首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent global assessments have shown the limited coverage of protected areas across tropical biotas, fuelling a growing interest in the potential conservation services provided by anthropogenic landscapes. Here we examine the geographic distribution of biological diversity in the Atlantic Forest of South America, synthesize the most conspicuous forest biodiversity responses to human disturbances, propose further conservation initiatives for this biota, and offer a range of general insights into the prospects of forest species persistence in human-modified tropical forest landscapes worldwide. At the biome scale, the most extensive pre-Columbian habitats across the Atlantic Forest ranged across elevations below 800 masl, which still concentrate most areas within the major centers of species endemism. Unfortunately, up to 88% of the original forest habitat has been lost, mainly across these low to intermediate elevations, whereas protected areas are clearly skewed towards high elevations above 1200 masl. At the landscape scale, most remaining Atlantic Forest cover is embedded within dynamic agro-mosaics including elements such as small forest fragments, early-to-late secondary forest patches and exotic tree monocultures. In this sort of aging or long-term modified landscapes, habitat fragmentation appears to effectively drive edge-dominated portions of forest fragments towards an early-successional system, greatly limiting the long-term persistence of forest-obligate and forest-dependent species. However, the extent to which forest habitats approach early-successional systems, thereby threatening the bulk of the Atlantic Forest biodiversity, depends on both past and present landscape configuration. Many elements of human-modified landscapes (e.g. patches of early-secondary forests and tree monocultures) may offer excellent conservation opportunities, but they cannot replace the conservation value of protected areas and hitherto unprotected large patches of old-growth forests. Finally, the biodiversity conservation services provided by anthropogenic landscapes across Atlantic Forest and other tropical forest regions can be significantly augmented by coupling biodiversity corridor initiatives with biota-scale attempts to plug existing gaps in the representativeness of protected areas.  相似文献   

2.
The extent to which secondary forests occupying degraded and abandoned lands provide suitable habitat for forest-adapted species is an important conservation issue in times of vanishing old growth forests. We used ants (Hymenoptera: Formicidae), a functionally important and diverse group of invertebrates, to investigate the recovery of soil taxa during secondary forest succession in the Atlantic Forest of Southern Brazil. We compared the resilience of epigeic vs. hypogeic ant assemblages. For this purpose we established 27 sites that encompassed a chronosequence from pastures to old growth forests on two contrasting soil types. Our results are based on a collection of 35 508 individuals in 40 genera.Richness and composition of ant assemblages in secondary forests have recovered slowly and have not approached conditions typical of old growth forests. The distribution of genera along the successional stages was arranged in a nested pattern where ant genera of younger successional stages were a subset of genera present in older stages. Edaphic conditions had no influence on the recovery process. Overall, richness of ants was lower at study sites with water-logged soils than at sites where soils did not exhibit hydromorphic properties. The hypogeic ant assemblage recovered more slowly than the epigeic assemblage.Our results show that secondary forests do not act as refuges for many forest-adapted animals which are currently restricted to discontinuous patches of old growth forest in the highly endangered Atlantic Forest of Brazil. Moreover, estimated recovery times of 50 to several hundred years suggest it would take much longer than previously presumed for complete recolonization.  相似文献   

3.
The maned sloth (Bradypus torquatus) is an endangered species endemic to the Atlantic Forest of eastern Brazil. This biome has been reduced to 7% of its original extent and the remaining forests are highly fragmented. We analyzed 70 samples from the largest remnant populations in the states of Bahia, Espírito Santo and Rio de Janeiro to characterize their geographic structure and to produce estimates of genetic diversity. The analysis indicated that the remnant populations are reproductively isolated and extremely divergent. The populations present a very discontinuous distribution, with divergent genetic clusters specific to different geographical regions, probably caused by allopatric fragmentation. This pattern is likely related to Pleistocenic climatic and vegetation changes, and indicates the presence of at least two independent evolutionary units. The analyses also indicate that populations separated by more than 100 km should be considered different management units. Thus, devastation of the Atlantic Forest leads to an unrecoverable loss of genetic diversity in this species. These conclusions should direct conservation actions aimed at preserving the distinctiveness of each evolutionary unit, as well as to preserve the demographic isolation of different management units.  相似文献   

4.
The Brazilian Atlantic forest constitutes a unique biome characterised by a high species diversity and a high level of endemism. A long history of land clearing for crops, pastures, timber and firewood has resulted in over two centuries of widespread destruction. Today, less than 6·8% of the total area of the Atlantic forest of Minas Gerais has any form of forest cover and forests in primaeval state are not far from becoming extinct. The remaining forest patches are small, isolated and unprotected. In order to preserve some of the original diversity of the Atlantic forest, urgent efforts must be channelled toward protecting the remaining forest fragments.  相似文献   

5.
The neotropical Atlantic Forest supports one of the highest degrees of species richness and rates of endemism on the planet, but has also undergone a huge forest loss. However, there exists no broad-scale information about the spatial distribution of its remnants that could guide conservation actions, especially when systematic biodiversity data are not available. In this context, our objectives were to quantify how much of the forest still remains, and analyze its spatial distribution. We considered the entire Brazilian Atlantic Forest, and eight sub-regions, defined according to species distribution. The results revealed a serious situation: more than 80% of the fragments are <50 ha, almost half the remaining forest is <100 m from its edges, the average distance between fragments is large (1440 m), and nature reserves protect only 9% of the remaining forest and 1% of the original forest. On the other hand, our estimates of existing Atlantic Forest cover were higher than previous ones (7-8%), ranging from 11.4% to 16%. The differences among estimates are mainly related to our inclusion of intermediate secondary forests and small fragments (<100 ha), which correspond to approximately 32-40% of what remains. We suggest some guidelines for conservation: (i) large mature forest fragments should be a conservation priority; (ii) smaller fragments can be managed in order to maintain functionally linked mosaics; (iii) the matrix surrounding fragments should be managed so as to minimize edge effects and improve connectivity; and (iv) restoration actions should be taken, particularly in certain key areas. The clear differences in the amount remaining and its spatial distribution within each sub-region must be considered when planning for biodiversity conservation.  相似文献   

6.
Forest exploitation has destructed forest habitats in Fennoscandia during last centuries. Vital components of existing forest biodiversity have been identified as small (a few ha) woodland key habitats (WKHs). Many WKHs in boreal forest landscapes are assumed to represent remnant near-natural forests from before the phase of industrial forest exploitation. Thus, WKHs are supposed to (i) exhibit a low degree of exploitation, (ii) have old-growth characteristics and (iii) host Red-list species. Yet, WKHs’ history and biodiversity have not been systematically investigated. Thus, their conservation values remain unclear. This study investigates history and biodiversity of 15 WKHs in central Sweden with retrospective methods and field studies. We analyze (1) forest structure before, during and after the forest exploitation period, (2) existing biodiversity, i.e. species and structural elements, and (3) to what extent human activities (forestry) have influenced current biodiversity. Our results indicate that forest structure within the areas that currently are classified as WKHs has changed dramatically since the mid-19th century, when forests were unaffected by logging. The results suggest that fire-suppression during last century, gradually increased logging until mid-20th century and abandonment by modern forestry during the late 20th century, are main causes behind this transformation. Less than 10% of studied WKHs had biological features that resembled those of pristine boreal forests. Thus, most studied WKHs cannot be classified as near-natural or remnants of pristine forest. We suggest that the program for WKHs give more focus to pre-industrial forest structure, local historical aspects being seriously regarded and ecological restoration efforts being introduced.  相似文献   

7.
Forest fragmentation is a common disturbance affecting biological diversity, yet the impacts of fragmentation on many forest processes remain poorly understood. Forest restoration is likely to be more successful when it proceeds with an understanding of how native and exotic vertebrates utilize forest patches of different size. We used a system of forest fragments isolated by volcanic activity 153 years ago in Hawaii to examine how long-term fragmentation, as well as fragment size and structural features affect the richness of native and exotic bird species. The total number of bird species increased rapidly with forest fragment size, with most of the native species pool found in patches <3 ha. Smaller fragments were dominated by native bird species with several exotic bird species found only in the largest fragments, suggesting that exotic bird species in this landscape show greater area-sensitivity than native species. We used airborne scanning light detection and ranging (LiDAR) to assess whether fragment area was correlated with estimates of fragment vegetation volume as well as measures of tree height. Fragment area was highly correlated with vegetation volume, maximum tree height, and canopy height heterogeneity, and these variables were strong predictors of bird richness, demonstrating that remote sensing can provide key insights into the relationship between fragment structural attributes and biodiversity indicators. Overall, this work demonstrates the value of conserving small remnant mid-elevation forest patches for native birds in Hawaii. This work also provides insight into how newly created forest patches might be used by native and exotic bird species in Hawaii.  相似文献   

8.
Arbuscular mycorrhizal fungi (AMF) are of great importance for the successful regeneration of degraded natural areas. The objective of this study was to examine how the time of environmental recuperation is affecting the occurrence and diversity of AMF species in riparian areas belonging to the Atlantic Forest biome in the State of São Paulo, Brazil. The study involved a native forest area (NT) and a gradient of environmental restoration: five (R05), ten (R10), and twenty (R20) years after reforestation. Soil samples were collected in the rainy (January) and dry season (June). Chemical, physical and microbiological analyses were performed including the amount of glomalin and quantification of AMF spores. The frequency of occurrence of genera and ecological indices, as richness (R), Shannon's diversity (H) and Simpson's dominance index (Is) were calculated. The largest spore number was found in R05 and the highest richness and diversity indices of AMF species in NT. Considering the two sampling periods and the four areas studied, we found 22 AMF species, and the genera Glomus and Acaulospora were the most frequent. A Canonical Discriminant Analysis showed that Glomus viscosum, Acaulospora scrobiculata, Acaulospora mellea and Scutellospora heterogama were the species that contributed the most to distinguishing the areas. Moisture, density and glomalin were positively correlated with the number of spores, however, soil nitrate showed a negative correlation. This work gives a better understanding of the interactions between AMF and forest soils and allows to know the distribution of AMF species according to environmental recovery time.  相似文献   

9.
Singapore Island suffered one of the highest known deforestation rates in the tropics from the mid-to-late 19th century when over 95% of its native lowland forest was cleared. We compared the current bird community structure and composition among three habitat types, i.e., old (>50 years, 7-935 ha) and young (?50 years, 29-49 ha) naturally regenerating secondary forests and abandoned wooded plantations (27-102 ha) dominated by exotic species. Forest patch area had the strongest influence on the current species richness. The overall bird richness was not greater in most mature forest patches, but 20 species were only found in the old secondary forests and five of these were found in <50% of these patches. The rapid decrease in the number of forest species in plantations was offset by an increase in the number of open habitat species. Comparisons with current bird communities in nearby mainland forest sites (Peninsular Malaysia) suggest that the forest avifauna of Singapore is depauperate. The preservation of larger mature and maturing forests is therefore required for conserving the extant forest avifauna in Singapore. Connecting isolated patches can also be envisioned to facilitate movements of forest birds that have low densities and restricted distribution.  相似文献   

10.
Temperate forests currently cover about 600 MHa, about half of their potential. Almost all these forests have been directly impacted by humans. The total living biomass in trees (including roots) was estimated to contain 33.7 Gt C. The total C pool for the entire forest biome was estimated as 98.8 Gt. The current net sink flux of biomass was calculated at 205 Mt yr?1, with a similar amount removed in harvests for manufacture into various products. The major cause of this C sink is forest regrowth. Forest regrowth is possible because fossil fuels are the major source of energy in temperate countries, instead of fuelwood. Future C in these forests will be greatly influenced by human activity. Options to sequester more C include conservation of forest resources, activities that increase forest productivity such as adopting rotation ages to optimize C production, afforestation, improvement of wood utilization, and waste management.  相似文献   

11.
In view of the continued decline in tropical forest cover around the globe, forest restoration has become a key tool in tropical rainforest conservation. One of the main - and least expensive - restoration strategies is natural forest regeneration. By aiding forest seed influx both into disturbed and undisturbed habitats, frugivorous birds facilitate forest regeneration. This study focuses on the tolerance of a frugivorous bird community to anthropogenic habitat disturbance within the broader context of natural forest regeneration with conservation purposes. It was carried out in the tropical cloud forest of Costa Rica’s Talamanca Mountains. Bird community response and tolerance to habitat disturbance was assessed by comparing bird presence and densities along a disturbance gradient, ranging from open pastures to closed mature forests. Birds were censused along nine transects applying the variable width line transect procedure. Forty relevant frugivorous bird species were observed during 102 h of survey time. Densities were calculated for 33 species; nine species responded negatively to increasing level of disturbance and nine others positively. Results indicate that large frugivores are generally moderately tolerant to intermediate, but intolerant to severe habitat disturbance, and that tolerance is often higher for medium and small frugivores. It appears that moderately disturbed habitats in tropical cloud forests are highly suitable for restoration through natural regeneration aided by frugivorous birds. Due to a lack of large forest seed dispersers, severely disturbed habitats appear less suitable.  相似文献   

12.
Since pristine Atlantic Forest remnants are vanishing, and biological reserves are in short, conservation of biodiversity will largely depend on proper management of the anthropogenic matrix. Here, we test (1) the effectiveness of ecologically-managed tree monocultures in maintaining Araucaria Forest biodiversity, (2) how this effectiveness change among taxa, and (3) we discuss management principles that can be used by the forestry industry in order to contribute positively to biodiversity conservation. The study was conducted in the São Francisco de Paula National Forest, southern Brazil, an environmental mosaic composed mostly of patches of Araucaria Forest and ecologically-managed monocultures of Araucaria, Pinus and Eucalyptus. Using standardized sampling methods in these four main habitats, we have recorded the richness and species composition of small mammals, birds, leaf-litter frogs, butterflies, galling insects, spiders, opiliones, flatworms, woody plants, epiphytic angiosperms, epiphytic ferns, lichens, and fruit-body producing fungi. Overall, we recorded 506 species in Araucaria Forest, 181 (36%) of which were exclusive of this habitat while 325 (64%) could be found in at least one monoculture. Distribution patterns of species richness and number of records across taxonomic groups showed that a large biodiversity can be found inside ecologically-managed plantations of Araucaria, Pinus, and Eucalyptus. For all studied taxa, except for epiphytic angiosperms and fruit-body producing fungi, more than half of the Araucaria Forest species could be found living on monocultures. We discuss how the actual management practices of the forest industry can be improved to contribute positively to the conservation of the Atlantic Forest biodiversity.  相似文献   

13.
We evaluated floristic and ecological changes in plant communities after disturbance in Southern Atlantic Rain Forests, in the Brazilian states of Rio de Janeiro, São Paulo, Paraná and Santa Catarina. We compiled data for 410 tree species from 18 forests ranging from 4 to 120 years after disturbance, and classified them by dispersal mode (animal vs. non-animal), successional group (pioneer vs. non-pioneer), vertical position (understorey vs. non-understorey) and geographic distribution (Atlantic Forest vs. widespread). We found that both geographical location and time since disturbance affect species distribution and β-diversity. Regression analyses showed significant, positive and strong relations (0.26 ? r2 ? 0.63; P < 0.05) between fragment age and species richness, proportion of animal dispersed species, of non-pioneer species, of understorey species and with restricted distribution. Applying our data to values found in literature we predict that a forest needs about one to three hundred years to reach the proportion of animal-dispersed species (80% of the species), the proportion of non-pioneer species (90%) and of understorey species (50%) found in mature forests. On the other hand much more time is necessary (between one and four thousand years) to reach the endemism levels (40% of the species) that exist in mature forests. Our findings indicate that disturbance results in significant changes in species composition (decrease in endemic species) and ecological guilds (decrease in zoochory and in non-pioneer and understorey species), but forests can gradually recover over time spans of hundreds of years.  相似文献   

14.
Logging and intense shifting cultivation have caused major degradation of tropical forests and loss of biodiversity. Understanding the direct and indirect effects of those land uses on plant biodiversity is essential to the restoration of tropical forests. We compared the species diversity, community composition and basal area of all stems ?1 cm dbh among 18 1-ha tropical lowland and montane rain forest plots with a well-recorded long-term history of shifting cultivation and logging on Hainan Island, south China. We also explored the relative importance of disturbance and environmental factors in determining forest recovery. We found that the species density and diversity in old growth forests were higher than in shifting cultivation fallows (55 years old) but lower than in logged forests (35–40 years since logging). The species composition of shifting cultivation fallows was distinct from other forest types but logged forests were similar to old growth forests, especially in lowland forests. Disturbance intensity was the most frequently important factor in determining species composition, species density, diversity, and basal area accumulation. Soil nutrient availability explained some of the variation in species composition and diversity. Stem density was related to multiple factors including disturbance history, soil nutrients, and distance to old-growth forest. In general, we found that disturbance intensity was a better predictor of forest structure and diversity than edaphic environmental variables, highlighting the importance of human impacts in shaping tropical forest successional pathways.  相似文献   

15.
The combined effects of rapid habitat loss, fragmentation and disturbance on tropical forest avifaunas have not been examined to date. The southern Amazonian ‘arc of deforestation’ marks the boundary of the most aggressive agricultural frontier in tropical forests worldwide. We sampled 21 disturbed and undisturbed primary forest patches, ranging in size from 1.2 to 14,476 ha, to elucidate the synergistic effects of both forest disturbance and fragmentation on bird community structure, and pinpoint which species were the “winners” and “losers” from this process. A number of forest patch metrics, derived from an independent remote sensing approach, explained much of the resulting presence/absence matrix. The bird community exhibited a highly nested structure, with small patches being most dissimilar from one another. Bird species differed in their response to both forest patch size and forest canopy perforation according to their dependence on closed-canopy primary forest. Forest patch geometry, which clearly modulated the shape of species-area relationships accounted for 83-96% of the variation in species richness, but forest habitat quality resulting from logging and surface-fire disturbance was also a significant predictor of species richness for the most forest-dependent taxa.  相似文献   

16.
Bird species composition (61 species) of Afromontane forest fragments (n = 19) embedded in a natural grassland matrix or a plantation forestry matrix were compared. Forest bird assemblages in a natural grassland matrix displayed a nested non-random species distribution. Species loss was significantly area-dependent and predictable. Assemblages in the plantation-dominated matrix were also nested but were neither area- nor isolation-dependent and these potential processes had equal influence over bird species composition. Forests patches <50 ha in plantation were more species rich than those in a grassland matrix and visa versa for patches >50 ha. The effect of the matrix is revealed here with arboreal plantation cover promoting dispersal across the landscape, favouring abundant generalist bird species in smaller patches than expected in the plantation matrix, and the loss of some specialists and species living at low densities from large (>50 ha) patches. Because of a significant species-area relationship and possible area-dependent extinction, the largest forest patch in the nested series in a grassland matrix protects most bird species (89%). However, in a plantation matrix the absence of a species-area relationship requires the combination of many larger forest patches to protect most bird species. Plantation forests in the matrix significantly alter forest bird assemblage structure and composition. To avoid the effects of insularisation and to maintain the viability of bird communities in Afromontane forests requires conservation of the larger forests in a natural matrix. However, for forests in a plantation matrix, the management of dispersal processes by manipulation of the matrix may be as important to conserving species and communities as is minimising extinctions. Avoiding placing plantations near large forests, increasing the size of small patches, and where afforestation is unavoidable, placing plantations in the vicinity of small rather than large forest patches, are preferable management practices.  相似文献   

17.
Russian forests occupy an area of 771 Mha with a wood volume of 81.6 × 109 m3. In this paper we estimate the carbon (C) storage and annual C deposition in living vegetation for stands of different age groups according to information in the Russian National Forest Inventory (NFI). Conversion of root C storage into phytomass was based on phytomass/storage ratios calculated from data from 1900 test areas in the different forest regions of Russia. We developed these conversion ratios for different phytomass fractions, namely: stems, branches, roots and foliage, for different forest forming species. Of the total forest area (771 Mha), C storage in the living phytomass is 35.07 Pg C. Total annual C deposition in forest vegetation is estimated at 213.2 Tg C. We considered the role of the main forest forming species in the C cycle of the forest vegetation taking into account the actual structure of the Russian forests.  相似文献   

18.
As the area of the world’s forests shrinks, the management of production forests is becoming increasingly paramount for biodiversity conservation. In the United States and Australia, public debate and controversy about the management of production forests during the later decades of the 20th century resulted in governments adopting sweeping top-down changes to forest policy, with regional forest plans a cornerstone of this process. This paper reviews the biodiversity conservation outcomes of two such processes, the Southeast Queensland Forests Agreement (Australia) and the Northwest Forest Plan (United States). Several key lessons are identified. First, these plans are significant steps forward in the struggle to conserve forest biodiversity while providing for production of timber. Second, expanding the conservation reserve system by itself does not necessarily ensure biodiversity conservation, especially if reserves are traded off for increased timber harvesting in forests outside of reserves or if certain important elements of biodiversity are not accounted for either by conservation forests or production forests. Third, reserves often need active management to restore diversity in previously-logged forests and reduce fuels that have accumulated as a result of fire exclusion. Fourth, the current plans fall short of the comprehensive whole-of-landscape, multiple-ownership approach needed to support long-term sustainable forestry and biodiversity conservation. Fifth, adaptive management was not adequately institutionalized and sometimes misapplied, although, in the case of the Pacific Northwest, a major regional monitoring strategy was developed and partially implemented. Finally, ecological science suffered in the collision with the socio-political decision-making process due to the limited scope that was left for testing and evaluating the new approaches to forest management. We conclude, based on the evaluation of the two regional plans, that regional biodiversity conservation goals may be better achieved by implementing sustainable forest management practices across all ownerships and involving all stakeholders and the broader community.  相似文献   

19.
Despite the fact that Madagascar is classified a biological `hotspot' due to having both high levels of species endemism and high forest loss, there has been no published research on how Madagascan bird species respond to the creation of a forest edge or to degradation of their habitat. In this study, we examined how forest bird communities and different foraging guilds were affected by patch habitat quality and landscape context (forest core, forest edge and matrix habitat) in the threatened littoral forests of coastal southeastern Madagascar. We quantified habitat use and community composition of birds by conducting 20 point counts in each landscape contextual element in October and November 2002. We found that littoral forest core habitats had significantly (p<0.01) more bird species than forest edge and matrix habitats. Thirty-one (68%) forest dependent species were found to be edge-sensitive. Forest edge sites had fewer species, and a higher representation of common species than forest interior sites. Twenty-nine species were found in the matrix habitat, and the majority of matrix-tolerant forest species had their greatest abundance within littoral forest edge habitats. Guild composition also changed with landscape context. Unlike other tropical studies with which we are familiar, we found that frugivorous species were edge-sensitive while sallying insectivores were edge-preferring. The majority of canopy insectivores (n=15, 88%), including all six endemic vanga species, were edge-sensitive. When habitat quality was assessed, the distributions of nine edge-sensitive species were significantly (p<0.01) affected by changes in habitat complexity and vegetation vertical structure in core or edge point counts. Therefore, we believe that changes in vegetation structure at the edge of littoral forest remnants may be a key indicator of mechanisms involved in edge sensitivity of forest dependent species in these forests. Our findings indicate that habitat fragmentation and degradation affect Madagascan bird communities and that these processes threaten many species. With continued deforestation and habitat degradation in Madagascar, we predict the further decline of many bird species.  相似文献   

20.
Rio de Janeiro state in Brazil has one of the most diverse and most endangered avifaunas in the continental Americas. Many of these endangered birds are endemic to the Atlantic Forest biodiversity hotspot, and some even endemic to Rio de Janeiro itself. As with all other forested hotspots, little original forest remains. Much of that is outside formal protected areas and faces the risk of deforestation. These factors create special circumstances for setting conservation priorities — ones common to hotspots in general — but typically not to many conservation priority setting exercises.We mapped the distribution of the remaining habitat for the 189 birds in Rio de Janeiro state that are officially endangered and/or endemic to the Atlantic Forest. Using those habitat maps, we calculated the amount of habitat currently within protected areas for each species. We then prioritized all non-protected parts of the state for their avian conservation value and their potential contribution to a comprehensive protected area system. This analysis identified 10% of the remaining unprotected part of the state as the highest priority for avian conservation. We further highlight specific locations where conservation actions could create a more comprehensive protected area system for the avifauna of Rio de Janeiro state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号