments of 1988, for example, the numbers of apothecia produced in the treatments of Perlka®-low rate (30 g/m2), Perlka®-high rate (60 g/m2) and untreated control were 42, 46, and 182 apothecia/plot (m2), respectively, for bean; 89, 42, and 318 apothecia/plot (m2), respectively, for canola; and 146, 143, and 412 apothecia/plot (m2), respectively, for wheat. However, soil amendment of S-H mixture at low (30 g/m2) or high (60 g/m2) rate was ineffective in reducing carpogenic germination of sclerotia and production of apothecia for all the 4 years of testing in all three crops. The ineffectiveness of S-H mixture and the practicality of Perlka® for control of Sclerotinia diseases of crops grown under Canadian prairie conditions are discussed.  相似文献   

13.
Biogenic H2S emissions from Florida wetland surfaces enclosed by transparent polycarbonate cylinders were collected on silver nitrate impregnated filters and analyzed fluorometrically. The areal emission rates ranged from 0.024 to 0.272 g S M-2 yr?1 for a mangrove and from 0.001 to 0.110 g S m?2 yr?1 for two freshwater wetlands (cypress swamp and riverine marsh) and a saltwater marsh. The total quantity of biogenic S emitted from these wetlands was estimated to range from 1.8 x 109 to 3.0 × 109 g yr?1. While biogenic emissions from wetlands may be a factor in local patterns of acid deposition, they are probably insignificant contributors to Florida's atmospheric S burden and acidity of precipitation compared to anthropogenic S sources.  相似文献   

14.
Based on the enclosed chamber method, soil respiration measurements of Leymus chinensis populations with four planting densities (30, 60, 90 and 120 plants/0.25 m2) and blank control were made from July 31 to November 24, 2003. In terms of soil respiration rates of L. chinensis populations with four planting densities and their corresponding root biomass, linear regressive equations between soil respiration rates and dry root weights were obtained at different observation times. Thus, soil respiration rates attributed to soil microbial activity could be estimated by extrapolating the regressive equations to zero root biomass. The soil microbial respiration rates of L. chinensis populations during the growing season ranged from 52.08 to 256.35 mg CO2 m−2 h−1. Soil microbial respiration rates in blank control plots were also observed directly, ranging from 65.00 to 267.40 mg CO2 m−2 h−1. The difference of soil microbial respiration rates between the inferred and the observed methods ranged from −26.09 to 9.35 mg CO2 m−2 h−1. Some assumptions associated with these two approaches were not completely valid, which might result in this discrepancy. However, these two methods' application could provide new insights into separating root respiration from soil microbial respiration. The root respiration rates of L. chinensis populations with four planting densities could be estimated based on measured soil respiration rates, soil microbial respiration rates and corresponding mean dry root weight, and the highest values appeared at the early stage, then dropped off rapidly and tended to be constant after September 10. The mean proportions of soil respiration rates of L. chinensis populations attributable to the inferred and the observed root respiration rates were 36.8% (ranging from 9.7 to 52.9%) and 30.0% (ranging from 5.8 to 41.2%), respectively. Although root respiration rates of L. chinensis populations declined rapidly, the proportion of root respiration to soil respiration still increased gradually with the increase of root biomass.  相似文献   

15.
Since the introduction of Terrestrial Laser Scanning (TLS) instruments, there now exists a means of rapidly digitizing intricate structural details of vegetation canopies using Light Detection and Ranging (LiDAR) technology. In this investigation, Intelligent Laser Ranging and Imaging System (ILRIS-3D) data was acquired of individual tree crowns at olive (Olea europaea L.) plantations in Córdoba, Spain. In addition to conventional tripod-mounted ILRIS-3D scans, the unit was mounted on a platform (12 m above ground) to provide nadir (top-down) observations of the olive crowns. 24 structurally variable olive trees were selected for in-depth analysis. From the observed 3D laser pulse returns, quantitative retrievals of tree crown structure and foliage assemblage were obtained. Robust methodologies were developed to characterize diagnostic architectural parameters, such as tree height (r2 = 0.97, rmse = 0.21 m), crown width (r2 = 0.97, rmse = 0.13 m), crown height (r2 = 0.86, rmse = 0.14 m), crown volume (r2 = 0.99, rmse = 2.6 m3), and Plant Area Index (PAI) (r2 = 0.76, rmse = 0.26 m2/m2). With the development of such LiDAR-based methodologies to describe vegetation architecture, the forestry, agriculture, and remote sensing communities are now faced with the possibility of replacing current labour-intensive inventory practices with, modern TLS systems. This research demonstrates that TLS systems can potentially be the new observational tool and benchmark for precise characterization of vegetation architecture for improved agricultural monitoring and management.  相似文献   

16.
Here we present results from a field experiment in a sub-arctic wetland near Abisko, northern Sweden, where the permafrost is currently disintegrating with significant vegetation changes as a result. During one growing season we investigated the fluxes of CO2 and CH4 and how they were affected by ecosystem properties, i.e., composition of species that are currently expanding in the area (Carex rotundata, Eriophorum vaginatum and Eriophorum angustifolium), dissolved CH4 in the pore water, substrate availability for methane producing bacteria, water table depth, active layer, temperature, etc. We found that the measured gas fluxes over the season ranged between: CH4 0.2 and 36.1 mg CH4 m−2 h−1, Net Ecosystem Exchange (NEE) −1000 and 1250 mg CO2 m−2 h−1 (negative values meaning a sink of atmospheric CO2) and dark respiration 110 and 1700 mg CO2 m−2 h−1. We found that NEE, photosynthetic rate and CH4 emission were affected by the species composition. Multiple stepwise regressions indicated that the primary explanatory variables for NEE was photosynthetic rate and for respiration and photosynthesis biomass of green leaves. The primary explanatory variables for CH4 emissions were depth of the water table, concentration of organic acid carbon and biomass of green leaves. The negative correlations between pore water concentration and emission of CH4 and the concentrations of organic acid, amino acid and carbohydrate carbon indicated that these compounds or their fermentation by-products were substrates for CH4 formation. Furthermore, calculation of the radiative forcing of the species expanding in the area as a direct result of permafrost degradation and a change in hydrology indicate that the studied mire may act as an increasing source of radiative forcing in future.  相似文献   

17.
Earthworms are known to be important regulators of soil structure and soil organic matter (SOM) dynamics, however, quantifying their influence on carbon (C) and nitrogen (N) stabilization in agroecosystems remains a pertinent task. We manipulated population densities of the earthworm Aporrectodea rosea in three maize-tomato cropping systems [conventional (i.e., mineral fertilizer), organic (i.e., composted manure and legume cover crop), and an intermediate low-input system (i.e., alternating years of legume cover crop and mineral fertilizer)] to examine their influence on C and N incorporation into soil aggregates. Two treatments, no-earthworm versus the addition of five A. rosea adults, were established in paired microcosms using electro-shocking. A 13C and 15N labeled cover crop was incorporated into the soil of the organic and low-input systems, while 15N mineral fertilizer was applied in the conventional system. Soil samples were collected during the growing season and wet-sieved to obtain three aggregate size classes: macroaggregates (>250 μm), microaggregates (53-250 μm) and silt and clay fraction (<53 μm). Macroaggregates were further separated into coarse particulate organic matter (cPOM), microaggregates and the silt and clay fraction. Total C, 13C, total N and 15N were measured for all fractions and the bulk soil. Significant earthworm influences were restricted to the low-input and conventional systems on the final sampling date. In the low-input system, earthworms increased the incorporation of new C into microaggregates within macroaggregates by 35% (2.8 g m−2 increase; P=0.03), compared to the no-earthworm treatment. Within this same cropping system, earthworms increased new N in the cPOM and the silt and clay fractions within macroaggregates, by 49% (0.21 g m−2; P<0.01) and 38% (0.19 g m−2; P=0.02), respectively. In the conventional system, earthworms appeared to decrease the incorporation of new N into free microaggregates and macroaggregates by 49% (1.38 g m−2; P=0.04) and 41% (0.51 g m−2; P=0.057), respectively. These results indicate that earthworms can play an important role in C and N dynamics and that agroecosystem management greatly influences the magnitude and direction of their effect.  相似文献   

18.
The use of commercially purchased or field-collected earthworms of unknown age, exposure or pre-treatment in sub-lethal ecotoxicological studies is questionable. In this study, adult (clitellate) Lumbricus terrestris, obtained from 5 commercial suppliers in the UK and also field collected, were kept under controlled environmental conditions (15 °C and 24 h darkness) in a sterilised loam soil and fed horse manure. Survival, biomass and cocoon production was monitored every 4 weeks over 1 y. Marked differences were recorded in survival rates (ranging from 40-100% after 40 weeks) and cocoon production (ranging from 15.1 to 32.2 worm−1 y−1) between treatments. Biomass in all treatments (mean mass 4.32-5.61 g at the outset) increased with time to week 20 (maximum 6.7 g) and then declined steadily (3.23-4.7 g at week 52). This pattern was also observed in cocoon production and was considered to be a function of an initial period of acclimation (0-12 weeks) followed by a period of high production (12-36 weeks) under optimal conditions and then fatigue (36-52 weeks) caused by reproductive exhaustion. Results suggest that earthworm origin may influence the validity and reproducibility of sub-lethal ecotoxicological studies and where applicable laboratory-reared earthworms of known age and history are recommended as test subjects.  相似文献   

19.
Connectivity among habitat patches has mainly been studied in relation to species-specific behaviours. However, the movements of animals among patches may have different functions, and tolerance to gaps between habitat patches may vary between these functions. We tracked the movements of greater flamingos during the breeding and post-breeding periods with the aim of illustrating how the degree of connectivity may vary depending on the biological processes underlying the movements between wetlands. Most foraging sites used by breeding adults in a colony in southern Spain were within 200 km of the colony site, although some birds eventually moved 400 km. After the breeding season, the adults remained for several weeks in specific wetlands, moving to other sites located 280-2100 km away to overwinter. During these movements the birds may use stopover sites, the conservation of which may be critical to facilitate long-range movements. Our results suggest that wetland connectivity during chick rearing does not seem to be determined by whether or not central-place foraging flamingos are able to reach wetlands located at the longest distance that they are able to fly during non-stop flights (>1000 km), but by whether they are able to sustain the energetic costs derived from frequent commuting. In contrast, long-distance movements were occasionally undertaken during the post-breeding period. The energetic costs of such flights could be paid by flamingos because these movements were infrequent. Thus, in the case of flamingos, connectedness thresholds between wetlands vary depending on the biological process involved (chick rearing or post-breeding movements). This emphasizes the need to consider different types of connectivity in conservation planning.  相似文献   

20.
We examined effects of wetting and then progressive drying on nitrogen (N) mineralization rates and microbial community composition, biomass and activity of soils from spinifex (Triodia R. Br.) grasslands of the semi-arid Pilbara region of northern Australia. We compared soils under and between spinifex hummocks and also examined impacts of fire history on soils over a 28 d laboratory incubation. Soil water potentials were initially adjusted to −100 kPa and monitored as soils dried. We estimated N mineralization by measuring changes in amounts of nitrate (NO3-N) and ammonium (NH4+-N) over time and with change in soil water potential. Microbial activity was assessed by amounts of CO2 respired. Phospholipid fatty acid (PLFA) analyses were used to characterize shifts in microbial community composition during soil drying. Net N mineralized under hummocks was twice that of open spaces between hummocks and mineralization rates followed first-order kinetics. An initial N mineralization flush following re-wetting accounted for more than 90% of the total amount of N mineralized during the incubation. Initial microbial biomass under hummocks was twice that of open areas between hummocks, but after 28 d microbial biomass was<2 μ g−1 ninhydrin N regardless of position. Respiration of CO2 from soils under hummocks was more than double that of soils from between hummocks. N mineralization, microbial biomass and microbial activity were negligible once soils had dried to −1000 kPa. Microbial community composition was also significantly different between 0 and 28 d of the incubation but was not influenced by burning treatment or position. Regression analysis showed that soil water potential, microbial biomass N, NO3-N, % C and δ15N all explained significant proportions of the variance in microbial community composition when modelled individually. However, sequential multiple regression analysis determined only microbial biomass was significant in explaining variance of microbial community compositions. Nitrogen mineralization rates and microbial biomass did not differ between burned and unburned sites suggesting that any effects of fire are mostly short-lived. We conclude that the highly labile nature of much of soil organic N in these semi-arid grasslands provides a ready substrate for N mineralization. However, process rates are likely to be primarily limited by the amount of substrate available as well as water availability and less so by substrate quality or microbial community composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号